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Laplace problems on planar domains can be solved
by means of least-squares expansions associated
with polynomial or rational approximations. Here
it is shown that, even in the context of an analytic
domain with analytic boundary data, the difference
in convergence rates may be huge when the domain
is non-convex. Our proofs combine the theory of the
Schwarz function for analytic continuation, potential
theory for polynomial and rational approximation
rates and the theory of crowding of conformal maps.

1. Introduction
Suppose we wish to solve numerically the Laplace
problem

(1.1)∇u = 0, z ∈ Ω u = ℎ, z ∈ Γ

in a simply connected planar domain Ω bounded by
an analytic Jordan curve Γ, as suggested in figure 1,
where h is a real analytic function.1 (Everything can
be generalized to less smooth geometries or data, to
other types of boundary conditions and to domains
with holes. In figure 1b, Γ is not analytic.) For conven-
ience we think of Ω as complex, identifying z = x + iy.
An old idea, going back to Curtiss & Walsh [7,8] nearly
a century ago, is to approximate u as the real part of a
polynomial,

(1.2)u z ≈ Rep z ,

1By an analytic Jordan curve, we mean the one-to-one image of the
unit circle under an analytic function with non-vanishing derivative. See
Shapiro [5, p. 2] or Walsh [6, p. 2].
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so that the problem reduces to the approximation of h by Rep on Γ. This idea builds on the facts
that u must be the real part of a function f that is analytic in Ω [9]

(1.3)u(z) = Ref(z),

and that f can be approximated on Ω by a polynomial

(1.4)f(z) ≈ p(z) .
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Figure 1. Solutions of Laplace problems by polynomials and rational functions of various degrees on three domains. The
boundary function in each case is ℎ(z) = (0.5 + Imz)2. On the smooth convex domain (a), both methods converge rapidly.
On the domain (b) with a corner singularity, rational approximations are much more efficient than polynomials, an effect
going back to Newman in 1964 [1]. On the smooth non-convex domain (c) with an inlet, rational approximations are again
much more efficient, the new observation of this paper. Red dots mark the poles of rational approximations that achieve
accuracy about 10−8. These computations and comparisons are made possible by approximation algorithms developed in the
last 6 years [2–4].
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In particular, Runge showed in 1885 that f can be approximated arbitrarily closely by polyno-
mials in the supremum norm [10].

In the old days, computing good approximations p would have been problematic even
if today’s computers had been available, because of the difficulty of finding well-distributed
boundary points for interpolation and also the lack of a well-conditioned basis in which to
represent the polynomial. Today, the first difficulty is bypassed by the use of least-squares
fitting in a large number of sample points on Γ, a proposal originating perhaps with Moler in
1969 [11], and the second is taken care of by the use of the Vandermonde with Arnoldi method
of on-the-fly Stieltjes orthogonalization [2]. As a result, numerical solution of planar Laplace
problems by polynomial approximation is entirely practical nowadays, so long as polynomials
exist that approximate f efficiently. For many problems, this is an excellent numerical method,
quick and accurate and delivering a result that is exactly analytic and trivial to differentiate.
Figure 1a is of this kind. Note that a rational function of degree n, as a quotient of poly-
nomials of degree n, has about twice as many free parameters as a polynomial of degree
n, so the convergence rates of these two curves could be regarded as about the same. For
further illustrations of the power of polynomial approximations in favourable circumstances,
see Trefethen [12] and Nakatsukasa et al. [4, fig. 6.1].

However, sometimes good approximating polynomials do not exist. Figure 1b shows a
context in which this has been known since the work of Bernstein, Jackson and de la Vallée
Poussin in the 1910s, where u has a boundary singularity. Here the boundary contains a corner,
and this prevents rapid convergence by any polynomial approximations.

The first purpose of this paper is to show that the same effect may arise even when Γ and h
are analytic, as illustrated in figure 1c. This is the situation when Ω is non-convex, containing
an inlet. The figure shows that polynomial approximations may converge at a negligible rate in
such cases, and we shall prove this mathematically. Although the convergence is exponential,
the convergence constant is exponentially close to 1, rendering polynomial approximations
useless in practice (theorem 4).

On the other hand, instead of approximating u by a polynomial on Γ, one may approximate
it by a rational function with no poles in Ω,

(1.5)u z ≈ Re r z ,

which implicitly makes use of an approximation

(1.6)f(z) ≈ r(z) .

Walsh [8] considered this idea too, though it was even further out of practical range in those
days, with no robust algorithms available for computing rational approximations, even if
suitable computers had been at hand. Much more recently Hochman et al. [13] developed a
method of this kind in 2013, and the AAA-least squares method, which appeared a few years
later, has made these computations quick and easy [3], so that rational approximations are now
a very practical method for solving Laplace problems.

The second purpose of this paper is to prove that the speedups possible with rational
functions are transformative, not just in cases like figure 1b, where the power of rational
approximations has been known for a long time, but also in cases like figure 1c, whose analysis
is new.

