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(Communicated by Walter Van Assche)

Abstract. A theorem is proved concerning approximation of analytic func-
tions by multivariate polynomials in the s-dimensional hypercube. The geo-
metric convergence rate is determined not by the usual notion of degree of
a multivariate polynomial, but by the Euclidean degree, defined in terms of
the 2-norm rather than the 1-norm of the exponent vector k of a monomial

xk1
1 · · · xks

s .

1. Introduction

The aim of this paper is to prove a theorem concerning an effect identified in
Section 6 of [12]. If an analytic function f(x ) = f(x1, . . . , xs) is approximated by
multivariate polynomials in the s-dimensional hypercube [−1, 1]s, the usual notion
of polynomial degree, namely the total degree, is not the right predictor of approx-
imability. In the hypercube, the set of polynomials of a given total degree has

√
s

times finer resolution along a direction aligned with an axis than along a diagonal.
Conversely, the set of polynomials of a given maximal degree has

√
s times finer

resolution along a diagonal than along an axis. To achieve balanced resolution in
all directions one should work with polynomials of a given Euclidean degree.

Our definitions are as follows. With s ≥ 1, we consider functions f(x ) =
f(x1, . . . , xs) in [−1, 1]s, with ‖ · ‖[−1,1]s representing the maximum norm over this

set. For a monomial xk1
1 · · · xks

s we define

Total degree : dT = ‖k‖1,(1.1)

Euclidean degree : dE = ‖k‖2,(1.2)

Maximal degree : dmax = ‖k‖∞,(1.3)

where ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ are the 1-, 2-, and ∞- norms of the s-vector
k = (k1 . . . , ks), and the degree of a multivariate polynomial is the maximum
of the degrees of its nonzero monomial constituents. The total and maximal degree
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Figure 1. Maximum-norm errors in approximation of the Runge
function (2.1) as a function of degree n in the unit square, for three
different definitions of degree. The approximations come from
least-squares minimization over a fine grid in [−1, 1]2. Straight
lines mark the convergence rates of Theorem 4.2.

definitions are standard and appear in publications like [8] and [10] where multi-
variate polynomial approximation in the hypercube is discussed, but the Euclidean
degree seems to be new in [12]. Note that dE is not in general an integer.

Our interest is in leading order exponential effects, not algebraic fine points, and
accordingly, we will make use of the notation Oε defined as follows: g(n) = Oε(a

n)
if for all ε > 0, g(n) = O((a+ ε)n) as n → ∞. By Oε(a

−n) we mean Oε((1/a)
n),

or equivalently, for all ε > 0, O((a− ε)−n).

2. Numerical illustration

The case s = 2 suffices for a numerical illustration. Let f be the 2D Runge
function

(2.1) f(x, y) =
1

1 + 10(x2 + y2)
,

which is analytic for all real values of x and y and isotropic in the sense that it is
invariant with respect to rotation in the x-y plane. Figure 1 gives an indication
of the minimal error in approximation of f on [−1, 1]2 by bivariate polynomials of
various total, Euclidean, and maximal degrees. (Bivariate Chebyshev coefficients
of f are plotted in Figure 6.4 of [12].) The figure is actually based on L2 rather than
L∞ approximations, since these are much easier to compute, but this is enough to
give an indication of the separation between the convergence rates when the degree
is defined by dT and when it is defined by dE or dmax .

The function (2.1) satisfies Assumption A of our theorem, Theorem 4.2, with
h2 = 0.1, and the data in the figure show convincing agreement with the predictions
of the theorem. This function is analytic when x and y are real but not when they
are complex. On the other hand the similar function

(2.2) g(x, y) =
1

21− 10(x2 + y2)
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has real singularities just outside the unit square. Theorem 4.2 applies with h2 = 0.1
for this function too, and a plot of convergence rates (not shown) looks almost
exactly like Figure 1.

