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Abstract
We propose AAA rational approximation as a method for interpolating or approxi-
mating smooth functions from equispaced samples. Although it is always better to
approximate from large numbers of samples if they are available, whether equispaced
or not, this method often performs impressively even when the sampling grid is coarse.
In most cases it gives more accurate approximations than other methods. We support
this claim with a review and discussion of nine classes of existing methods in the light
of general properties of approximation theory as well as the “impossibility theorem”
for equispaced approximation. We make careful use of numerical experiments, which
are summarized in a sequence of nine figures. Among our new contributions is the
observation, summarized in Fig. 7, that methods such as polynomial least-squares and
Fourier extension may be either exponentially accurate and exponentially unstable, or
less accurate and stable, depending on implementation.

Keywords Rational approximation · AAA approximation · Equally spaced data ·
Impossibility theorem

Mathematics Subject Classification 41A20 · 65D05 · 65D15

1 Introduction

The aim of this paper is to propose a method for interpolation of real or complex data
in equispaced points on an interval, which without loss of generality we take to be
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Fig. 1 AAA interpolation of f (x) = ex/
√
1 + 9x2 in 50 equispaced points in [−1, 1]. The rational

interpolant, of degree 17, matches f to accuracy 3.3 × 10−14 at the sample points and 9.6 × 10−14 on
[−1, 1]

[−1, 1]. In its basic form themethod simply computes a AAA rational approximation1

[37] to the data, and thus the interpolant is a numerical one, not mathematically exact:
a crucial advantage for robustness. In Chebfun [21], the fit can be computed to the
default relative accuracy 10−13 by the command

r = aaa(F), (1.1)

where F is the vector of data values. (As explained in Sect. 3, an adjustment is made
if the AAA approximant turns out to have poles in the interval of approximation.) If
interpolation by a polynomial rather than a rational function is desired, this can be
determined by a further step in which r is approximated by a Chebyshev series,

p = chebfun(r). (1.2)

For example, Fig. 1 shows the AAA interpolant r of f (x) = ex/
√
1 + 9x2 in 50

equispaced points of [−1, 1]. This is a rational function of degree 17 with accuracy
‖ f − r‖ ≈ 9.6 × 10−14, computed in about a millisecond on a laptop. (Throughout
this paper, ‖ · ‖ is the ∞-norm over [−1, 1]. A rational function r is of degree N if it
can be written as a quotient p/q where p and q are polynomials of degree at most N .)
The Chebfun polynomial approximation p to r has degree 104 and the same accuracy
‖ f − p‖ ≈ 9.6×10−14. The exact degree 49 polynomial interpolant pexact to the data,
by contrast, has error ‖ f − pexact‖ ≈ 109.3 because of the Runge phenomenon [43,
47]. It is fascinating that one can generate high-degree polynomial interpolants like
this that are so much better between the sample points than polynomial interpolants
of minimal degree—an example of the advantages in certain contexts of what is often
called over-parametrization. For applications, however, we see no particular advantage
in p(x) as compared with r(x), so for the remainder of the paper, we just discuss r(x).

The problem of interpolating or approximating equispaced data arises in countless
applications, and there is a large literature on the subject, with many algorithms having
been proposed, some of them highly effective in practice. One reason why no single
algorithmhas taken over is that there is an unavoidable tradeoff in this problembetween

1 Pronounced “triple-A”.
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accuracy and stability. In particular, if n equispaced samples are taken of a function
f that is analytic on [−1, 1], and an approximation rn to f is constructed from this
data, then one might expect that exponential convergence to f should be possible as
n → ∞. However, the impossibility theorem asserts that exponential convergence
is only possible in tandem with exponential instability, and that, conversely, a stable
algorithm can converge at best at a root-exponential rate ‖ f − rn‖ = exp(−C

√
n ),

C > 0 [41]. In practice, it is usual to operate in an in-between regime, accepting some
instability as the price of better accuracy. In the face of this complexity, it follows that
different algorithms may be advantageous for different classes of functions, and that
pinning down the properties of any particular algorithm may not be straightforward.

In this complicated situation we will do our best to elucidate the properties of
AAA interpolation. First we compare its performance numerically against that of five
existing algorithms for a collection of approximation problems in Sects. 2 and 3.
The main issue here is accuracy, not speed, since all the methods in play are very fast,
thoughAAAcan slowdown at high degrees as discussed in theDiscussion. Theoretical
considerations are presented in Sect. 4. The final discussion section briefly reviews
AAA variants, the effect of noise, and other issues.

Apart from some remarks around Fig. 5, we will not describe details of the AAA
algorithm, because these can be found elsewhere [37] and because the essential point
here is not AAA per se but just rational approximation. At present, AAA appears to
be the best general-purpose rational approximation tool available, but other methods
may come along in the future.

2 Existingmethods

Many methods have been proposed for interpolation or approximation of equispaced
data, and we will not attempt a comprehensive review. We will, however, mention the
main categories of methods and choose five specific examples for numerical compar-
isons. For previous surveys with further references, see [13, 14, 41].

With any interpolant or approximant, there are always the questions of the form of
the approximant and the method of defining or computing it. Among the forms that
have been advocated are polynomials or piecewise polynomials, Fourier series, rational
functions, radial basis functions (RBFs), exponential sums, and various modifications
and combinations of these. The methods proposed generally involve mathemati-
cally exact interpolation or some version of least-squares approximation. (Ironically,
because of conditioning issues, exact interpolantsmaybe less accurate in floating-point
arithmetic than least-squares approximations, even at the sample points, let alone in-
between.) Almost every method involves a choice of parameters, which usually affect
the tradeoff between accuracy and stability and can therefore be interpreted in part as
regularization parameters. AAA interpolation may seem an exception to this rule, but
a parameter implicitly involved is the tolerance, which in Chebfun is set by default to
10−13. We will discuss this further in Sect. 4.