Although this paper includes numerical illustrations to make the points clear, its main
purpose is theoretical, and thus we do not specify computational details concerning, for
example, the choice of sample points on the boundaries (which is generally not an issue so
long as plenty of points are used). The power of rational approximations for solving Laplace
and related problems has been illustrated abundantly by numerical experiments in other works
[3,13–18]. The same power applies to Helmholtz problems too [17], although here there is less
literature and not yet any theory to explain why rational approximations are so effective in
choosing good locations for singularities of Hankel functions.
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One instance of a non-convex domain is particularly tidy, the case of an inverted ellipse,
where everything can be worked out explicitly. For the inverted ellipse of parameter ρ > 1,
we show that the degree of a polynomial approximation must be increased asymptotically
by (log(10)/1.16)exp((π2/4)/(ρ − 1)) ≈ 2.0 ⋅ (11.8)1/(ρ − 1) for each additional digit of approximation
accuracy (theorem 5). With ρ = 1.3, for example, hardly an extreme case, each digit of accuracy
requires an increase of the polynomial degree by about 7000 (table 1). With rational approxima-
tions, on the other hand, each new digit of accuracy requires an increase in the rational degree
by just 1

2 log(10)/(ρ − 1) ≈ 1.2/(ρ − 1), so for ρ = 1.3, about 4 rather than 7000 (theorem 9; see
figure 2).
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Figure 2. Numerical confirmation of theorems 5 and 9 for solving a Laplace problem by polynomial and rational
approximation on the domain bounded by the inverted ρ-ellipse Iρ (Vandermonde with Arnoldi least squares [2] and
AAA-least squares [3], respectively). With ρ = 1.8, the indentation is so mild that exponential convergence is observed for
both methods, though at a lower rate for polynomials than rational functions. With ρ = 1.3, the exponential convergence
rate for polynomial approximation is essentially zero, and we see sub-exponential convergence, as if Ω had a corner. The
rational method still converges rapidly, and the poles marked as red dots in the inset show that this is achieved by means
of poles delineating approximate branch cuts ( − ∞, − 1] and [1, ∞). Dashed lines show the theoretically predicted slopes
(equations 4.5 and 6.1); their heights are arbitrary.

Table 1 Analyticity radii and corresponding convergence rates for polynomial approximations to solutions of Laplace
problems on the inverted ellipse Iρ for various ρ.

ρ R degree increase per
digit

2 1.12 20

1.9 1.089 27

1.8 1.062 38

1.7 1.038 60

1.6 1.021 110

1.5 1.0091 250

1.4 1.0026 880

1.3 1.00033 7000

1.2 1.0000053 430 000

1.1 1.000000000023 100 000 000 000

All numbers are rounded to two significant figures.
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There are a number of theoretical details in the upcoming pages, but the essential argu-
ment can be summarized compactly, as follows. Convergence rates of polynomial and rational
approximations to Laplace solutions in two dimensions depend on analytic continuation
outside Γ. This analytic continuation is described by the theory of the Schwarz function, which
asserts that there will usually be branch point singularities not far from Γ (theorems 1 and
2). This is true for both convex and non-convex domains, as one can see by comparing the
pole locations in figure 1a,c, which in both cases are near the boundary but not extremely
near. The significance of non-convexity arises at the next step of the argument, where we
track the consequences of these singularities. For polynomial approximation, convergence is
determined by a conformal map of the exterior of Γ to the exterior of the unit disc (theorems
3 and 4 and figures 3 and 4), and in the case of an inlet, the singularity will map to a point
exponentially close to the disc, resulting in a convergence factor exponentially close to 1 (§7).
For rational approximation, on the other hand, poles can line up near branch cuts of the analytic
continuation, leading to a much faster exponential convergence rate associated with a more
forgiving doubly connected conformal mapping problem onto an annulus (theorems 6−8 and
figures 5 and 6). In a word, the freedom of a rational function to place poles near Γ rather
than just at ∞ eliminates the ‘crowding’ phenomenon that causes exponential slow-down for
polynomial approximations around inlets.

It is hard to find works in the literature that are close to the present paper, particularly in
combining ideas of analytic continuation of Laplace solutions with polynomial and rational
approximation theory. The one item I know that is exactly on target is the 1984 paper by Reichel
[19], which presents a computed example with an inlet and states:

The following discussion shows that polynomial approximants in general may
converge very slowly when computing approximants on pronouncedly non-convex
regions.

Two better-known related papers are by Millar [20], who applies the Schwarz function
to track singularities of analytic continuations of Helmholtz solutions across boundaries, and
Barnett & Betcke [21], who apply the method of fundamental solutions [22] to Helmholtz
problems, also with the aid of the Schwarz function, and show that good positioning of the
singularities outside the domain is crucial to obtaining well-behaved bases. In these and other

Figure 3. An analytic Jordan curve Γ and the poles of a rational approximation on Γ to its Schwarz function S. The clustered
strings of poles indicate that S has five branch points of S near Γ in the interior and another five in the exterior. The red and
green dots mark four arbitrarily chosen points on one side of Γ and their reflections on the other side. Analytic continuation of
a function d analytic and imaginary on Γ is carried out by applying the reflection condition (equation 2.3) at such points.
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works related to analytic continuation of solutions of elliptic PDE, it is common to formulate the
problem in terms of two independent complex variables, following Vekua in the 1950s [23,24].
However, so far as I know, this is not needed in the special case of the Laplace equation.

I must end this introduction with a historical and personal remark. Most of the theory of this
paper has connections with Joseph Walsh, the great mid-twentieth century expert on polyno-
mial and rational approximation, who was a mathematics faculty member at Harvard from
1921 to 1966 until he retired and took a position at the University of Maryland. None of the
algorithms that make these computations practicable were available in his day, however, not to
mention computers with the necessary capabilities. Today, we can apply this Walsh-style theory
in an entirely new environment. Meanwhile, my own career has brought me to retirement after
26 years at Oxford, whereupon, in a strange symmetry, I have taken a position at Harvard. This
is the first paper I have written at my new institution. I never met Walsh, but I had indirect
connections to him through his students Ted Rivlin, Dick Varga and Ed Saff, and with affection
I think of the present paper as a continuation of Walsh’s research interests into a computational
era he could not have imagined.

