
Japan Journal of Industrial and Applied Mathematics (2023) 40:1587–1636
https://doi.org/10.1007/s13160-023-00599-2

ORIG INAL PAPER

Numerical analytic continuation

Lloyd N. Trefethen1

Received: 10 February 2023 / Revised: 23 May 2023 / Accepted: 3 June 2023 /
Published online: 26 June 2023
© The Author(s) 2023

Abstract
Let f be an analytic function on a simply-connected compact continuum E of the
complex z-plane. This might be an interval of the real line, where f might be real
analytic. How can we calculate good estimates of the analytic continuation of f to
other points z ∈ C? How can we estimate the locations of real or complex singularities
of f ? We review both the theory and the practice of some existing methods for these
problems and propose that excellent results can be obtained from the computation of
rational approximations of f by the AAA algorithm. In the case of analytic functions
of two or more variables, the rational approximations are applied along line segments
or other analytic arcs.
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1 Introduction

Let f be an analytic function defined on a simply-connected compact continuum E
in the complex z-plane, which might be an interval of the real axis. Analyticity means
that at each point z ∈ E , the Taylor series for f exists and converges to f in a
neighborhood of that point. We consider the problem, how can we estimate values of
the analytic continuation of f at other real or complex points z ∈ C, or locate nearby
real or complex singularities?

Mathematically, the values of an analytic continuation of f are determined through-
out some open set� ⊆ C; a thorough presentation can be found in [68, chap. 8, vol. 3].
As explained in [58, 103], the analytic continuation problem is ill-posed a priori, since
the result depends discontinuously on the data, but becomes well-posed, though with
infinite condition numbers, if we confine attention to a simply-connected subset of �

such as a disk or a strip where it is known that f is bounded.
In the literature of analytic continuation going back many years, the dominant

numerical tool has been Padé approximation, that is, approximation by rational func-
tions constructed to match initial terms of the Taylor series of f at a point [8]. This
can be an excellent method for analytic continuation of functions whose Taylor series
are known analytically, but it quickly runs into trouble with functions that are just
known by their values. A more robust method in many situations should be to approx-
imate f by a rational function over a domain E bigger than a single point, but until
recently, the tools available for such approximations were limited. This has changed
with the appearance of the AAA algorithm [33, 70], which works remarkably well
as a black box near-best rational approximator on real or complex sets. In this paper,
we recommend AAA approximation as a method for univariate and multivariate ana-
lytic continuation. Sections 2 and 3 present some examples, and Sect. 4 proposes the
“one-wavelength principle”: in 16-digit arithmetic, rational approximations can ana-
lytically continue an oscillatory function about one wavelength beyond its sampling
domain. As a converse, Section 5 points out that unrelated function branches on dis-
joint domains can be interpolated by a single smooth analytic function, to 16-digit
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Numerical analytic continuation 1589

accuracy, if the domains are well separated. Sections 6–8 present aspects of the the-
ory of rational approximation in the context of analytic continuation; these results are
mainly not new but have not been collected together like this before. Section 9 applies
the AAAmethod to various problems from the literature involving ordinary and partial
differential equations (ODEs and PDEs). In particular several problems are examined
of the numerical determination of singularities, related to fluid and solid dynamics,
where there is an established tradition going back many years; see [9, 15, 19, 27, 60,
67, 89, 90, 98, 107, 108, 112, 115, 116].

Section 10 turns to the analytic continuation of a real analytic bivariate function
f (x, y) [62]. There is not much literature on this topic, but we are aware of two
relevant themes. One is the general problem of “function extension,” in which, for
any of a variety of purposes, it is desired to extend a function smoothly beyond its
initial domain of definition. This literature uses many tools including partitions of
unity and radial basis functions (RBFs), usually without an emphasis on analyticity;
see [41, 55, 61, 81, 117]. The other is the more specific topic of analytic continuation
of Helmholtz fields, that is, solutions of the Helmholtz equation�u+k2u = 0; see [1,
10, 11, 25, 63]. The method we propose for bivariate problems is a new one. Given
data f (x, y) on a region E ⊆ �, one could attempt to compute a bivariate rational
approximation r(x, y) and then use this for analytic continuation. An algorithm for
such computations is presented in [2]. However, at present there are no methods
for bivariate rational approximation that have anything like the speed and flexibility
of AAA approximation in the univariate case, and accordingly, our new method is
based on AAA. Specifically, we propose the construction of rational approximations
r to f defined on one-dimensional curves—typically line segments. This leads to a
method that is extremely fast, and trivial to implement using the existing Chebfun aaa
command [32] or the MATLAB or Julia codes available with [33].

Most of the existing literature on analytic continuation is related either to poly-
nomials, whose effectiveness is limited, or to Padé approximants when it comes to
rational functions. The view of the present paper is that Padé approximation is a very
special case, often presenting accuracy problems requiring the use of extended preci-
sion arithmetic or other special tools; and that for many applications, a simpler starting
point is to approximate on a continuum E rather than at a single point.