Polynomial least-squares. Interpolation of n data values by a polynomial of degree
n − 1 leads to exponential instability at a rate O(2n), as has been known since Runge
in 1901 [43, 47]. Least-squares fitting by a polynomial of degree d < n− 1, however,
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is better behaved. To cut off the exponential growth as n → ∞ entirely, d must be
restricted to size O(

√
n ) [15, 42], but one can often get away with larger values in

practice, and a simple choice is d ≈ n/γ , where γ > 1 is an oversampling ratio.
According to equation (4.1) of [41], this cuts the exponential unstable growth rate
from 2n to Cn with

C =
[
(1 + α)1+α(1 − α)1−α

]1/2
, α = 1/γ. (2.1)

For example, γ = 2 yields a growth rate of about (33/4/2)n ≈ (1.14)n , which is mild
enough to be a good choice in many applications. Our experiments of Fig. 2 in the
next section use this value γ = 2.

Fourier, polynomial, andRBFextensions.The idea ofFourier extension is to approx-
imate f by a Fourier series tied not to [−1, 1] but to a larger domain [−T , T ] [10,
17]. The fit is carried out by least-squares or regularized least-squares, often simply
by means of the backslash operator in MATLAB, as has been analyzed by Adcock,
Huybrechs, and Vaquero [4, 30] and Lyon [36]. A related idea is polynomial exten-
sion, in which f is approximated by polynomials expressed in a basis of orthogonal
polynomials defined on an interval [−T , T ] [5]. A third possibility is RBF extension,
in which f is approximated by smooth RBFs whose centers extend outside [−1, 1]
[26, 39]. In Fig. 2 of the next section, we use Fourier extension with T = 2 and an
oversampling ratio of 2, so that the least-squares matrices have twice as many rows as
columns.

Fourier series with corrections. If f is periodic, trigonometric (Fourier) interpola-
tion provides a perfect approximation method: exponentially convergent and stable.
In the case of quadrature, this becomes the exponentially convergent trapezoidal rule
[49]. For nonperiodic f , an attractive idea is to employ a trigonometric fit modified by
corrections of one sort or another, often the addition of a polynomial term, designed
to mitigate the effect of the implicit discontinuity at the boundary. This idea goes back
as far as James Gregory in 1670, before Fourier analysis and even calculus [25]! The
result will not be exponentially convergent, but it can have an algebraic convergence
rate of arbitrary order depending on the choice of the corrections, and the rate may
improve to super-algebraic if the correction order is taken to increase with n. This idea
has been applied in many variations, an early example being a method of Eckhoff with
precursors he attributes to Krylov and Lanczos [23]. In the “Gregory interpolant” of
[31], an interpolant in the form of a sum of a trigonometric term and a polynomial
is constructed whose integral equals the result for the Gregory quadrature formula.
Fornberg has proposed (for quadrature, not yet approximation) a method of regular-
ized endpoint corrections in which extra parameters are introduced whose amplitudes
are then limited by optimization [25]. Figure 2 of the next section shows curves for a
least-squares method in which a Fourier series is combined with a polynomial term
of degree about

√
n, with an oversampling ratio of about 2.

Multi-domain methods. Related in spirit to methods involving boundary correc-
tions are methods in which f is approximated by different functions over different
subintervals of [−1, 1]—in the simplest case, a big central interval and two smaller
intervals near the ends. For examples see [11, 14, 34, 40].
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Splines. Splines, which are piecewise polynomials satisfying certain continuity
conditions, take themulti-domain idea further and are an obvious candidate for approx-
imations that will not suffer from Gibbs oscillations at the boundaries. The most
familiar case is cubic spline interpolants, where the sample points are nodes separat-
ing cubic pieces with continuity of function values and first and second derivatives.
Cubic splines (with the standard natural boundary conditions at the ends and not-a-
knot conditions one node in from the ends) are one of the methods presented in Fig. 2
of the next section.

Mapping. By a conformal map, polynomial approximations can be transformed to
other approximations that are more suitable for equispaced interpolation and approxi-
mation. The prototypical method in this area was introduced by Kosloff and Tal-Ezer
[35], and there is also a connection with prolate spheroidal wave functions [38]. The
general conformal mapping point of view was put forward in [29] and in [47, chapter
22]. See also [12].

Gegenbauer reconstruction.Another class of methods has been developed from the
point of view of edge detection and elimination of the Gibbs phenomenon in harmonic
analysis. For entries into this extensive literature, see [27] and [44].

Explicit regularization methods. Several other methods, often nonlinear, have been
proposed involving various strategies of explicit regularization to counter the insta-
bility of high-accuracy approximation [7, 9, 18, 50]. One may also mention methods
related to LASSO and basis pursuit [6, 45]. We emphasize that even many of the
simpler numerical methods implicitly involve regularization introduced by rounding
errors, as will be discussed in Sect. 4.

Floater–Hormann rational interpolation: Chebfun 'equi'. Finally, here is
another method involving rational functions. Floater and Hormann introduced a fam-
ily of degree n − 1 rational interpolants in barycentric form whose weights can be
adjusted to achieve any prescribed order of accuracy [24]. (The AAAmethod also uses
a barycentric representation, but it is an approximant, in principle, not an interpolant,
and it is not closely related to Floater–Hormann approximation.) The method we show
in Fig. 2 of the next section, due to Klein [28, 33], is based on interpolants whose order
of accuracy is adaptively determined via the 'equi' option of the Chebfun construc-
tor [8, 46].