2. Analytic continuation and the Schwarz function
The starting point of our analysis is analytic continuation across the boundary curve Γ. Let h
be the boundary data function of equation (1.1), which we have assumed is real analytic. This
implies that h can be analytically continued to a complex analytic function in a neighbourhood
of Γ. Similarly, let f be the complex analytic function of equation (1.3) whose real part is the
solution u of the Laplace problem (1.1). The imaginary part of f is determined up to a constant,
which plays no role in the discussion. Like h, f must extend to an analytic function in a
neighbourhood of Γ. Along with f and h, a third analytic function whose analytic continuation
across Γ we shall work with is the difference

(2.1)d(z) = f(z) − ℎ(z) .

The important property of d is that it is pure imaginary on Γ, because f and h have equal real
parts there. Thus, h and d are analytic functions in a neighbourhood of Γ that map Γ to subsets
of the real and imaginary axes, respectively. If Γ were a straight line segment or an arc of a
circle, we could now describe the relationship of h and d inside and outside Γ by the Schwarz
reflection principle. In our more general case where Γ is an analytic arc, the generalization that
comes into play is based on what is known as the Schwarz function [5,25].

The Schwarz function of Γ is defined as the unique function S(z) that is analytic in a neigh-
bourhood of Γ and takes the values S(z) = z for z ∈ Γ. Note that S(z) is determined by Γ, not f
or h or d. The significance of S is that its complex conjugate, S(z), maps points close to Γ on one
side to their analytic reflections on the other side. Specifically, it is known that in a sufficiently
small neighbourhood U of Γ, S is analytic and satisfies the reflection property S(S(z)) = z. Here
is how S enables analytic continuation: if h or d is analytic in the part of U interior or exterior to
Γ, then it extends analytically to the other side by the reflection formula

(2.2)ℎ(S(z)) = ℎ(z), z ∈ U
or

(2.3)d(S(z)) = − d(z), z ∈ U ,

respectively. In other words, the values of h and d at S(z) are the reflections in the real and
imaginary axes, respectively, of their values at z. For details of these developments, see Davis
[25, ch. 6] or Shapiro [5, prop. 1.2].

For an idea of the shape of the Schwarz function, consider figure 3. This shows an ana-
lytic Jordan curve Γ for which a degree 107 AAA rational approximation r to S has been
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computed. (This took 2/3 s on our laptop based on the Chebfun command [r,poles] =
aaa(conj(Z),Z), where Z is a vector of 2000 sample points along the boundary. The spacing
of the points is unimportant for such computations involving smooth functions, so long as
there are plenty of them.) For z ∈ Γ, r matches S(z) = z to accuracy 10−13. The black dots are the
poles of r, and they give an indication of the behaviour of S for z ∈ Γ. Roughly speaking, with
rational approximations we expect poles to line up along the branch cuts of the function being
approximated. More precisely, like all analytic functions, S does not intrinsically have branch
cuts; these are only introduced by humans when we wish to make the function single-valued, or
by rational approximations (in the approximate fashion illustrated in the figure) as a by-product
of their near-optimality. On the other hand, S has branch points, and these are approximated by
the cluster points of the poles of r. In this case it appears that there are five branch points of S
near Γ on the inside and five more on the outside.

Going out from Γ beyond and around the branch points, it would make sense to speak of a
multi-valued analytic Schwarz function, and this approach is taken in some of the theoretical
literature [5] and will also turn up in our theorem 8, below. However, multi-valued functions
are mostly not relevant to the present work, because polynomial and rational approximations
are single-valued. Therefore, throughout this paper, our attention is restricted to neighbour-
hoods U that are narrow enough or otherwise confined in such a way that S is analytic and
single-valued.

Let U be a neighbourhood of Γ of this kind, with S defined in U satisfying S(U) = U andS(S(z)) = z, so that U is reflected into itself by S. We can now establish a foundational theorem
for this paper (compare [20, §4]).

Theorem 1. Analytic continuation of f across Γ. Let Ω, Γ, f, h and d = f − ℎ be defined as discussed
above, and let U be a neighbourhood of Γ in which the Schwarz function S of Γ is analytic and satisfiesS(U) = U and S(S(z)) = z. If h is analytic in the part of U outside Γ, then the same is true of f.

Proof. Let Uin and Uout be the portions of U interior and exterior to Γ, respectively. If h is
analytic in Uout, then by (2.2) it is analytic in Uin. By (2.1), it follows that d is analytic in Uin, since
f is analytic throughout Ω. By (2.3), it follows that d is analytic in Uout. By (2.1) again, it follows
that f is analytic in Uout. ∎

To prove that polynomial approximation stagnates as illustrated in figure 1, we will need
a converse of this theorem. We would like to show that when the Schwarz function S has
singularities outside Ω, they will usually block the analytic continuation of the function f
associated with the Laplace problem (1.1). More precisely, I suspect it is true that if S cannot
be analytically continued to a point zc outside of Ω, then the same will apply to f if h is a
non-constant function analytic outside Ω. (The situation is different if h is a constant, since then
f will be a constant too and thus analytically continuable to all of ℂ, regardless of the shape of
Γ.)