There are also a number of methods for numerical analytic continuation that are
not based (at least explicitly) on polynomial or rational approximation. One fruitful
idea is to impose some kind of regularization to combat ill-conditioning [28, 37, 84].
It is also important to emphasize that the best method of analytic continuation may
be analytic rather than numerical, and a review of the subject from this point of view
can be found in Chapter 3 of [38].1 A famous example is the Riemann zeta function,
whose representation ζ(z) = ∑∞

k=1 k
−z converges only for Rez > 1 but which has

other representations valid for other values z ∈ C (see Fig. 4 below).
We will not give details of the AAA algorithm here, because for the purposes of

this paper, it is a black box [33, 70], and if another algorithm with similar speed and

1 The methods described by Fornberg and Piret are (1) Circle-chain method, (2) Schwarz reflection princi-
ple, (3)Useof a functional equation, (4) Partitioningof an integration interval, (5)ReplaceTaylor coefficients
by integrals or sums, (6) Subtraction of a similar series or integral, (7) Borel summation, (8) Ramanujan’s
formula, and (9) Padé approximations.
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1590 L. N. Trefethen

approximation power came along, we would expect it to be equally useful for analytic
continuation. We will only mention the basic feature that AAA involves manipula-
tions (of so-called barycentric support points and barycentric coefficients) only on the
approximation domain, nowhere else in the complex plane. In particular, unlike some
algorithms, it does not work with poles of rational approximations; the poles are only
computed after the rational approximation is obtained. Thus, for example, the approx-
imate symmetries of poles in Figures 1, 2, 5, and 6 are not explicitly imposed on the
approximations, but are just a result of their near-optimality. This is in contrast to most
of the theory of rational approximation, to be discussed in some detail in Sects. 6–8,
which starts from an explicit consideration of poles by means of the Hermite integral
formula, as developed originally by Walsh.

Concerning alternatives to AAA, we note that for approximation on real inter-
vals, the methods of Chebyshev–Padé (nonperiodic) and Fourier–Padé (periodic)
approximation, or simply rational interpolation in Chebyshev or equispaced points,
respectively, can be effective, as can the gold standard of minimax (best supremum-
norm) approximation; see [51, 115, 116] and the Chebfun commands chebpade,
ratinterp, and minimax. AAA approximation is exceptionally fast, robust, and
easy to work with, however, and most of the figures presented in this paper are gen-
erated by codes just a few lines long that run in a fraction of a second. Most of our
examples invoke AAA in its default mode as implemented in the aaa command of
Chebfun, where the approximation degree is determined adaptively to achieve a rela-
tive supremum norm error tolerance of 10−13. In one case (Fig. 7) we apply AAA in
128-digit arithmetic in Julia.

Following standard terminology, by a rational function of type (m, n), we mean a
function that can be written as a quotient p/q of polynomials of degrees (at most) m
and n, respectively. A rational function of type (n, n) is also said to be of degree n.
Representing rational functions by quotients of polynomials is numerically unstable,
however, and one of the reasons AAA approximation is so robust and accurate is
that it employs barycentric representations (and sometimes simpler partial fractions
representations) instead.

2 Comparison of polynomials and rational functions

In this section we focus on the most common case for applications, where f is a
real or complex analytic function defined on a real interval E , which without loss of
generality we take to be [−1, 1]. Such a function has a Chebyshev series that converges
absolutely and uniformly on [−1, 1],

f (z) =
∞∑

k=0

akTk(z), −1 ≤ z ≤ 1, (1)

where Tk is the degree k Chebyshev polynomial, and analyticity implies that the
coefficients ak decrease exponentially as k → ∞. Specifically, f must be continuable
to a bounded analytic function in the Bernstein ellipse Eρ in the complex z-plane for
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Numerical analytic continuation 1591

some number ρ > 1, defined as the open set bounded by the ellipse with foci z = ±1
and semimajor and semiminor axis lengths summing to ρ. If | f (z)| ≤ M in Eρ , then
its Chebyshev coefficients satisfy

|ak | ≤ 2Mρ−k, (2)

which implies that the partial sums of the Chebyshev series converge at the same
exponential rate,

∥
∥
∥ f −

n∑

k=0

akTk(z)
∥
∥
∥[−1,1] ≤ 2Mρ−n

ρ − 1
(3)

where ‖·‖[−1,1] denotes the supremumnormover [−1, 1]. It follows thatminimax (i.e.,
best supremum-norm) polynomial approximants also have errors satisfying the same
bound. The Chebyshev interpolants to f , that is, the degree n polynomials defined by
interpolation of f in the n + 1 Chebyshev points z j = cos( jπ/n), 0 ≤ j ≤ n, also
converge at the rate O(ρ−n), with the upper bound differing from (3) by just a factor
of 2:

∥
∥
∥ f −

n∑

k=0

ckTk(z)
∥
∥
∥[−1,1] ≤ 4Mρ−n

ρ − 1
. (4)

The results of this paragraph are due toBernstein in 1912 [14] (except the interpolation)
and are presented in Chapter 8 of [102].

Bernstein also proved a converse to these results [102, Thm. 8.3]. We display this
as a theorem since it is can be interpreted as an assertion about numerical analytic
continuation.

Theorem 1 (Analytic continuation by polynomials) Suppose f is any function defined
on [−1, 1] for which there exist degree n polynomials pn, n = 0, 1, 2, . . . , satisfying

‖ f − pn‖[−1,1] ≤ Cρ−n (5)

for some ρ > 1 and C > 0. Then f can be analytically continued to an analytic
function in the open Bernstein ellipse Eρ . Moreover, the polynomials pn converge
exponentially to f throughout Eρ , uniformly on compact subsets.