3 Numerical comparison

As mentioned in the opening paragraph, our interpolation method consists of AAA
approximation with its standard tolerance of 10−13, so long as the approximant that
is produced has no “bad poles,” that is, poles in the interval [−1, 1]. The principal
drawback of AAA approximation is that such poles sometimes appear—often with
such small residues that they do not contribute to the quality of the approximation (in
which case they may be called “spurious poles” or “Froissart doublets” [47]). When
the original AAA paper [37] was published, a “cleanup” procedure was proposed to
address this problem. We are no longer confident that this procedure is very helpful,
and instead, we now propose the method of AAA-least squares (AAA-LS) introduced
in [19]. Here, if there are any bad poles, these are discarded, and the other poles are
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retained to form the basis of a linear least-squares fit to find a new rational approxi-
mation represented in partial fractions form. For details, see the “if any” block in
the AAA part of the code listed in the appendix. Typically this correction makes little
difference to accuracy down to levels of 10−7 or so, but it may lead to difficulties when
one targets tighter accuracies than this.

Poles in [−1, 1] almost never appear in the approximation of functions f (x) that
are complex (a case not illustrated here as it is less common in applications). For real
problems, accordingly, another way of avoiding bad poles is to perturb the data by a
small, smooth complex function. Overall, however, it must be said that the appearance
of unwanted poles in AAA approximants is not yet fully understood, and it seems
likely that improvements are in store in this active research area.

Comparing the AAA method against other methods can quickly grow very com-
plicated since most methods have adjustable parameters and there are any number of
functions one could apply them to. To keep the discussion under control, the panels
of Fig. 2 correspond to five functions:

f A(x) =
√
1.21 − x2 (branch points at ± 1.1), (3.1)

fB(x) =
√
0.01 + x2 (branch points at ± 0.1i), (3.2)

fC (x) = tanh(5x) (poles on the imaginary axis), (3.3)

fD(x) = sin(40x) (entire, oscillatory), (3.4)

fE (x) = exp(−1/x2) (C∞ but not analytic). (3.5)

Each panel displays convergence curves for six methods:
Cubic splines,
Polynomial least-squares with oversampling ratio γ = 2,
Fourier extension on [−2, 2] with oversampling ratio γ = 2,
Fourier series plus polynomial of degree

√
n with oversampling ratio γ = 2,

Floater–Hormann rational interpolation: Chebfun 'equi',
AAA with the standard default tolerance 10−13.

For details of the methods, see the code listing in the appendix. In this list, the first four
methods are linear and the last two are nonlinear. Among the many methods pointed
to in the discussion of the last section, some are explicitly nonlinear, such as those of
[7] and [50], and others are of a nature between linear and nonlinear in the sense that
they are linear if used with fixed parameters but in practice would often be applied
with parameters chosen adaptively.

Many observations can be drawn from Fig. 2. The most basic is that AAA consis-
tently appears to be the best of the methods included in the comparison, and is the
first to reach accuracy 10−10 in every case. It is typical for AAA to converge twice
as fast as the other methods, and for the test function fC (x) = tanh(z), whose singu-
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Fig. 2 Six approximation methods applied to five smooth functions on [−1, 1]. In each case the horizontal
axis is n, the number of sample points, and the vertical axis is ‖ f −r‖, the maximum error over [−1, 1]. The
thicker dot on the AAA curvemarks the final value of n at which the rational function is an interpolant rather
than just an approximation. The dashed lines in (A) and (D) mark the instability estimate (1.14)nεmachine
from (2.1) with oversampling ratio γ = 2. The results are discussed in the text, and the code is listed in the
appendix

larities consist of poles that the AAA approximants readily capture, its superiority is
especially striking.

It is worth spelling out the meaning of the AAA convergence curves of Fig. 2.
Each point on one of these curves corresponds to a rational approximation whose
error is 10−13 or less on the discrete grid (at least if the partial fractions least-squares
procedure has not been invoked because of bad poles). For very small n, this will be
a rational interpolant, of degree �(n − 1)/2�, with error exactly zero on the grid in
principle though nonzero in floating-point arithmetic. In the figure, the last such n is
marked by a thicker dot. For most n, AAA terminates with a rational approximant
of degree less than �(n − 1)/2� that matches the data to accuracy 10−13 on the grid
without interpolating exactly. We think of this as a numerical interpolant, since the
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error on the grid is so small, whereas much larger errors are possible between the grid
points. As the grid gets finer, the errors between grid points reduce until the tolerance
of 10−13 is reached all across [−1, 1].

Another observation about Fig. 2 is that the Floater–Hormann 'equi' method is
very good [8]. Unlike AAA in its pure form, without partial fractions correction, it is
guaranteed to produce an interpolant that is pole-free in [−1, 1].

The slowest method to converge is often cubic splines, whose behavior is rock
solid algebraic at the fixed rate ‖ f − r‖ = O(n−4), where r is the spline interpolant
through n data values, assuming f is smooth enough. The convergence of spline
approximations could be speeded up by using degrees increasing with n (no doubt at
the price of some of that rock solidity).

In panels (A) and (D) of Fig. 2, the polynomial least-squares approximations con-
verge at first but eventually diverge exponentially because of unstable amplification
of rounding errors. Note that the upward-sloping red curves in these two figures both
extrapolate back to about 10−16, machine precision; the dotted red lines mark the
prediction 10−16 × (1.14)n from (2.1) with γ = 2. Before this point, it is interesting
to compare the very different initial phases for f A, with singularities near x = ±1,
and fB , with singularities near x = 0. Clearly we have initial convergence in the first
case and initial divergence in the second, a consequence of Runge’s principle that
convergence of polynomial interpolants depends on analyticity near the middle of the
interval. The figure for the function fE looks much like that for fB .

The Fourier extension method, as a rule, does somewhat better than polynomial
least-squares in Fig. 2; in certain limits one expects Fourier methods to have an advan-
tage over polynomials of a factor of π/2 [47, chapter 22]. Perhaps not toomuch should
be read into the precise positions of these curves in the figure, however, as both meth-
ods have been implemented with arbitrary choices of parameters that might have been
adjusted in various ways.