It is worth mentioning that there are plenty of functions h that are real on Γ and analytic
in ℂ∖Ω. If Γ is the unit circle, then x and y are both functions in this class, since they can be
written x = (z + z−1)/2 and y = (z − z−1)/2i. The same therefore applies on the unit circle to real
polynomials in x and y, and more generally, to functions defined by Laurent series convergent
for 0 < z < ∞, whose coefficients have the symmetry a−k = ak. For a general Jordan curve Γ, we
may obtain an equivalent class of functions ℎ(z) as transplants of these Laurent series under a
conformal map Φ of the exterior of Γ to the exterior of the unit disc. (We will make use of Φ
in the next section in the context of polynomial approximation.) Note that it follows from here
that, given any continuous real function ℎ0 on Γ and any ε > 0, we can find a function h that is
real on Γ and analytic in ℂ∖Ω with ℎ − ℎ0 < ε on Γ.

I do not know how to establish the singularity of f in the generality conjectured above.
Instead, following [20, §4], here is a statement restricted to the familiar situation in which S has
a branch point as in figure 3 and in our later example of the inverted ellipse.
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Theorem 2. Limit to analytic continuation of f across Γ. Let Ω, Γ, f, h and d be defined as discussed
above, and let zc ∈ ℂ∖Ω̄ be such that S can be analytically continued up to zc but has a branch point
there. Then for some choices of h analytic in ℂ∖Ω, f cannot be analytically continued to a neighbourhood
of zc.

Proof. We argue by contradiction. Given Ω and Γ, let zc be a branch point of the Schwarz
function S of Γ as indicated. Then there is an open region Uout exterior to Γ, as in the proof of
theorem 1, such that if we remove a branch cut C that runs from zc to the outer boundary ofUout, we get an open region Uout exterior to Γ on which S is analytic and single-valued.

Suppose f can be analytically continued to a neighbourhood of zc, which we may take to
be this region Uout (by shrinking Uout if necessary). By (2.1) and the assumed analyticity of h
exterior to Γ, the same is true of d. Thus, f and d are analytic in Uout, hence also in the smaller
domain Uout. Since S is analytic in Uout, we can use (2.1)–(2.3) to analytically continue f and d
from Uout across Γ into an open set U in interior to Γ.

Now consider a point b on the branch cut C such that S takes different values at b on the two
sides of the cut, which we can think of as b1 and b2. (There must be such a point b, or zc would
not be a branch point of S.) That is, S(b1) = a1 ∈ U in and S(b2) = a2 ∈ U in with a1 ≠ a2. Unlike S,
d and h are analytic and single-valued at b, so we must have d(a1) = d(a2) and ℎ(a1) = ℎ(a2). By
equations (1.3) and (2.1), this implies f(a1) = f(a2) and u(a1) = u(a2).

Now the contradiction becomes apparent. Of course the solution u0 of a Dirichlet problem
with boundary data ℎ0 may satisfy u0(a1) = u0(a2) at two points a1 ≠ a2. But this cannot be true for
all choices of ℎ0. Pick a boundary function ℎ0 for which u0(a1) ≠ u0(a2). As observed at the end of
the second paragraph above this theorem, ℎ0 can be approached arbitrarily closely by boundary
functions h that are analytic throughout ℂ∖Ω. By continuity of Laplace solutions with respect
to boundary data (a consequence, for example, of the Poisson integral formula), we must then
have u(a1) ≠ u(a2) when h is sufficiently close to ℎ0, which contradicts the conclusion of the last
paragraph. ∎
3. Polynomial approximation
Let En be the minimax error of degree n polynomial approximation to f on Ω

(3.1)En = infp ∈ Pn ‖f − p‖,

where ⋅  is the supremum norm on Ω and Pn denotes the space of polynomials of degree n.
We now consider what theorem 2 implies about the convergence rate of En to 0 as n ∞.

Assume for simplicity that f cannot be analytically continued to all of ℂ. According to
standard theory going back to Walsh [6,26] and presented beautifully by Levin & Saff [27], the
convergence rate is then exponential, at a rate essentially R−n for some R > 1. The constant R,
which we shall call the analyticity radius of f on Ω, has an interpretation in terms of a conformal
map Φ of the exterior of Ω to the exterior of the unit disc in the w-plane with Φ ∞ = ∞. For anyr ≥ 1, as illustrated in figure 4, let Γr be the preimage of w = r under Φ. Then R is the largest r
for which f is analytic in the region enclosed by Γr.2

Here is Walsh’s result.

2If zc is a point on ΓR at which f is not analytic, then we can also write R = exp(g(zc)), where g is the Green’s function of

Ω, that is, the harmonic function defined in ℂ ∖ Ω with g(z) = 0 on Γ and with g(z) ∼ log z  as z→ ∞ [19, thm 3].

The relationship between g and Φ is g(z) = log Φ(z) .

8

royalsocietypublishing.org/journal/rspa Proc. R. Soc. A 480: 20240178
 D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//r
oy

al
so

ci
et

yp
ub

lis
hi

ng
.o

rg
/ o

n 
15

 A
ug

us
t 2

02
4 



Theorem 3. Polynomial approximation of an analytic function. Let the domain Ω, the function f
analytic in Ω, the polynomial minimax error En and the analyticity radius R of f be defined as above. The
minimax approximation errors satisfy

(3.2)lim supn→ ∞
En1/n = 1R .

We can paraphrase theorem 3 like this:

The rate of polynomial approximation of f on Ω
is determined by its closest singularity outside Ω.

‘Closest’ means in the sense of the level curves Γr, and the rate in question is that of
(3.2). This is the ‘Walsh half’ of the analysis of our Laplace problem. The ‘Schwarz half’ was
presented in theorem 2 of the last section:

This closest singularity is normally the closest point zc of non-analyticity
of the Schwarz function S (unless h has a singularity even closer).