3. Chebyshev series in 1D

In the standard theory for a single variable x, for any ρ > 1, let Eρ denote
the open set bounded by the Bernstein ρ-ellipse in the complex x-plane, i.e., the
image of the circle |w| = ρ under the map x = (w+w−1)/2. A Lipschitz continuous
function f defined on [−1, 1] has an absolutely and uniformly convergent Chebyshev
series

(3.1) f(x) =
∞∑
k=0

akTk(x),

where Tk is the Chebyshev polynomial of degree k. Truncating the series at degree n
gives the polynomial approximation

(3.2) pn(x) =

n∑
k=0

akTk(x).

The following result goes back to Bernstein’s prize-winning memoir of 1914 [2].
Here and elsewhere, when we say that f is analytic in a region, we mean that if
necessary f can be analytically continued to that region.

Lemma 3.1. If f is analytic in Eρ, its Chebyshev coefficients and truncated Cheby-
shev expansions satisfy

(3.3) ak = Oε(ρ
−k), ‖f − pn‖[−1,1] = Oε(ρ

−n).

Proof. The second estimate follows from the first, whose proof can be based on
contour integrals over ρ̃-ellipses with ρ̃ = ρ− ε for arbitrarily small ε > 0, or equiv-
alently on contour integrals over circles in the z-plane after a change of variables
from x ∈ [−1, 1] to z on the unit circle. See Theorems 8.1 and 8.2 of [11]. �

For our purposes it will be important to consider x2 as well as x. When x ranges
over Eρ, with foci −1 and 1 and topmost point ih, x2 ranges over another ellipse,

with foci 0 and 1 and leftmost point −h2, where h and ρ are related by

(3.4) h = (ρ− ρ−1)/2, ρ = h+
√
1 + h2.

Arnol’d calls Eρ a Hooke ellipse and E2
ρ a Newton ellipse [1]. We wish to parametrize

the latter by h2 rather than ρ, so we make the following definition.

Definition 3.2. For any s, a > 0, Ns,a is the open region in the complex plane
bounded by the ellipse with foci 0 and s and leftmost point −a. Equivalently, it is
the region consisting of points x satisfying |x|+ |x− s| < s+ 2a.

Thus E2
ρ = N1,h2 , and Lemma 3.1 can be equivalently restated as follows.

Lemma 3.3. Suppose that for some h > 0, f(x) is analytic for all x ∈ C such that

x2 ∈ N1,h2 . Then (3.3) holds with ρ = h+
√
1 + h2.
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4. Main theorem

Now let f be a function of x ∈ [−1, 1]s for some s ≥ 1. If f is smooth, it has a
uniformly and absolutely convergent multivariate Chebyshev series

(4.1) p(x ) =
∞∑

k1=0

· · ·
∞∑

ks=0

ak1,...,ks
Tk1

(x1) · · ·Tks
(xs)

(see e.g. Theorem 4.1 of [8]). Here is our analyticity assumption, generalizing that
of Lemma 3.3.

Assumption A. For some h > 0, f(x ) is analytic for all x ∈ Cs in the s-
dimensional region defined by the condition x2

1 + · · ·+ x2
s ∈ Ns,h2 .

Note that a sufficient condition for Assumption A to hold is that f(x ) is analytic
for all x with �(x2

1 + · · ·+ x2
s) > −h2.

The following lemma will be proved in the next section.

Lemma 4.1. If f satisfies Assumption A, its multivariate Chebyshev coefficients
satisfy

(4.2) ak = Oε(ρ
−‖k‖2),

where ρ = h+
√
1 + h2.

Based on this result, our theorem bounds the convergence rates of polynomial
approximations defined by total, Euclidean, and maximal degree.

Theorem 4.2. If f satisfies Assumption A, then

inf
d(p)≤n

‖f − p‖[−1,1]s =

⎧⎪⎨
⎪⎩
Oε(ρ

−n/
√
s), if d = dT ,

Oε(ρ
−n), if d = dE ,

Oε(ρ
−n), if d = dmax ,

where ρ = h+
√
1 + h2.