4 Convergence properties

What can be said in general about AAA approximation of equispaced data? We shall
organize the discussion around two questions to be taken up in successive subsections.

– How does the method normally behave?
– How is this behavior consistent with the impossibility theorem?

It would be good to support our observations with theorems guaranteeing the success
of the method under appropriate hypotheses, but unfortunately, like most methods of
rational approximation, AAA lacks a theoretical foundation.

A key property affecting all of the discussion is that, unlike four of the other five
methods of Fig. 2 (all but Floater–Hormann 'equi'), AAA approximation is nonlin-
ear. As so often happens in computational mathematics, the nonlinearity is essential
to its power, while at the same time leading to analytical challenges. For example, it
means that the theory of frames in numerical approximation, as presented in [2, 3, 22],
is not directly applicable. A theme of that theory, however, remains important here,
which is to distinguish between approximation and sampling. The approximation issue
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Fig. 3 The amber function, a test function constructed to be analytic in the Bernstein 2-ellipse but not in
any larger region of the complex x-plane

is, how well can rational functions approximate a smooth function f on [−1, 1]? The
sampling issue is, how effectively will an algorithm based on equally spaced samples
find these good rational approximations?

Our discussion will make reference to the five example functions f A, . . . , fE of
Fig. 2, which are illustrative of many more experiments we have carried out, and in
addition we will consider a sixth function. In any analysis of polynomial approxi-
mations on [−1, 1], and also in the proof of the impossibility theorem (even though
this result is not restricted to polynomial approximations), one encounters functions
analytic inside a Bernstein ellipse in the complex plane, which means an ellipse with
foci ±1. If the sum of the semimajor and semiminor axis lengths is ρ > 1, then the
boundary is called more specifically the Bernstein ρ-ellipse. We define the amber
function (Bernstein means amber in German) by its Chebyshev series

A(x) =
∞∑

k=0

2−kskTk(x), (4.1)

where the numbers sk = ±1 are determined by the binary expansion of π ,

π = 11.00100100001111110110 . . . 2, (4.2)

with sk = 1 when the bit is 1 and sk = −1 when it is 0. In Chebfun, one can construct
A with the commands

s = dec2bin(floor(2ˆ52*pi));
c = 2.ˆ(0:-1:-53)';
ii = find(s=='0'); c(ii) = -c(ii);
A = chebfun(c,'coeffs');

The point of A(x) is that it is analytic in the Bernstein 2-ellipse but has no further
analytic structure beyond that, since the bits of π are effectively random. In particular,
it is not analytic or meromorphic in any larger region of the x-plane. (We believe it has
the 2-ellipse as a natural boundary [32, chap. 4].) Fig. 3 sketches A(x) over [−1, 1].

Figure 4 is another plot along the lines of Fig. 2, but for A(x), and extending to
n = 400 instead of 200. We are now prepared to examine the properties of AAA
interpolation.
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Fig. 4 A convergence plot as in Fig. 2 for the amber function A(x) of (4.1). Note that for this function,
which has no analytic structure beyond analyticity in theBernstein 2-ellipse, theAAAand’equi’methods
perform similarly

4.1 How does themethod normally behave?

We believe the usual behavior of AAA equispaced interpolation is as follows. For
small values of n, there is a good chance that f will be poorly resolved on the grid,
and the initial AAA interpolant will have poles between the grid points in [−1, 1]. In
such cases, as described in the last section, the method switches to a least-squares fit
that often produces acceptable accuracy but without outperforming other methods.

As n increases, however, f begins to be resolved, and here rational approximation
shows its power. If f happens to be itself rational, like the Runge function 1/(1+25x2)
used for experiments in a number of other papers, AAA may capture it exactly. More
typically, f is not rational but, as in the examples of Fig. 2, it has analytic structure
that rational approximants can exploit. If it is meromorphic, like tanh(5x), then AAA
quickly finds nearby poles and therefore converges at an accelerating rate. Even if it
has branch point singularities, rapid convergence still takes place [48].

In this middle phase of rapid convergence of AAA approximation, the errors are
many orders of magnitude bigger between the grid points (e.g., 10−6) than at the
grid points (10−13). The big errors may be near the endpoints, the pattern familiar in
polynomial interpolation since Runge, but they may also be in the interior, as happens
for example with approximation of f (x) = √

0.01 + x2. Figure 5 illustrates these
two possibilities. Convergence eventually happens because the grid points get closer
together and the big errors between them are clamped down.

The AAA method does not keep converging for n → ∞, however. Instead, it
eventually slows down and is limited by its prescribed relative accuracy, 10−13 by
default. Thus although it gets high accuracy faster than the other methods, in the end it
too levels off. To illustrate the significance of theAAAtolerance, Fig. 6 repeats the error
plots for fC (x) = tanh(5x) and fD(x) = sin(40x) for n = 4, 8, . . . , 200, but now
calculated in 77-digit BigFloat arithmetic using Julia (with the GenericLinearAlgebra
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Fig. 5 AAAapproximation in itsmid-phase of rapid convergence at n = 50 for two different functions f (x).
Black dots mark the n sample points, with errors below the AAA relative tolerance level of 10−13 marked
by the red line. The circled black dots are the subset of AAA support points, where the error in principle is

0 (apart from rounding errors), though it has been artificially plotted at 10−18. With f (x) =
√
1.21 − x2,

above, the big errors between sample points are near the boundaries, whereas with f (x) =
√
0.01 + x2,

below, they are in the interior (color figure online)
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10-50
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tanh(5x)
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sin(40x)

Fig. 6 AAA errors for two of the functions of Fig. 2 computed in 77-digit precision with Julia. The solid
lines are based on the usual AAA tolerance of 10−13, and the blue dots are based on tolerance 10−50. This
computation does not check for poles in [−1, 1], which should in principle lead to values ‖ f − r‖ = ∞
especially in the early stages of the curves on the right; but here the error is just measured on a 1000-point
equispaced grid (color figure online)

package) instead of the usual 16-digit floating point arithmetic. The solid curve shows
behavior with tolerance 10−13 and the blue dots with tolerance 10−50.