In this theorem, and throughout the paper, we use the following terminology:

Exponential convergence: ‖ f − rn‖ = O(τ n) for some τ ∈ (0, 1). (6)

Super-exponential convergence: ‖ f − rn‖ = O(τ n) for all τ ∈ (0, 1). (7)

The “big O” notation has its usual precise meaning as an upper bound as n → ∞.
Theorem 1 together with the bounds (3)–(4) tells us that Chebyshev series, inter-

polants, or minimax approximants defined on [−1, 1] can be used for analytic
continuation to every point within the smallest Bernstein ellipse on which f has a
singularity. (A point z0 ∈ C is a singularity of f if f can be analytically continued
to points z arbitrarily close to z0 but not to any neighborhood of z0.) For a discussion
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1592 L. N. Trefethen

of the practical, numerical side of this effect in the context of Chebfun and “Chebfun
ellipses,” see [103, sec. 6]. The phenomenon of convergence beyond the domain of
approximationwas called overconvergence byWalsh [111]. It is a generalization of the
familiar phenomenon of convergence of Taylor series throughout the disk bounded by
the singularity of minimal modulus, which is the starting point of Weierstrass’s “chain
of disks” procedure used to definemulti-valued analytic functions in complex analysis.
(Chains of disks are mainly a theoretical idea, not of much use for computation [38,
103]; see the beautiful illustrations of the idea in [113, sec. 3.6].)

Outside the Bernstein ellipse, on the other hand, polynomial approximations deter-
mined fromdata on [−1, 1]will be useless. For Taylor series and disks, this observation
is brought into focus by Jentzsch’s theorem [57], which asserts that the zeros of the
Taylor partial sums accumulate on the circle of convergence. For Chebyshev series on
[−1, 1], a corresponding theorem involving zeros on the Bernstein ellipse is due to
Walsh [110]; see [102, p. 140].

Rational approximations are an entirely different story, as illustrated in Fig. 1. Here
the function f (z) = tanh(z) is approximated on [−1, 1] by a Chebyshev interpolant
of degree 30 on the left and a AAA rational function of degree 7 on the right (or
one can use minimax approximations; it makes little difference). The function f has
poles at ±π ik/2, where k ranges over the odd integers, and in the image on the
left, we see that polynomial approximation gives nothing useful outside the Bernstein
ellipse that passes through the first pair of these poles, at ±π i/2. The image on the
right, by contrast, shows good approximation much further out, and in particular, the
AAA poles approximate those of f . Six of the seven AAA poles lie at positions that
would correspond to the values k = ±1,±3,±5 being adjusted to ±1.00000000057,
±3.0066, and ±5.99. Thus the first pair of singularities is located by the rational
approximant to an accuracy of better than 10−9 and the second to about 0.2%. (The
seventh pole is at about 977.1i ; it would be at ∞ for the minimax approximant, since
f is an odd function.)
Figure2 presents another pair of images in the same format, but now for the function

f (z) = (2− z)1/2 exp(−(z + 2)−1)(z2 + 9)−1, which in addition to poles at z = ±3i
has an essential singularity at z = −2 and a branch point at z = 2. Despite this
non-meromorphic structure, the rational approximation on [−1, 1] again does a good
job of approximating f further out in the complex z-plane. Theorems 5 and 6 of Sect.
7 will explain this success. The approximation r(z) is of degree 9, with two poles at
−0.00014 ± 3.00012i , three poles clustering near the branch point at 3.99, 2.57, and
2.12, three poles near the essential singularity at −2.31 and −2.13 ± 0.20i , and one
pole at 14.61.

One should not conclude from Figs. 1 and 2 that rational functions will always
be more effective than polynomials for analytic continuation. As a counterexample,
consider the amber function A(z) defined in [56] by the Chebyshev series

A(z) =
∞∑

k=0

2−kskTk(z), (8)
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Numerical analytic continuation 1593

Fig. 1 Error contours in the complex z-plane (log base 10) for approximations of f (z) = tanh(z) for
z ∈ [−1, 1]. On the left, degree 30 polynomial minimax approximation or Chebyshev interpolation, with
poles of f marked by small black dots. (The figure is computed with Chebyshev interpolation, but minimax
looks almost the same.) On the right, degree 7 rational minimax or AAA approximation based on 100
equispaced sample points in [−1, 1], with poles of r marked by thicker red dots. (The figure is computed
with AAA, but again minimax looks almost the same.) Polynomial approximations are only useful for
analytic continuation within a Bernstein ellipse, whereas rational approximation may be effective further
out

Fig. 2 Repetition of Fig. 1 for the function f (z) = (2 − z)1/2 exp(−(z + 2)−1)(z2 + 9)−1, which has a
branch point at z = 2, an essential singularity at z = −2, and poles at z = ±3i ; all these are marked by
black dots. The polynomial degree on the left is 26, and the rational degree on the right is 9. As before, the
polynomial approximation is accurate only in aBernstein ellipse,whereas the rational function approximates
f further out. The poles of f at ±3i are approximated by poles of r at −0.00014 ± 3.00012i

where the numbers sk = ±1 are determined by the binary expansion of π , π =
11.00100100001111110110 . . . 2, with sk = 1 when the bit is 1 and sk = −1 when
it is 0. This function is analytic within the Bernstein ellipse E2 but is not defined
at all outside, since the bits of π are effectively random. In particular, it cannot be
analytically continued to a function analytic or meromorphic in any larger region of
the z-plane; we believe it has the ellipse as a natural boundary (see Sect. 6.4 and [59,
chap. 4]). Figure3 repeats Figs. 1 and 2 for this very different function, showing that
now, polynomials and rational approximations are equally good inside the Bernstein
ellipse and there is nothing to say outside.
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1594 L. N. Trefethen