Combining theorems 2 and 3 gives us our basic result on slow convergence of polynomial
approximations of solutions of Laplace problems. As with theorem 2, though this statement
only mentions ‘some’ choices of h, in practice it will be almost all of them. The theorem
references the analyticity radius R of S, a notion defined above for a function analytic through-
out Ω. For a function like S analytic just in a neighbourhood of Γ, R is the largest r > 1 for which
S is analytic in the region bounded between Γ and Γr.

Theorem 4. Polynomial approximation of a Laplace solution. Let the Laplace problem (1.1) with
boundary data h have solution u(z) = Ref(z) as in equation (1.3), let R > 1 be the analyticity radius
of the Schwarz function S on Ω and let En be the minimax error (3.1) in degree n polynomial approxima-
tion. Then for some choices of h analytic throughout ℂ∖Ω and assuming S has a branch point on the
curve ΓR, these errors satisfy

(3.3)lim supn→ ∞
En1/n = 1R .

1.5

z
c

(z
c
)

= 1.5ω

W

F

F

Figure 4. Illustration of the theory of polynomial approximation of an analytic function f on a domain Ω bounded by an
analytic Jordan curve Γ. The grey curves are level lines Γr  of the Green’s function of Γ, r = 1.1, 1.2, …, 1.5, which can be
interpreted as preimages of circles outside the unit disc in a conformal map Φ of the exterior of Γ to the exterior of the unit
disc. The analyticity radius R of f is the largest r > 1 for which f is analytic in the region interior to Γr. The red dot on the
left marks a point on ΓR to which f cannot be analytically continued, and the absolute value of its image on the right is the
number R, i.e. R = Φ(zc) . The convergence rate of best polynomial approximations is given by equation (3.2).
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4. Polynomials on the inverted ellipse
Theorem 4 has an elegant application to the special case in which Ω is the region bounded
by an inverted ρ-ellipse, as sketched in figure 5. For any ρ > 1, we define the ρ-ellipse Eρ
to be the image in the ζ-plane of the circle w = ρ in the w-plane under the Joukowsky
map J(w) = (w + w−1)/2. Geometrically, Eρ is the ellipse with foci ±1 whose semi-minor and
semi-major axis lengths sum to ρ. The inverted ρ-ellipse is the reciprocal Iρ = 1/Eρ, and our
variables are related by ζ = z−1.

The Schwarz function for the inverted ellipse is known analytically. For example, on p. 25 of
Davis [25], we find for the ellipse Eρ

(4.1)S(z) = 1
2 (ρ2 + ρ−2)z − 1

2 (ρ2 − ρ−2) z2 − 1,

which implies that for Iρ we have

(4.2)S z = 1
2 ρ2 + ρ−2 z−1 − 1

2 ρ2 − ρ−2 z−2 − 1
−1

.

For our purposes what matters is that the only singularities of S are a pair of branch points
outside Γ at z = ± 1 and a pair of simple poles inside Γ at ±i(ρ2 − ρ−2)/2. If branch cuts are
drawn along [1,∞) and ( − ∞, − 1], then S becomes meromorphic in the remaining slit domainℂ\ ( − ∞, − 1] ∪ [1,∞) , analytic in the portion outside Ω.

To determine the analyticity radius for Iρ, we accordingly need to know the image of z = 1
under a conformal map of the exterior of Iρ to the exterior of the unit disc. The conformal map
of the interior of Iρ to the unit disc is elementary: it reduces to the map of the exterior of Eρ,
which is essentially the Joukowsky map. The conformal map of the exterior of Iρ, on the other
hand, reduces to the map of the interior of Eρ, which is not elementary. The required formula
involving a Jacobian elliptic function was derived by Schwarz in 1869 [28] and is presented in a
number of sources including [29,30] and fig. 3.2 of Hale & Trefethen [31]. According to equation
(21) of Szegö [30], the focus ζ = 1 of the ellipse maps to the point

–2

–2

–1

–1

0

0

1

1

2

2
–0.5

0

1 1.5

0.5

0.5

W

Figure 5. The inverted ellipse Iρ with parameter ρ = 1.5, with level curves Γr plotted for r = 1.02, 1.04, …, 1.10. The dot
at z = 1 corresponds to the analyticity radius r = R ≈ 1.009 at which the Schwarz function for Ω has a branch point. This
value implies that although the boundary of the region is analytic, it will still take an increase of the polynomial degree by
about 250 asymptotically for each additional digit of accuracy. On the right, a close-up.
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(4.3)φ−1(1) = ρ−12
+ ρ−32

+ ρ−52
+ ⋯

1
2 + ρ−22

+ ρ−42
+ ρ−62

+ ⋯ ,

where φ denotes the conformal map from the disc to the ellipse. The analyticity radius we need
follows by taking the reciprocal.

Theorem 5. Polynomial approximation on the inverted ellipse. If Ω is the domain bounded by the
inverted ρ-ellipse Iρ for some ρ > 1, the associated analyticity radius R of theorem 4 is

(4.4)R =
1
2 + ρ−22

+ ρ−42
+ ρ−62

+ ⋯
ρ−12

+ ρ−32
+ ρ−52

+ ⋯ .

Asymptotically as ρ 1, R satisfies

R − 1 ∼ 4e−π2/ 4logρ ∼ Ae−π2/ 4 ρ − 1

with

(4.5)A = 4exp −π2/8 ≈ 1.16485.