The amber function A(x) was constructed to have no hidden analytic structure to
be exploited; we think of it as being as far from rational as possible. In Fig. 4, this is
reflected in the fact thatAAAand polynomial approximants converge at approximately
the same rate until the latter begins to diverge exponentially. Note also that in Fig. 4,
unlike the five plots of Fig. 2, AAA fails to outperform the Floater–Hormann 'equi'
method. This is consistent with the view that AAA is a robust interpolation strategy
that exploits analytic structure whereas Floater–Hormann is a robust strategy that does
not exploit analytic structure.
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Fig. 7 The solid lines repeat the polynomial least-squares (left) and Fourier extension (right) curves of Fig. 4.
The dots show corresponding results for alternative implementations of each method. On the left, switching
to the ill-conditioned monomial basis for polynomial least-squares cuts off the exponential acuracy and
also the exponential instability. On the right, switching to the well-conditioned Vandermonde with Arnoldi
basis for Fourier extension introduces exponential accuracy and exponential instability

4.2 How is this consistent with the impossibility theorem?

In the introduction we summarized the impossibility theorem of [41] as follows. In
approximation of analytic functions from n equispaced samples, exponential conver-
gence as n → ∞ is only possible in tandem with exponential instability; conversely,
a stable algorithm can converge at best root-exponentially. The essential reason for
this (and the essential construction in the proof of the theorem) can be summarized in
a sentence. Some analytic functions are much bigger between the sample points than
they are at the sample points; thus high accuracy requires some approximations to be
huge.We now explain how the theorem relates to the six numerical methods presented
in Figs. 2 and 4.

Fourier series plus polynomials, with our choice of polynomial degree O(
√
n ),

converge at a root-exponential rate. This method is neither exponentially accurate nor
exponentially unstable.

The Floater–Hormann 'equi' interpolant also converges (it appears) at a root
exponential rate, for reasons related to its adaptive choice of degree.

Cubic splines converge at a lower rate, just O(n−4) for smooth f . Again thismethod
is neither exponentially accurate nor exponentially unstable.

Fourier extension also appears to converge root-exponentially, making it, too, nei-
ther exponentially accurate nor exponentially unstable.

Polynomial least-squares, however, reveals the hugeness of certain functions. In
the terms of the theorem, this is the only one of our methods that appears to be
exponentially accurate and exponentially unstable.

Our statements about these last two methods, however, come with a big qualifica-
tion, which is illustrated in Fig. 7. In fact, the difference between Fourier extension
and polynomial least-squares lies not in their essence but in the fashion in which they
are implemented. If you implement either one with a well-conditioned basis, then
it is exponentially accurate and exponentially unstable. This is what we have done
with the polynomial least-squares method, which uses the well-conditioned basis
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of Chebyshev polynomials. The Fourier extension method, on the other hand, was
implemented with the ill-conditioned basis of complex exponentials exp(iπkx/2). In
an ill-conditioned basis like this, high accuracy will require huge coefficient vectors
[2, 3, 22], but rounding errors prevent their computation in floating point arithmetic
through the mechanism of matrices whose condition numbers are unable to grow big-
ger than O((εmachine)

−1). It is these rounding errors that make our implementation
of Fourier extension stable. Re-implemented via Vandermonde with Arnoldi [16],
as shown in Fig. 7, it becomes exponentially accurate and exponentially unstable.
Conversely, we can implement polynomial least-squares with the exponentially ill-
conditioned monomial basis instead of Chebyshev polynomials. Because of rounding
errors, it then loses its exponential accuracy and its exponential instability, as also
shown in Fig. 7.

Finally, what about AAA? The experiments suggest it is neither exponentially
accurate nor exponentially unstable. Insofar as the impossibility theorem is concerned,
there is no inconsistency. Still, what is the mechanism? In Fig. 2 we have highlighted
the last value of n for which AAA interpolates the data. In these and many other
examples, that value is very small. Afterwards, AAA favors closer fits to the data
over increasing degrees of rational approximation, and this has the familiar effect of
oversampling. Yet, owing to its nonlinear nature, AAA is free to vary the oversampling
factor—and convergence rates along with it—depending on the data and on the chosen
tolerance.

The stability of AAA also stems from the representation of rational functions in
barycentric form, which is discussed in the original AAA paper [37].

5 Discussion

Although we have emphasized just the behavior on [−1, 1], it is well known that ratio-
nal approximants have good properties of analytic continuation, beyond the original
approximation set. TheAAAmethod certainly partakes of this advantageous behavior.
For example, Fig. 8 shows the approximation of Fig. 1 again ( f (x) = ex/

√
1 + 9x2

sampled at 50 equispaced points in [−1, 1]), but now evaluated in the complex plane.
There are many digits of accuracy far from the approximation domain [−1, 1]. This
is numerical analytic continuation, and the other methods we have compared against
have no such capabilities.

Another impressive feature of rational approximation is its ability to handle sam-
pling grids with missing data without much loss of accuracy. A striking illustration of
this effect is presented in Figure 2 of [51].

The AAA algorithm, as implemented in Chebfun, has a number of adjustable fea-
tures. We have bypassed all these, avoiding both the “cleanup” procedure and the
Lawson iteration [37] (which is not normally invoked in any case, by default).