Fig. 3 Repetition of Fig. 1 again but now for the “amber function” A(z) of (8), which we believe has a
natural boundary along the Bernstein 2-ellipse. The polynomial approximation on the left has degree 46,
and the rational approximation on the right has degree 23, so they have equal numbers of free parameters,
47. Inside the ellipse, rational approximations have no advantage over polynomials. Outside, the function
f and thus the error f − r are not defined, so no color is plotted. The reason rational functions are so
important for analytic continuation is that functions like this one are uncommon in applications

In Sects. 6–8 we will consider what can be said theoretically about rational
approximants. Here in this section, we make a pair of observations about the more
straightforward polynomial case. These considerations are fundamental if one wants
to understand how numerical analytic continuation is possible. The first observation is
that, in stating in this section that polynomial approximants only converge in a Bern-
stein ellipse, we do not mean to say that no polynomials exist that would be accurate
further out. Indeed, Runge’s theorem of 1885 guarantees that polynomials accurate on
arbitrary compact subsets of � do exist if � is simply connected [42, 85]. The point
is that one will not find them by computing approximations on [−1, 1].

The second observation pertains to the question, if pn is chosen to approximate f
on [−1, 1], why is it also accurate further out in the Bernstein ellipse? In fact, there
exist plenty of polynomials pn that approximate f on [−1, 1] without having any
accuracy elsewhere. However, such approximations can not converge at the optimal
rate O(ρ−n). The crux of Bernstein’s result is that the only way that polynomial
approximations can be optimal or near-optimal on [−1, 1] is if they approximate
f also on a larger domain. And thus approximation automatically leads to analytic
continuation.2

3 Complex examples

Analytic continuation alsomakes sensewith complex functions and complex domains,
and in this section we look at two examples.

2 This is a theme in numerical analysis more broadly: certain algorithms compute their outputs as side-
effects of an approximation problem being solved, and the accuracy of the side-effects can be attributed to
the near-optimality of the approximation. For an example from numerical linear algebra, the calculation of
eigenvalues of a matrix by the Lanczos or Arnoldi methods can be regarded as a side-effect of the solution
of a matrix–vector minimization problem [53].
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Fig. 4 Phase portrait of the
AAA approximation r(z) to the
Riemann zeta function ζ(z)
based on sample values at 300
points linearly spaced in the
complex z-plane from 4 − 100i
to 4 + 100i . The striped region
of the figure closely matches the
phase portrait for ζ(z) itself. Its
left boundary lies roughly along
the curve defined by
|ζ(z)| = 107

The first concerns the Riemann zeta function. Aswasmentioned in the introduction,
ζ(z) is defined a priori by the Dirichlet series

ζ(z) =
∞∑

k=1

k−z . (9)

This series converges just for Rez > 1, but in fact, ζ(z) is analytic throughout the
complex z-plane except for a simple pole at z = 1. An enormous amount is known
about its numerical evaluation, including algorithms so fast as to enable computation
around the 1036th zero on the critical line Rez = 1

2 [17]. Generic numerical analytic
continuation of the kind discussed in this paper can hardly compete with these spe-
cialized algorithms, but it is still interesting to get an idea of how it behaves. Suppose
we evaluate ζ(z) using (9) at 300 points in the z-plane linearly spaced from 4− 100i
to 4 + 100i . Taking 40,000 terms in the series suffices for 14-digit accuracy of the
evaluations, and the code segment

zeta = @(z) sum((4e4:-1:1).ˆ(-z),2);
Z = linspace(4-100i,4+100i,300).’;
r = aaa(zeta,Z);
phaseplot(r,50*[-1 1 -1 1])

produces a rational approximation r(z) ≈ ζ(z) in a fraction of a second, whose phase
portrait is shown in Fig. 4. (The color at each point of a phase portrait indicates the
complex argument of the function there, with red corresponding to the positive real
axis, yellow to argument π/3, and so on [113].) The striped region of the figure closely
matches the phase portrait of ζ(z) itself [95], revealing the pole at z = 1, the zeros
at z = −2,−4,−6,−8, and the first 10 pairs of zeros along the critical line. The
accuracy of the zeros is 8–10 digits throughout the region shown in the figure. For
example, the first two zeros of r in the upper half-plane are
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1596 L. N. Trefethen

Fig. 5 AAA analytic
continuation of a conformal map
from boundary data. The black
curve is the superellipse �

defined by x4 + y4 = 1, whose
boundary correspondence
function f (z) for a conformal
map to the unit disk has been
computed numerically via an
integral equation. The inverse
map f −1 from the unit circle to
� is then fitted by a rational
function r , and the red and blue
curves are images under r of a
polar grid inside and outside the
unit circle, respectively. The red
dots are poles of a rational
approximation to the forward
map f

0.499999999946+14.134725141712i,

0.499999999940+21.022039638788i. (10)

It is obvious in these numbers how closely the real parts of the zeros of r and ζ agree,
and the accuracy of the imaginary parts is similar.