Proof. The derivation of (4.4) was given in the discussion above, and I am grateful to Jon
Chapman of Oxford and Alex Barnett of the Flatiron Institute for proofs of (4.5). The following
particularly elegant argument comes from Barnett. If we double both the numerator and the
denominator of (4.4) by extending the sums to k = − ∞, the quotient is unchanged in value and
takes the simple form

R = ∑k = − ∞

∞ ρ−4k2╱ ∑k = − ∞

∞ ρ−4 k + 1
2

2
,

or equivalently, on setting a = 4logρ,

(4.6)R = AB = ∑k = − ∞

∞
exp( − ak2)/ ∑k = − ∞

∞
exp( − a(k + 1

2 )
2
) .

This is the ratio of two infinite trapezoidal quadrature approximations to the Gaussian, which
explains why it converges exponentially to 1 as a 0. By the Poisson summation formula
applied to the Fourier transform pair f(x) = exp( − ax2) and f(k) = cexp( − π2k2/a), where c is a
constant whose value does not matter, we have for a new constant c′

A = c′ 1 + 2e−π2/a + 2e−(2π)2/a + ⋯ ,

and, since the translation by 1/2 leads to alternating signs in the Poisson summation formula

B = c′ 1 − 2e−π2/a + 2e−(2π)2/a −⋯ .

These formulas imply A/B − 1 ∼ 4e−π2/a as a 0. ∎
The exponential dependence of R on logρ or ρ − 1 in theorem 5 is striking. Table 1 lists R for

various values of ρ decreasing towards 1. The final column shows log(10)/log(R), the increase of
degree required asymptotically for each improvement of accuracy by one digit.

5. Rational approximation
Polynomials are rational functions all of whose poles are constrained to lie at z = ∞. When
rational functions without this constraint are allowed, the approximation power increases
enormously on non-convex domains. This happens because poles can now line up along branch
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cuts of f, or, equivalently in most cases, along branch cuts of the Schwarz function S. We saw
this effect in figure 1. The phenomenon of poles approximating branch cuts is well known
in rational approximation theory, associated in particular with theorems of Stahl for Padé
approximation [32], and is illustrated, for example, in the papers [3,4,13–18,33,34].

An explanation of this behaviour and of the approximation power of rational functions
comes again from Walsh [6]. In Walsh’s theory, key roles are played by the n poles πk  of
a rational function r of degree n, which can be thought of as point charges for a two-dimen-
sional potential log z − πk , and any n interpolation points zk  where r(zk) = f(zk), which
can be thought of as point charges of opposite sign associated with potentials −log z − zk .
By considering these potentials in the context of the Hermite integral formula representingf(z) − r(z) at other points z ∈ ℂ, one can derive error bounds associated with potential theory.
A few decades after Walsh, Gonchar and others took the theory further, showing how in the
limit n ∞, minimax approximation rates are governed by the equilibrium potentials for a
continuum distribution.

We will not go into the details of this theory, which are summarized in Levin & Saff [27,
pp. 91−93] and more fully in §6–8 of Trefethen [34]. We will, however, state its main conclu-
sion, which is illustrated in figure 6. Let f be analytic on Ω and extend analytically (i.e. as a
single-valued analytic function) to some larger domain Ω′ ⊆ ℂ enclosing Ω in its interior. For
simplicity we suppose that Ω′ is also a Jordan domain, with boundary Γ′. Then Γ and Γ′ are the
inner and outer boundaries of an annular region K, called a condenser. Such a region can be
conformally mapped onto a circular annular region in ℂ whose inner boundary is the unit circle
and whose outer boundary is the circle about the origin of some radius R* > 1, the modulus
of the condenser. The number R* is uniquely determined, and the conformal map itself is also
uniquely determined up to a rotation. As in equation (3.1), but now for rational approximations,
we define

(5.1)Enn = infr ∈ Rn‖f − r‖,

where ⋅  is the supremum norm on Ω and Rn denotes the space of rational functions of
degree n (i.e. with at most n poles counted with multiplicity, including any poles at ∞). Here is
Walsh’s result:

Theorem 6. Rational approximation of an analytic function. Let the domain Ω, the function f, the
rational minimax error Enn, the condenser K and the condenser modulus R* be defined as above. The
minimax errors satisfy

= R*

= 1

W

F

ω

ω

Figure 6. A rational companion to figure 4, illustrating the theory of rational approximation of an analytic function f on a
domain Ω bounded by an analytic Jordan curve Γ. We suppose f has a singularity outside Γ, marked by the red dot, but that
f can be analytically continued to a condenser region K bounded between Γ and a larger Jordan curve Γ′ that avoids this
singularity. If Φ is a conformal map of the condenser onto a circular annulus 1 < w < R*, then rational approximations
to f can converge at the exponential rates (equations 5.2 or 5.4) determined by R*. They achieve this by placing poles
approximately along branch cuts, as suggested by the dashed line. Compare with figure 1c. The conformal map for this image
was computed by the AAA-least squares method [3].
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(5.2)lim supn→ ∞
Enn1/n ≤ 1R∗ .

Recall that theorem 3 for polynomials involved a number R that was fully determined by f
and Ω, defined as the largest r > 1 for which f could be extended analytically to within the
Green function contour Γr. Here with rational functions, by contrast, the number R* as we have
defined it depends on the choice of the condenser K to which f is analytically continued. In cases
where f has branch points, a single-valued continuation will need to be restricted to a domain
that avoids these, and some choices will lead to larger values of R* than others. An optimal
choice can be made, leading to a maximal value of R*, but we will not go into that here, simply
accepting that theorem 6 holds for any choice of K and its associated R*. As a consequence, the
next two theorems involve inequalities, not equalities.