One of the drawbacks of AAA approximation is that although it is extremely fast
at lower degrees, say, d < 100, it slows down for higher degrees: the complexity is
O(md 3), where m is the size of the sample set and d is the degree. For most appli-
cations, we have in mind a regime of problems with d < 100. None of the examples
shown in this paper come close to this limit. (With the current Chebfun code, one could
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Fig. 8 The AAA approximation of Fig. 1 extended into the complex plane. The dots are the poles of the
rational approximant, and the curves are level curves of the error | f (z) − r(z)| with levels (from outside
in) 10−2, 10−4, . . . , 10−14

0 50 100 150 200 250 300
10-15

10-10

10-5

100

cubic splines
polynomial least-squares
Fourier extension to [-2,2]
Fourier + low degree poly
Floater-Hormann: 'equi'
AAA

Fig. 9 AAA approximation of the function f (x) defined as the sum of all six functions f A, fB , fC , fD,

fE , and A considered in this paper. As usual, AAA mostly outperforms the other methods, but there are
blips at n = 200 and n = 264 corresponding to poles in the approximation interval [−1, 1]

write for example aaa(F,X,'mmax',200,'cleanup','off','lawson',
0).)

Our discussion has assumed that the data f (xk) are accurate samples of a smooth
function, the only errors being rounding errors at the relative level ofmachineprecision,
around 10−16. The Chebfun default tolerance of 10−13 was set with this level in mind.
To handle data contaminated by noise at a higher level ε, we recommend running
AAA with its parameter 'tol' set to one or two orders of magnitude greater than ε.
For unknown noise levels, it should be possible to devise adaptive methods based on
apparent convergence rates—detecting the bend in an L-shaped curve—but we have
not pursued this. Another approach to dealing with noise in rational approximation is
to combine AAA fitting with calculations related to Prony’s method for exponential
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sums, as advocated byWilber, Damle, and Townsend [51] and in the ESPIRA method
of Derevianko, Plonka, and Petz [20].

Many of the methods we have discussed are linear, but AAA is not. This raises
the question, will it do as well for a truly complicated “arbitrary” function as it has
done for the functions with relatively simple properties we have examined? As a check
of its performance in such a setting, Fig. 9 repeats Fig. 4, but now for the function
f consisting of the sum of all six test functions we have considered: f A, fB, fC ,

fD, fE , and A. As usual, AAA outperforms the other methods, but blips in the
convergence curve at n = 200 and 264 highlight that it comes with no guarantees.
Both blips correspond to cases where “bad poles” have turned up in the approximation
interval [−1, 1]. These problems are related to rounding errors, as can be confirmed
by an implementation in extended precision arithmetic as in Fig. 6 or by simply
raising the AAA convergence tolerance to 10−11. It does seem that further research
about avoiding unwanted poles in AAA approximation is called for, but fortunately,
in a practical setting, such poles are immediately detectable and thus pose no risk of
inaccuracy without warning to the user.
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Appendix: chebfun code for Figure 2

xx = linspace(-1,1,1000)';
MS = 'markersize'; FS = 'fontsize'; LW = 'linewidth';
IN = 'interpreter'; LT = 'latex'; warning off
for plt = 1:5

switch plt
case 1, s = '(A) sqrt(1.21-xˆ2)';
case 2, s = '(B) sqrt(0.01+xˆ2)';
case 3, s = '(C) tanh(5*x)';
case 4, s = '(D) sin(40*x)';
case 5, s = '(E) exp(-1/xˆ2)';

end
f = inline(vectorize(s(6:end)));
jplot = 2 - mod(plt,2); iplot = ceil(plt/2);
axes('position',[-.25+.35*jplot 1.04-.32*iplot .3 .27])
nmax = 200; nn = 4:4:nmax;
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% Cubic splines
nvec = []; errvec = [];
for n = nn

X = linspace(-1,1,n)';
p = chebfun.spline(X,f(X));
err = norm(f(xx)-p(xx),inf); nvec = [nvec n];

errvec = [errvec err];
end
semilogy(nvec,errvec,'.-',LW,.5,MS,4), grid on, hold on

% Polynomial least-squares, oversampling ratio 2
nvec = []; errvec = [];
for n = nn

X = linspace(-1,1,n)';
A0 = chebpoly(0:n/2); A = A0(X);
c = A\f(X); AA = A0(xx); pp = AA*c;
err = norm(f(xx)-pp,inf); nvec = [nvec n];

errvec = [errvec err];
end
semilogy(nvec,errvec,'.-',LW,.5,MS,4), grid on

% Fourier extension on [-2,2], oversampling ratio 2
nvec = []; errvec = [];
zz = exp(.5i*pi*xx);
for n = nn

X = linspace(-1,1,n)'; Z = exp(.5i*pi*X);
d = ceil(n/4); c = [real(Z.ˆ(0:d)) imag(Z.ˆ(1:d))]\f(X);
c = c(1:d+1) - 1i*[0; c(d+2:2*d+1)];
pp = real((zz.ˆ(0:length(c)-1))*c);
err = norm(f(xx)-pp,inf); nvec = [nvec n];

errvec = [errvec err];
end
semilogy(nvec,errvec,'.-',LW,.5,MS,4), grid on, hold on

% Fourier plus polynomial of degree sqrt(n), oversampling ratio 2
nvec = []; errvec = [];
for n = nn

degp = round(sqrt(n)) - 1; % degree of polynomial term
degp = degp + mod(degp+n+1,2); % ... with opposite parity to n
degf = (n-1-degp)/2;
degf = ceil(degf/2); % oversampling ratio about 2
X = linspace(-1,1,n)';
C = chebpoly(0:degp);
A = [cos(pi*(1:degf).*X) sin(pi*(1:degf).*X) C(X)]; c = A\f(X);
p = @(x) reshape([cos(pi*(1:degf).*x(:)) ...