Our second example comes from a 1986 paper by Reichel on numerical analytic
continuation [84]. Let � be the region in C bounded by a Jordan curve �, let f
be a conformal map of � onto the unit disk, and suppose we know the boundary
correspondence function, that is, the values of f on �. In practice, this information
would traditionally be found by numerical solution of an integral equation [104, 114].
Based on these data, how can we evaluate f (z) for z in the interior �, or, assuming
� is smooth enough for this to make sense, how can we analytically continue it
to the exterior? As proposed in [52], an excellent method is AAA approximation,
as illustrated in Fig. 5 for Reichel’s example of a superellipse defined by the curve
x4 + y4 = 1. The black curve is �, the red curves are images in the interior of � of a
polar grid in the unit disk, and the blue curves are images of a polar grid outside the
unit circle. The core of the computation is carried out by the commands

Z = exp(2i*pi*(0:100)/100);
g = chebfun2(@(x,y) x.ˆ4+y.ˆ4,1.1*[-1 1 -1 1]);
superellipse = conj(roots(g-1));
f = conformal(superellipse); F = f(Z);
r = aaa(F,Z);

The superellipse is defined in lines 2–3 by a bit of Chebfun trickery having no con-
nection to this paper, the boundary correspondence function f (�) is computed via the
Kerzman–Stein integral equation in line 4, and line 5 computes the rational approxi-
mation that serves to evaluate r in the exterior of� and continue it analytically outside.
A further computation [˜,pol] = aaa(Z,F) finds poles of a rational approxi-
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Numerical analytic continuation 1597

mation of the inverse map from the unit disk to �, and it is these poles that are plotted
as red dots in the figure.

4 The one-wavelength principle

This section proposes a principle that has both experimental and (a little) theoretical
support:

One-wavelength principle. In 16-digit arithmetic, rational approximations can
analytically continue an oscillatory function about one wavelength beyond its
sampling domain.

Two wavelengths would be possible in 32-digit arithmetic, three wavelengths in 48-
digit arithmetic, and so on. Related results for Fourier-based extrapolation methods
are presented in [13].

Let us explore this idea experimentally. Figure6 shows a pair of computations in the
pattern of the last section for the analytic continuation of f (z) = cos(2π z) to z > 0
from its values for z ∈ [−2.6, 0] (the number 2.6 is arbitrary). The wavelength of this
function is 1, and with the grid lines as a guide, we focus on the question of how far
along the positive x-axis aminimax polynomial (left) or rational approximation (right)
retains some accuracy.With degrees n = 28 and 14, respectively, both approximations
have accuracy about 7 × 10−14 on [−2.6, 0]. The upper pair of plots are in the same
format as before, and the lower pair show the data (black) and the approximations
(red) along the x-axis. It is apparent that the polynomial approximation extrapolates
to z ≈ 0.7 and the rational approximation to z ≈ 1.

Here is what we mean by the one-wavelength principle. When an oscillatory func-
tion is approximated by a minimax, AAA, or other rational function to an accuracy
of, say, 10–16 digits, one often observes that the approximation retains some accuracy
at a distance of about one wavelength from the approximation domain. Of course,
this principle would not be of much use if it only applied to sines and cosines. One
sees similar behavior more generally, however, for functions that have something of a
smooth oscillatory character near the region of interest. Several of our later examples
will illustrate this, and in fact, one can see the one-wavelength effect in Fig. 1 in the
approximation of tanh(z). Like the cosine, this is an exactly periodic function, with
period π in the Imz direction. The colored contours on the right of Fig. 1 show that
the rational approximation retains some accuracy up to the second pole in the upper
half-plane.

A rough empirical model of the relationship between accuracy of a rational approx-
imation and the number of wavelengths of extrapolation is this:

no. of wavelengths = C10 · (no. of digits of accuracy), C10 ≈ 0.075, (11)

or equivalently,

no. of wavelengths = C2 · (no. of bits of accuracy), C2 ≈ 0.023. (12)
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Fig. 6 In the upper row, a repetition of Fig. 1 for f (z) = cos(2π z), a cosine function with wavelength 1.
The values at 150 points of [−2.6, 0] represent several wavelengths of sample data, and the approximations
have accuracy 7 × 10−14 on this interval. For z > 0, successful analytic continuation by somewhat less
than one wavelength is evident in the left image, and by about one wavelength on the right. The lower
curves confirm these estimates, showing the data in black and the approximations p(z) and r(z) in red.
With sample data on a larger interval [−L, 0], the polynomial continuation would get worse for reasons
explicable by Bernstein ellipses, whereas the rational one would not change much

Inwords, each time you add 13 or so digits of approximation accuracy, you gain about a
wavelength of analytic continuation. It is hard to get much data to verify this relation-
ship in ordinary floating-point arithmetic, but Fig. 7 shows results of computations
in 128-digit precision Julia going up to about 70 digits of approximation accuracy,
kindly provided for me by Daan Huybrechs. Two periodic functions of wavelength 1
are approximated by AAA in 500 Chebyshev points scaled to [−4.7, 0],

f (z) = cos(2π z), g(z) = Re[tan(π z + i + 1
4 )]. (13)

The function f is entire, whereas g is analytic in the strip −1 < Imz < 1. (Another
way to write g to display its analytic structure explicitly is g(z) = 1

2 [tan(π z + i +
1
4 ) + tan(π z − i + 1

4 )].) The data show approximately linear increase of the number
of wavelengths of analytic continuation with the number of digits of approximation
accuracy. In this figure, the number of wavelengths of analytic continuation of f is
measured by the first point z > 0 at which | f (z) − r(z)| ≥ 0.1, and for g, which is
smaller in amplitude on the real line, it is the first point at which |g(z)−r(z)| ≥ 0.001.