Proof of Theorem 4.2. Assuming Lemma 4.1. The second (middle) assertion of the
theorem follows from Lemma 4.1 by truncating the multivariate Chebyshev series
(4.1), since |Tk1

(x1) · · ·Tks
(xs)| ≤ 1 for all k for all x ∈ [−1, 1]s. The third as-

sertion is a consequence of the second, since dmax (p) ≤ dE(p) for any multivari-
ate polynomial p. The first assertion is also a consequence of the second since
dT (p)/

√
s ≤ dE(p). �

Theorem 4.2 is only an upper bound, so in principle, the difference it suggests
between dT and the other degrees dE and dmax might be illusory. However, numer-
ical experiments such as that of Figure 1 and those reported in [12] make it clear
that the difference is genuine. This could be made rigorous by the development of
a converse theorem, as has been long established in the 1D case, again thanks to
Bernstein (see Theorem 8.3 of [11]).

5. Proof of Lemma 4.1

To complete the proof of Theorem 4.2 we must prove Lemma 4.1. For this we will
make use of a result in the book by Bochner and Martin [3]. Let ρ = (ρ1, . . . , ρs)
be an s-vector with ρj > 1 for each j, and let E(ρ) ⊂ C

s be the elliptic polycylinder
defined as the set of all points x ∈ Cs such that xj ∈ Eρj

for each j. The result in
question is an s-dimensional generalization of Lemma 3.1.
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Lemma 5.1. Let f be analytic in E(ρ). Then its multivariate Chebyshev coeffi-
cients satisfy

(5.1) ak = Oε(ρ
−k1
1 · · · ρ−ks

s )

as k1 + · · ·+ ks → ∞.

Proof. Equation (5.1) means that for any ε > 0, ak = O((ρ1−ε)−k1 · · · (ρs−ε)−ks).
This is essentially Theorem 11 on p. 95 of [3], which is derived by contour integrals.
For further discussion see [4]. �

Proof of Lemma 4.1. For any s-vector k of nonnegative indices, define

cj =
kj

‖k‖2
≤ 1

and

hj = cjh.

Then h2
1 + · · ·+ h2

s = h2, so by Assumption A, f(x ) is analytic in the subset of Cs

defined by the condition x2
1 + · · ·+ x2

s ∈ Ns,h2 . From Lemma 5.2 below, we have

(5.2) N1,h2
1
⊕ · · · ⊕N1,h2

s
⊆ Ns,h2

1+···+h2
s
,

where ⊕ denotes the standard Minkowski sum of sets. It follows that f(x ) is
analytic whenever xj ∈ N1,h2

j
for each j. In other words, f(x ) is analytic in the

elliptic polycylinder E(ρ̂) with ρ̂j defined by

ρ̂j = hj +
√
1 + h2

j = cjh+
√
1 + (cjh)

2.

It can be shown (Lemma 5.3, below) that this final quantity is greater than or equal
to the number ρj which we define by

ρj =
(
h+

√
1 + h2

)cj = ρkj/‖k‖2 .

Therefore if ρ is the s-vector with components given by this formula, then the
associated polycylinder satisfies E(ρ) ⊆ E(ρ̂), and f(x ) is analytic in E(ρ). We
now calculate

(5.3) ρ−k1
1 · · · ρ−ks

s = ρ−(k2
1+···+k2

s)/‖k‖2 = ρ−‖k‖2 ,

and inserting this identity in (5.1) gives (4.2), as required. �

Here are the two lemmas just used.

Lemma 5.2. For any s, t > 0 and a, b > 0,

(5.4) Ns,a ⊕Nt,b ⊆ Ns+t,a+b.

Proof. If x ∈ Ns,a and y ∈ Nt,b, then we have

|x|+ |x− s| < s+ 2a, |y|+ |y − t| < t+ 2b.

Therefore by the triangle inequality,

|x+ y|+ |(x− s) + (y − t)| < (s+ 2a) + (t+ 2b),

that is,

|x+ y|+ |(x+ y)− (s+ t)| < (s+ t) + 2(a+ b),

which implies x+ y ∈ Ns+t,a+b. �
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Lemma 5.3. For any h ≥ 0 and c ∈ [0, 1], ch+
(
1+ c2h2

)1/2 ≥
(
h+(1+h2)1/2

)c
.

Proof. Given h, define ϕ(c) = ch+ (1 + c2h2)1/2. We must show ϕ(c) ≥ ϕ(1)c, or
equivalently

(5.5) ψ(c) ≥ cψ(1), 0 ≤ c ≤ 1,

where

ψ(c) = log(ϕ(c)) = log
(
ch+ (1 + c2h2 )1/2

)
.