sin(pi*(1:degf).*x(:)) C(x(:))]*c,size(x));
err = norm(f(xx)-p(xx),inf); nvec = [nvec n];

errvec = [errvec err];
end
semilogy(nvec,errvec,'.-',LW,.5,MS,4), grid on, hold on

% Floater-Hormann rational interpolation: chebfun 'equi'
nvec = []; errvec = [];
for n = nn

X = linspace(-1,1,n)';
p = chebfun(f(X),'equi');
err = norm(f(xx)-p(xx),inf); nvec = [nvec n];
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errvec = [errvec err];
end
semilogy(nvec,errvec,'.-',LW,.5,MS,4), grid on

% AAA
nvec = []; errvec = []; lastinterp = 0;
for n = nn

X = linspace(-1,1,n)';
[r,pol] = aaa(f(X),X,'cleanup','off');
if any(imag(pol)==0 & abs(pol)<1)

pol = pol(imag(pol)˜=0 | abs(pol)>1);
pX = pol.'; for j = 1:length(pol); pX(j) = min(abs(pol(j)-X));

end
A = [X.ˆ0 pX./(X-pol.')]; c = A\f(X);
r = @(x) reshape([x(:).ˆ0 pX./(x(:)-pol.')]*c, size(x));

end
if length(pol) == ceil((n-1)/2), lastinterp = lastinterp+1; end
err = norm(f(xx)-r(xx),inf);
nvec = [nvec n]; errvec = [errvec err];

end
semilogy(nvec,errvec,'.-k',LW,.5,MS,4), grid on
if lastinterp > 0,

plot(nvec(lastinterp),errvec(lastinterp),'.k',MS,8),
end

set(gca,FS,5), axis([0 nmax 1e-16 1e3])
ylabel('$\|f-r\|$',FS,7,IN,LT), xlabel('$n$',FS,7,IN,LT)
if plt < 4, set(gca,'xticklabel',{}), xlabel(' '), end
if mod(plt,2) == 0, set(gca,'yticklabel',{}), ylabel(' '), end
if plt == 1 | plt == 4

plot([0 n],eps*1.14.ˆ[0 n],':','color',[.85 .325 .098])
end
s2 = strrep(s,'*','');
if plt == 4, text(121,10,s2,FS,6), else text(25,10,s2,FS,6), end
set(gca,'ytick',10.ˆ(-15:5:0),'yminorgrid','off'), hold off, shg

end
axes('position',[.49 .14 .25 .15])
for j = 1:5, plot([0 1],[0 0],'.-'), hold on, end
plot([0 1],[0 0],'.-k'), axis([2 3 2 3]), axis off
legend('cubic splines','polynomial least-squares','Fourier extension
to [-2,2]',...

'Fourier + low degree poly','Floater-Hormann: ''equi''','AAA',
'location',...'southeast',FS,5)

References

1. Adcock, B., Huybrechs, D.: On the resolution power of Fourier extensions for oscillatory functions. J.
Comput. Appl. Math. 260, 312–336 (2014)

2. Adcock, B., Huybrechs, D.: Frames and numerical approximation. SIAM Rev. 61, 443–473 (2019)
3. Adcock, B., Huybrechs, D.: Frames and numerical approximation II: generalized sampling. J. Fourier

Anal. Applics. 26, 1–34 (2020)
4. Adcock, B., Huybrechs, D., Martín-Vaquero, J.: On the numerical stability of Fourier extensions.

Found. Comput. Math. 14, 635–687 (2014)
5. Adcock, B., Shadrin, A.: Fast and stable approximation of analytic functions from equispaced samples

via polynomial frames. arXiv:2110.03755v2 (2022)

123

http://arxiv.org/abs/2110.03755v2


D. Huybrechs, L. N. Trefethen

6. van den Berg, E., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. SIAM J.
Sci. Comput. 31, 890–912 (2008)

7. Berzins, M.: Adaptive polynomial interpolation on evenly spaced meshes. SIAM Rev. 49, 604–627
(2007)

8. Bos, L., De Marchi, S., Hormann, K., Klein, G.: On the Lebesgue constant of barycentric rational
interpolation at equidistant nodes. Numer. Math. 121, 461–471 (2012)

9. Boyd, J.P.: Defeating the Runge phenomenon for equispaced polynomial interpolation via Tikhonov
regularization. Appl. Math. Lett. 20, 971–975 (2007)

10. Boyd, J.P.: A comparison of numerical algorithms for Fourier extension of the first, second, and third
kinds. J. Comput. Phys. 178, 118–160 (2002)

11. Boyd, J.P.: Exponentially accurate Runge-free approximation of non-periodic functions from samples
on an evenly spaced grid. Appl. Math. Lett. 20, 971–975 (2007)

12. Boyd, J.P.: Quasi-uniform spectral schemes (QUSS), part 1: constructing generalized ellipses for
graphical grid generation. Stud. Appl. Math. 136, 189–213 (2016)

13. Boyd, J.P., Ong, J.R.: Exponentially-convergent strategies for defeating the Runge phenomenon for
the approximation of non-periodic functions, part I: single-interval schemes. Commun. Comput. Phys.
5, 484–497 (2009)

14. Boyd, J.P., Ong, J.R.: Exponentially-convergent strategies for defeating the Runge phenomenon for
the approximation of non-periodic functions, part two: multi-interval polynomial schemes and mul-
tidomain Chebyshev interpolation. Appl. Numer. Math. 61, 460–472 (2011)

15. Boyd, J.B., Xu, F.: Divergence (Runge phenomenon) for least-squares polynomial approximation on
an equispaced grid and Mock-Chebyshev subset interpolation. Appl. Math. Comput. 210, 158–168
(2009)