I do not have a formulation of the one-wavelength principle precise enough to be
cast as a theorem or a conjecture. An approximate indication ofwhere the phenomenon
comes fromwill be presented in Sect. 8.3. Meanwhile, here is the closest I have found
to a similar statement in the literature, from a 1986 sampling theory paper by Henry
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Fig. 7 Extended precision Julia computations of AAA approximants of the functions f and g of (13) in
500 Chebyshev points scaled to [−4.7, 0]. As the degree n of the approximations increases from about 11
to 47, the number of digits of accuracy on [−4.7, 0] increases steadily. The number of digits of successful
analytic continuation along the positive real axis also increases steadily in a fashion consistent with the
approximate model (11)

Landau [64]. The one-wavelength aspect of the matter comes in via his assumption
that the data are band-limited.

Theorem 2: When sample measurements are accurate only to within ε > 0 in
amplitude or in total energy, good extrapolation is possible for only a bounded
distance (having an order of magnitude − log ε) beyond the interval of observa-
tion, regardless of the amount of data used.

5 Converse: blending and “fat branch cuts”

The whole subject of analytic continuation is suffused with the difficulty of the task:
ill-posed or ill-conditioned in theory, and certainly a challenge in practice. We have
just argued that in ordinary floating-point arithmetic, one may expect to continue an
oscillatory function numerically about one wavelength past its given domain, but not
much further.

Viewed from another angle, however, this sensitivity of analytic continuation has
a happy consequence: it makes it possible to patch distinct analytic branches of func-
tions together with simplicity and smoothness. Mathematically, two or more unrelated
function branches on disjoint sets can be interpolated by a single global function that
is C∞, but not analytic. Numerically, the interpolant can even be analytic—and still
match the given function values to a prescribed accuracy such as 16 digits.

Methods of smooth connection of disjoint functions have been proposed for more
than a century by both theoretical and numericalmathematicians, not tomention physi-
cists and engineers and, most recently, data scientists. Here I would like to propose a
method that appears to be new, based on formulas arising in the area of tanh-sinh or
double exponential quadrature [7, 69, 101]. Consider what one may call the double
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Fig. 8 The double exponential
transition function (14) (above)
leads to the analytic partition of
unity (15), accurate to machine
precision (below)

exponential transition function,

τ(x) = tanh
(π

2
sinh(3.2x)

)
, (14)

which is plotted in Fig. 8. As |x | → ±∞, τ(x) approaches ±1 so fast that it is identi-
cally equal to ±1 in IEEE 16-digit arithmetic for |x | > 0.9972. (In other precisions,
or for a transition over an interval of length other than 2, one would adjust the constant
3.2.) Thus τ is a transition function that is analytic on the whole real line and, although
mathematically it satisfies −1 < τ(x) < 1 for all x , numerically we have τ(x) = −1
for x ≤ −1 and τ(x) = 1 for x ≥ 1. Extended into the complex x-plane, τ(x) is
analytic for |Imx | < a with a = sin−1(1)/3.2 ≈ 0.491.

From τ it is straightforward to construct “blending-to-zero” [23] or partition-of-
unity functions with similar properties,

pL(x) = (1 − τ(x))/2, pR(x) = (1 + τ(x))/2 (15)

(with L and R standing for left and right), as shown in Fig. 8. These analytic functions
add up exactly to 1 while having numerical support (−∞, 1] and [−1,∞), respec-
tively. With these tools one can piece disjoint analytic functions fL and fR together
with the formula

f (x) = pL(x) fL(x) + pR(x) fR(x), (16)

as illustrated for two pairs of functions in Fig. 9.
The examples of Fig. 9 are extension problems of what Boyd calls the “first kind,”

where fL and fR are known and analytic throughout the desired blending region [20].
Sometimes, however, fL or fR may have singularities (“second kind”) or be unknown
(“third kind”) in the blending region. These cases can also be handled by the tools
we have introduced. We reduce the third kind situation to the first or second kind
by AAA extrapolation, which will normally provide extensions of fL and fR at least
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Fig. 9 Two examples of
blending by (16) of one analytic
function fL on (−∞,−1] with
another unrelated one fR on
[1,∞). The global function f is
analytic in a strip around R and
matches fL and fR on their
subintervals to 16-digit accuracy

Fig. 10 The stretching process
of (18)–(17) applied to two
functions analytic for x ≤ 0.5
but not x ≤ 1, shown in grey. In
each case the portion of the
function in [0, 0.5] is
analytically stretched to [0, 2].
On (−∞, 0], the stretched
function matches the original to
16 digits

some distance beyond their initial intervals. If the extensions reach across the blending
region without singularities, then we are in the first kind setting and the problem is
done.