Since ψ(0) = 0, a sufficient condition for (5.5) to hold is that ψ is convex in
the sense that ψ′′(c) ≤ 0 for c ∈ [0, 1]. This follows from the identity ψ′′(c) =
−ch3

(
1 + c2h2)−3/2. �

6. Discussion

This work is motivated by computational applications, since for computation
in higher dimensions, a hypercube is usually the domain of choice. Theorem 4.2
suggests that any method for computation in a hypercube that is based on one
of the familiar definitions of the degree of a multivariate polynomial, namely total
degree or maximal degree, is likely to be suboptimal. For example, a standard idea
of multidimensional quadrature (cubature) is the exact integration of multivariate
polynomial approximations of a given total degree, an idea going back to Maxwell [7,
9]. The theorem casts doubt upon the appropriateness of that approach.

Quantifying this assertion reveals that when s is moderate or large, the differ-
ences in efficiency of different approximation strategies may be considerable. The
portions of the unit balls in the 1-, 2-, and ∞-norms restricted to the positive
orthant have volumes

(6.1) V1 =
1

s !
∼ 1√

2πs

(e
s

)s

, V2 =
(π/4)s/2

(s/2)!
∼ 1√

πs

(πe
2s

)s/2

, V∞ = 1,

and with s = 10, for example, we have

(6.2) V1 ≈ 0.000000276, V2 ≈ 0.00249, V∞ = 1.

For fixed s and n → ∞, the dimensions of the spaces of polynomials of degree n
defined by dT , dE , and dmax scale as ns times these numbers. By putting such
estimates together with Theorem 4.2, we can work out consequences for approxi-
mation.

First of all let us compare Euclidean and maximal degree. According to the
theorem, we expect to need similar values of n for both dE and dmax to achieve a
given approximation accuracy. This suggests that in the 10-hypercube, a fit based
on dmax will require V∞/V2 ≈ 402 times as many parameters as one based on dE ,
where V∞ and V2 are the numbers given in (6.2). The general formula for the
s-hypercube based on (6.1) is

(6.3)
no. of parameters for approx. based on dmax

no. of parameters for approx. based on dE
≈ V∞

V2
∼

√
πs

(
2s

πe

)s/2

.

On the other hand let us compare Euclidean and total degree. According to
the theorem, if a fit based on dE needs degree n, we can expect a fit based on
dT to need degree n

√
s. Thus in the 10-hypercube, we must compare total degree

(
√
10)10n against Euclidean degree n, suggesting that a fit based on dT will require
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(
√
10)10V1/V2 ≈ 11.1 times as many parameters as one based on dE , where V1 and

V2 are as given in (6.2). The general formula based on (6.1) is

(6.4)
no. of parameters for approx. based on dT
no. of parameters for approx. based on dE

≈ ss/2V1

V2
∼ 2−1/2

(
2e

π

)s/2

.

Equations (6.3) and (6.4) show that both total and maximal degree may be
exponentially less efficient for polynomial approximation than Euclidean degree. All
these estimates apply to functions f whose complexity is approximately isotropic
in the sense that the implications of Assumption A are reasonably sharp. A more
extensive discussion of such differences can be found in Section 6 of [12].

In closing the author would like to highlight a conceptual link between this note
and his earlier paper [6] with Nick Hale. The central observation of [6] is that the
resolving power of (univariate) polynomials on an interval [−1, 1] is nonuniform,
making polynomials fall short of optimality by a factor of π/2 in representing func-
tions whose complexity on [−1, 1] is uniform. In the present work, the issue is again
nonuniformity of polynomials, but now they are multivariate and the uniformity is-
sue pertains to rotation rather than translation. As pointed out in Section 7 of [12],
the translational issue is present in multiple dimensions too.
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Note added in proof

Steps toward a converse to Theorem 4.2, and a generalization, have recently
been taken and can be found in L. Bos and N. Levenberg, Bernstein-Walsh theory
associated to convex bodies and applications to multivariate approximation theory,
arXiv:1701.05613v1, 19 January 2017.
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