16. Brubeck, P.D., Nakatsukasa, Y., Trefethen, L.N.: Vandermonde with Arnoldi. SIAM Rev. 63, 405–415
(2021)

17. Bruno, O.P., Han, Y., Pohlman, M.M.: Accurate, high-order representation of complex three-
dimensional surfaces via Fourier continuation analysis. J. Comput. Phys. 227, 1094–1125 (2007)

18. Chandrasekaran, S., Jayaraman, K., Moffitt, J., Mhaskar, H., Pauli, S.: Minimum Sobolev Norm
schemes and applications in image processing. Proc. SPIE 7535, 753507 (2010)

19. Costa, S., Trefethen,L.N.:AAA-least squares rational approximation and solution ofLaplace problems.
Proceedings 8ECM, to appear

20. Derevianko, N., Plonka, G., Petz, M.: From ESPRIT to ESPIRA: estimation of signal parameters by
iterative rational approximation. arXiv:2106.15140 (2021)

21. Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Pafnuty Press, Oxford (2014)
22. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72,

341–366 (1952)
23. Eckhoff, K.S.: On a high order numerical method for functions with singularities. Math. Comput. 67,

1063–1087 (1998)
24. Floater, M.S., Hormann, K.: Barycentric rational interpolation with no poles and high rates of approx-

imation. Numer. Math. 107, 315–331 (2007)
25. Fornberg, B.: Improving the accuracy of the trapezoidal rule. SIAM Rev. 63, 167–180 (2021)
26. Fryklund, F., Lehto, E., Tornberg, A.-K.: Partition of unity extension on complex domains. J. Comput.

Phys. 375, 57–79 (2018)
27. Gelb, A., Tanner, J.: Robust reprojection methods for the resolution of the Gibbs phenomenon. Appl.

Comput. Harm. Anal. 20, 3–25 (2006)
28. Güttel, S., Klein, G.: Convergence of linear barycentric rational interpolation for analytic functions.

SIAM J. Numer. Anal. 50, 2560–2580 (2012)
29. Hale, N., Trefethen, L.N.: New quadrature formulas from conformal maps. SIAM J. Numer. Anal. 46,

930–948 (2008)
30. Huybrechs, D.: Stable high-order quadrature rules with equidistant points. J. Comput. Appl. Math.

231, 933–947 (2009)
31. Javed, M., Trefethen, L.N.: Euler-maclaurin and gregory interpolants. Numer. Math. 132, 201–216

(2016)
32. Kahane, J.-P.: Some Random Series of Functions, 2nd edn. Press, Cambridge U (1985)
33. Klein,G.: Applications of Linear Barycentric Rational Interpolation. PhD thesis, Dept. ofMathematics,

U. of Fribourg (2012)

123

http://arxiv.org/abs/2106.15140


AAA interpolation of equispaced data

34. Klein, G.: An extension of the Floater-Hormann family of barycentric rational interpolants. Math.
Comput. 82, 2273–2292 (2013)

35. Kosloff, D., Tal-Ezer, H.: A modified Chebyshev pseudospectral method with an O(N−1) time step
restriction. J. Comput. Phys. 104, 457–469 (1993)

36. Lyon, M.: A fast algorithm for Fourier continuation. SIAM J. Sci. Comput. 33, 3241–3260 (2011)
37. Nakatsukasa, Y., Sète, O., Trefethen, L.N.: The AAA algorithm for rational approximation. SIAM J.

Sci. Comput. 40, A1494–A1522 (2018)
38. Osipov, A., Rokhlin, V., Xiao, H.: Prolate Spheroidal Wavefunctions of Order Zero: Mathematical

Tools for Bandlimited Approximation. Springer, Berlin (2013)
39. Piret, C.: A radial basis function based frames strategy for bypassing the Runge phenomenon. SIAM

J. Sci. Comput. 38, A2262–A2282 (2016)
40. Platte, R.B., Gelb, A.: A hybrid Fourier-Chebyshev method for partial differential equations. J. Sci.

Comput. 439, 244–264 (2009)
41. Platte, R.B., Trefethen, L.N., Kuijlaars, A.B.J.: Impossibility of fast stable approximation of analytic

functions from equispaced samples. SIAM Rev. 53, 308–318 (2011)
42. Rakhmanov, E.A.: Bounds for polynomials with a unit discrete norm. Ann. ofMath. 165, 55–88 (2007)
43. Runge, C.: Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten. Z.

Math. Phys. 46, 224–243 (1901)
44. Tadmor, E.: Filters,mollifiers and the computation of theGibbs phenomenon.ActaNumer. 16, 305–378

(2007)
45. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Statis. Soc. B 58, 267–288

(1996)
46. Trefethen, L.N.: Chebfuns from equispaced data. www.chebfun.org/

examples/approx/EquispacedData.html/ (2015)
47. Trefethen, L.N.: Approximation Theory and Approximation Practice, extended SIAM, Philadelphia

(2019)
48. Trefethen, L.N., Nakatsukasa, Y., Weideman, J.A.C.: Exponential node clustering at singularities for

rational approximation, quadrature, and PDEs. Numer. Math. 147, 227–254 (2021)
49. Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal rule. SIAM Rev. 56,

385–458 (2014)
50. Wang, Q., Moin, P., Iaccarino, G.: A rational interpolation scheme with superpolynomial rate of

convergence. SIAM J. Numer. Anal. 47, 4073–4097 (2010)
51. Wilber, H., Damle, A., Townsend, A.: Data-driven algorithms for signal processing with trigonometric

rational functions. SIAM J. Sci. Comput. 44, C185–C209 (2022)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	AAA interpolation of equispaced data
	Abstract
	1 Introduction
	2 Existing methods
	3 Numerical comparison
	4 Convergence properties
	4.1 How does the method normally behave?
	4.2 How is this consistent with the impossibility theorem?

	5 Discussion
	Acknowledgements
	Appendix: chebfun code for Figure 2
	References