For problems where fL and fR , after AAA extension, remain unknown or have
singularities in the blending region, we can use τ to “stretch” these functions analyti-
cally so that they have the necessary property. To formulate this with some generality,
let us shift the intervals and suppose that a function f (x) is given that is analytic for
x ∈ [−L, a] for some a, L > 0 and we want to find another function g(t) that is
analytic for t ∈ [−L, b] with b > a while satisfying g(x) = f (x) for x ∈ [−L, 0].
This is mathematically impossible in general, but with the help of τ , it is achievable
to machine precision. We define g(t) = f (x(t)), where x(t) is an analytic homeo-
morphism of [−L, b] to [−L, a] that matches the identity to 16 digits, i.e. x(t) ≈ t ,
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Fig. 11 Analytic blending of the
two functions of Fig. 10, flipped
and shifted as described in the
text. The blended function is
analytic and matches the given
functions to 16 digits. We may
think of the red part of the curve
as a “fat branch cut”

for t ∈ [−L, 0]. To construct x(t), we set

t(x) = x + b − a

C

∫ x

0

[
τ

( s

a
− 1

)
+ 1

]
ds. (17)

with

C =
∫ a

0

[
τ

( s

a
− 1

)
+ 1

]
ds. (18)

If x(t) is the inverse function (readily computed with Chebfun), this gives us g(t) =
f (x(t)). Two examples are shown in Fig. 10.
Once functions have been analytically continued by AAA and/or analytically

stretched as just described, we are back in the “first kind” situation and can com-
bine them as illustrated in Fig. 9. Figure11 shows as an example an analytic blending
of the upper function of Fig. 10 (shifted left 1 unit) and the lower one (flipped and then
shifted right one unit).

Normally, a branch cut is a curve across which an analytic function discontinuously
changes from one branch to another. As suggested in Figs. 11 and 12, our subject in
this section might be whimsically called fat branch cuts, that is, domains of positive
width across which an analytic function smoothly changes from one branch to another.
The change is so smooth that we may regard the result as a single globally analytic
function, with the understanding that it matches the original functions not exactly but
to a prescribed accuracy such as 16 digits.

The blendingmethodwehave described for computing fat branch cuts is not the only
possibility of this kind. More familiar choices would make use of entire functions such
as Gaussians and the error function, which are even smoother than (14) but approach
their limiting values more slowly. I do not claim that (14) is necessarily better than
these methods, merely that it is a choice worth considering. In the context of numerical
quadrature, a great deal is known about the comparison of double expenoential, erf,
and other formulas based on variable transformations. See for example Theorem 4.1
of [97].

As a very different approach to blending unrelated analytic functions, one might
simply calculate a least-squares fit to the data on the given disjoint domains by a
global polynomial, which will then give some kind of analytic interpolant in the in-
between region. In general it is necessary to use Stieltjes orthogonalization, also known
as “Vandermonde with Arnoldi,” to generate a well-conditioned polynomial basis for
this process [22]. An example involving two real intervals is given in Figure 3.1 of [22],
and Fig. 12 shows an example involving two disks. Compare Figure 8 of [34].
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Fig. 12 Phase portraits of approximations of sign(Rez) on a pair of disks in the left and right halves of the
complex z-plane. The AAA approximant on the left generates an approximation to a branch cut close to
the imaginary axis, an effect discussed further in Section 7.3. The degree 80 polynomial least-squares fit
on the right (which matches the data with the large maximal error of 0.056) illustrates another approach to
fat branch cuts

Beforemovingonwe shouldmention that sometimes one is in the fortunate situation
of trying to blend two analytic functions that are in fact the same—that is, the problem
of missing data or data with gaps. In such a case a global AAA interpolant can be very
effective, as is shown in Fig. 2 of [119] and is also essentially the theme of [56]. This is
related to the easy problem of analytic continuation inwards from a closed boundary,
as in the contours inside the superellipse in Fig. 5.

6 Hermite integrals and potential theory

To say anything precise about rational approximations, one usually makes use of a
set of tools built on the Hermite integral formula [66, 106, 111]. The origins go back
to Cauchy in the 1820s and Hermite in the 1870s, as well as other works including
Runge’s 1901 paper on equispaced interpolation. It was JosephWalsh at Harvard in the
early and mid-20th century who used the Hermite integral extensively for analyzing
rational approximations [111], and then Gonchar, Bagby, Rakhmanov, and others later
in the 20th century who connected these tools with notions of potential theory [5, 6,
46–48, 65, 77, 83, 86].

Walsh’s idea was to analyze a type (n − 1, n) rational approximation r(z) ≈ f (z)
in terms of the poles of r ,

n poles: π1, . . . , πn, (19)

and n interpolation points where r(zk) = f (zk),

n interpolation points: z1, . . . , zn, (20)
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which are distinct from the poles. If the poles are distinct, the rational function can be
written

r(z) =
n∑

k=0

ak
z − πk

(21)

for some coefficients {ak}, and if the interpolation points are distinct, the interpolation
conditions are

r(zk) = f (zk), k = 1, . . . , n. (22)

We will use (21)–(22) for simplicity, but in fact the theory applies equally if some
of the poles and/or interpolation points are confluent, in which case one has poles of
higher order and/or interpolation conditions involving derivatives as well as function
values.

There is no reason why r has to interpolate f at exactly n points. In fact, r and f
could agree at any number of points from 0 to∞ (countable or uncountable). However,
the number n is special since it is the number of coefficients {ak} in (21), and it is readily
proved that if n poles (19) and n interpolation points (20) are fixed arbitrarily, then there
is a unique interpolant (21)–(22) for any data values f (z1), . . . , f (zn) [111, Thm. 8.1].
The formulas of the new few pages are valid with any choice of n interpolation points,
regardless of what additional interpolation points may also be present.