The crucial point is that R* can be much bigger than R, allowing rational approximations to
converge much faster than polynomials. In particular, we will see in §§6 and 7 that this happens
with domains Ω involving inlets, where R is exponentially close to 1, whereas R* may be only
algebraically close.

Theorem 7. Rational approximation of a Laplace solution. Let the Laplace problem (1.1) with
boundary data h have solution u(z) = Ref(z) as in (1.3). Let the Schwarz function S of Γ be analytically
continuable to a condenser K about Ω, as defined above, with modulus R*. Assume that S reflects K into
a subset of Ω such that U = K ∪ Γ ∪ S(K), as in theorem 1, is a neighbourhood of Γ in which S is analytic
and satisfies S(U) = U and S(S(z)) = z. If h is analytic in K, then the rational minimax errors Enn of (5.1)
satisfy

–2 0 2

–3

–2

–1

0

1

2

3

–1 0 1

0 1 0 1

0 1

–1

0

1

–1

–1

0

1

–1

–1

0

1

–1

–1

0

1

W

Figure 7. A summary in images of polynomial and rational convergence rates for the inverted ellipse Iρ as discussed in §§4
and 6. On the left, the domain Ω bounded by Iρ with ρ = 1.5. On the right, the conformal maps of two domains bounded
by the corresponding ellipse Eρ, first without and then with a slit along the midline [ − 1, 1]. According to the arguments
leading to theorems 5 and 9 and summarized in figures 3 and 5, these maps determine the exponential convergence rates for
polynomial and rational approximation methods, respectively, for solving Laplace problems on Ω. The polynomial rate is very
slow because the image of z = 1 in the upper map is exponentially close to 1 (about 0.9909 for this choice of ρ, marked by a
white dot). The rational rate is much faster because the outer boundary of the annulus in the lower map is only algebraically
close to the inner one (distance 0.5).
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(5.3)lim supn→ ∞
Enn1/n ≤ 1R∗ .

Proof. By theorem 1, f is analytic in K, and equation (5.3) follows from theorem 6. ∎
The 1/R* convergence factor of theorems 6 and 7 is pessimistic in many cases: the actual

convergence factor is often 1/(R*)2. Equivalently, we may say that 1/R* is often an upper bound
not just for limsupn ∞Enn1/n but also for limsupn ∞Enn1/2n. Intuitively speaking, this factor of 2 is
associated with the fact that rational functions have twice as many parameters as polynomials, a
property not exploited in the theory leading to theorems 6 and 7. These issues are summarized
in §7.5 of Trefethen [34], whose substance is derived from the important paper by Rakhmanov
[35]. According to what Rakhmanov calls the Gonchar–Stahl ρ2-theorem, the factor of 2 speedup
always applies in the case of a function that can be analytically continued to a multi-valued
analytic function along all curves in ℂ that avoid a certain fixed set Σ ⊆ ℂ of capacity zero.
In particular, it applies when f is analytic apart from a finite or countable collection of poles,
essential singularities or branch points. We summarize the improvement to theorems 6 and 7
as follows. Readers who would like full details are encouraged to look at the opening pages of
Rakhmanov [35], which are very clearly presented.

Theorem 8. Factor of 2 speedup for functions with algebraic branch points. The convergence rates of
theorems 6 and 7 can be doubled to

(5.4)lim supn→ ∞
Enn1/n ≤ 1R∗ 2 ,

if f can be analytically continued to a multi-valued analytic function along all curves in ℂ that avoid a
fixed set Σ ⊆ ℂ of capacity zero.

Proof. The estimate (5.4), which is the upper-bound half of the Gonchar–Stahl theorem,
originates in Stahl [36]. ∎
6. Rational functions on the inverted ellipse
We now apply theorems 7 and 8 to the inverted ellipse Iρ. This proves surprisingly easy. We
saw in §4 that the conformal map of the exterior of Iρ to the exterior of the unit disc is not
elementary. For rational approximation, however, since the Schwarz function is analytic in the
slit domain ℂ∖ Ω ∪ −∞, − 1 ∪ 1,∞ , the conformal map we need is of the exterior of Ω in this
slit domain onto a circular annulus. Taking reciprocals, what is at issue is the conformal map
onto a circular annulus of the doubly connected domain bounded by the ρ-ellipse Eρ and slit
along [ − 1, 1]. This is essentially just the Joukowsky map, as summarized in figure 7.

The gives us the following theorem.
Theorem 9. Rational approximation on the inverted ellipse. If Ω is the domain bounded by the

inverted ρ-ellipse Iρ for some ρ > 1, then if h can be analytically continued to all of ℂ∖Ω, the associated
modulus R* of theorem 8 can be taken to be any value R* < ρ. It follows that for such h, minimax rational
approximation errors for solutions of the Laplace problem satisfy

(6.1)lim supn→ ∞
Enn1/n ≤ 1ρ2 .

Figure 7 shows a pair of numerical experiments confirming theorems 5 and 9. The figure has
two panels, corresponding to domains Ω bounded by inverted ellipses Iρ with ρ = 1.8 andρ = 1.3. Each panel compares the convergence of a polynomial approximation method (Vander-
monde with Arnoldi least squares [2]) against a rational one (AAA-least squares [3]). As in
figure 1, the boundary data function is ℎ(x + iy) = (y + 0.5)2, with the shift by 0.5 introduced to
break symmetry, and the boundary is discretized by 1500 points, so that these computations
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involve matrices of reasonably modest size with 1500 rows and a few hundred columns. One
could get away with far fewer than 1500 points if they were clustered more densely near the
inlets, but as mentioned in §2, for simplicity, we take plenty of points and an approximately
uniform distribution.

For ρ = 1.8, where Ω is barely indented at all, figure 2 shows that the polynomial method
converges about five times more slowly than the rational method, requiring an increase of n
by about 38 for each digit of accuracy as listed in table 1. (As commented in §1, a rational
function of degree n has about twice as many parameters as a polynomial of degree n, so it
would be fairer to say that the number of parameters goes up by about 76 per digit, making
the polynomials just 2.5 times slower than the rational functions.) The case ρ = 1.3 shows the
extreme behaviour predicted by theorem 5. The rational method has slowed down by a factor
of 2, whereas the polynomial method has slowed down by a factor of 200, now needing an
increase of degree by 7000 for each additional digit of accuracy. Note that convergence of
the polynomial method is still observed, but showing the upward-curving form associated
with sub-exponential convergence for a non-smooth boundary rather than a straight line for
exponential behaviour. Evidently, it would be impossible in practice to get even two digits
of accuracy by this method, even though the boundary is analytic and the Schwarz function
extends analytically a non-negligible distance 0.0346 outside it. This distance is just algebrai-
cally small, but its consequences are exponential.

The computations for figure 2, about 120 numerical Laplace solutions all together, required 9
s on our laptop.

7. Approximation on a general domain with an inlet
The exponential effect that makes polynomial approximation on non-convex domains problem-
atic goes by the name of ‘crowding’ in the literature of numerical conformal mapping. (In
elasticity theory, it is called Saint-Venant’s principle.) The observation here is that a conformal
map involving a long and narrow peninsula or finger, which hardly needs to be very long and
narrow, will involve exponential distortions. Peninsulas become inlets in our context because
approximation on a domain Ω depends on the conformal map of its complement ℂ∖Ω.

The most systematic analysis of crowding that I know of appears in Gopal & Trefethen [37].
The following definition is used there for an analytic Jordan domain Ω:

We say that Ω contains a finger of length L > 0 if there is a rectangular channel of
width 1 defined by a pair of parallel line segments of length L, disjoint from Ω, such
that Ω extends all the way through the channel with parts of Ω lying outside both
ends.

On the basis of this definition, it is shown that the associated harmonic measure (theorem
2 of Gopal & Trefethen [37]), conformal mapping derivative (theorem 3), radius of univalence
(theorem 4) and approximating polynomial degrees (theorem 5) all scale in ways controlled by
the factor exp(πL). Thus, for example, peninsulas of length-to-width ratios 1, 2 and 3 induce
distortions of magnitudes of the order of 23, 540 and 12 000.

In the context of the present paper, it follows from these theorems that the degrees of
polynomial approximations to solutions of Laplace problems on any domain Ω will have to
grow by a factor at least as large as order exp(πL) for each additional digit of accuracy, if Ω
contains an inlet of length-to-width ratio L. We do not spell out precise theorems.

It is interesting to check how closely this general result matches theorem 5 for the case of the
inverted ellipse Iρ. Setting ε = ρ − 1, we find that for Iρ the inlet parameter L scales as3
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(7.1)L ∼ 1
8ε ,     ε→ 0.

This implies by the exp(πL) results given above that the analyticity radius R of §§3 and 4
satisfies

(7.2)R − 1 ≤ O(exp( − π/8ε)),
which is looser by the factor 2π than the actual result of (4.5)

(7.3)R − 1 ∼ O exp −π2/4ε .

We have seen that polynomial approximations of Laplace solutions can be expected almost
always to be ineffective on domains with inlets. Conversely, will rational approximations almost
always be effective? Certainly not always, for the boundary may be non-smooth in the sense
of having singularities of the Schwarz function very close by. But as a smooth example, it is
interesting to consider the inverted ellipse once more. From (7.1), the finger length is about 1/8ε,
whereas from theorem 9, the convergence constant is ρ2 ∼ 1 + 2ε. Thus in this case at least, the
convergence rate for rational approximations slows down only linearly with the length of the
finger.

8. Discussion
We have shown that polynomial approximations to solutions of two-dimensional Laplace
problems are essentially useless on non-convex domains, whereas rational approximations are
often very effective. In principle, these results might have been obtained decades ago, but in
practice, everything has changed since the AAA and AAA-least squares algorithms have made
rational functions an easy tool for numerical computation.

The Laplace equation Δu = 0 is the limit of the Helmholtz equation Δu + k2u = 0 as k 0,
and poles of rational functions can be regarded as the limits of point singularities of certain
Hankel functions [17]. It is known to experts in the solution of the Helmholtz equation by the
method of fundamental solutions that when a region has an inlet, it is crucial to include some
Hankel singular points therein [21]. Thus the present paper could be regarded as investigating a
limiting case of an effect that is known in the Helmholtz context, though we are not aware that
theorems are to be found in that literature analogous to what we have developed here.

It is natural to wonder about the extension of these methods and results to three-dimensional
problems. Here one would have to go beyond univariate polynomials and rational functions,
and as yet, no algorithms have been proposed comparable with what is available in the
two-dimensional case. This is an exciting area for future research, and the mathematics of
analytic continuation and Schwarz functions in higher dimensions [5] may again ultimately
prove relevant.
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