The Hermite integral formula starts from the function

φ(z) =
n∏

k=1

(z − zk)

/ n∏

k=1

(z − πk), (23)

which implies

|φ(z)|1/n =
n∏

k=1

|z − zk |1/n
/ n∏

k=1

|z − πk |1/n . (24)

The numerator of (24) is the geometric mean distance of z to the interpolation points
{zk}, and the denominator is the geometric mean distance to the poles {πk}. Thus
|φ(z)|1/n measures how close z is to {zk} relative to how close it is to {πk}. It is
translation- and scale-invariant in the sense that if a constant is added or multiplied
into {πk}, {zk}, and z, then φ(z) and |φ(z)|1/n do not change.

The logarithm u(z) = log(|φ(z)|1/n) can be written

u(z) = n−1
n∑

k=1

log |z − zk | − n−1
n∑

k=1

log |z − πk |, (25)

and this is a harmonic function (i.e., it satisfies the Laplace equation) away from {zk}
and {πk}. We can interpret u as the potential generated by n negative point charges of
strength n−1 at {zk} and n positive point charges of strength −n−1 at {πk}, with

enu(z) = |φ(z)|. (26)
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Fig. 13 Level curves
|φ(z)|1/n = 0.3, 0.4, . . . , 0.9 of
(23) (from inside out) for a
rational approximation in which
the poles {πk } are n = 10
equally spaced points on the
circle |z| = 2, marked in red (the
nth roots of 1024), and the
interpolation points {zk } are n
Chebyshev points on [−1, 1],
marked in blue

Figure 13 illustrates these ideas for a concrete example. It shows equipotential
curves |φ(z)|1/n = const. or u(z) = const. in a case with n = 10, where {πk} are 10
equally spaced points on the circle |z| = 2 (the 10th roots of 1024) and {zk} are 10
Chebyshev points on [−1, 1] (cos( jπ/9), 0 ≤ j ≤ 9).

And nowwe come to the contour integral. Suppose� is a continuous closed contour
enclosing {zk} but not {πk}, and suppose f is analytic in the region � bounded by �

and continuous up to the boundary. More generally, � could have several components,
so that � has some holes. The Hermite integral takes this form [111, Thm. 8.2]:

Theorem 2 (Hermite integral formula) Under the circumstances just described, the
rational interpolant r satisfies

f (z) − r(z) = 1

2π i

∫

�

φ(z)

φ(t)

f (t)

t − z
dt . (27)

Here is the crucial implication of (27):

If |φ(z)| 
 |φ(t)| for t ∈ �, then | f (z) − r(z)| 
 1. (28)

Much of rational approximation theory is built on this principle.
For example, consider Fig. 13. On the innermost black level curve we have

|φ(z)|1/n = 0.3, hence |φ(z)| < 10−5. On the outermost, we have |φ(t)|1/n = 0.9,
hence |φ(t)| > 10−1. Suppose we take the contour � in (27) to be this outermost
curve. Then for any z ∈ [−1, 1], and any f analytic within �, we find

| f (z) − r(z)| <
10−4

2π

∫

�

| f (t)|
|t − z| |dt |. (29)
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In words, the degree 10 rational interpolant to f can have error no greater than order
10−4. If n is doubled, this will improve to about 10−8, and so on: exponential conver-
gence.

The Hermite integral tells us something about analytic continuation, too. Between
the blue dots and the red ones in Fig. 13, we are still guaranteed good accuracy, though
with progressively weaker constants as one moves outward. This is an analogue for
rational approximations of Bernstein’s result for polynomials, explaining in a general
way the success of rational approximation as observed, for example, in Figs. 1, 2
and 3. There is a logical gap, however, in that whereas Theorem 1 applies to any
polynomial approximations of a function f , the Hermite formula assumes that the
poles lie at prescribed locations. So although it is suggestive, it gives us no immediate
information about other best or near-best approximations, whose poles are free. We
will take up that subject in Sect. 8.

Given an approximation domain E such as [−1, 1] and a domain of analyticity �

such as the disk bounded by � = {z : |z| ≤ 2}, what is the best choice of {zk} and
{πk}? A natural idea is to aim to minimize the ratio φ(z)/φ(t) of (27) by minimizing
the quotient

supz∈E |φ(z)|
inf t∈� |φ(t)|. (30)

The infimumof (30)will be approximately achieved by aminimal energy configuration
in which {πk} and {zk} are distributed on � and E , respectively, in such a way is to
minimize the energy functional

I =
n∑

j=1

n∑

k=1

log |πk − z j | −
n−1∑

j=1

n∑

k= j+1

(
log |zk − z j | + log |πk − π j |

)
. (31)

Physically, we think of {πk} as a set of point charges of amplitude n−1 that repel each
other pairwise with forces of magnitude n−2/|πk − π j |, and similarly {zk} are point
charges of amplitude −n−1 repelling each other pairwise with forces of magnitude
n−2/|zk − z j |; meanwhile each pair πk and z j are attracted by a force of magnitude
n−2/|z j − πk |. If all these charges are distributed in an equilibrium fashion on � and
E , this will minimize I .

Determining an optimal configuration (for the given choice of �) is challenging for
finite n, and would not be truly optimal in any case since f (t) and t − z also affect
the value in (27). In the limit n → ∞, however, the optimality problem becomes
very clean, just a planar Laplace problem. To treat this limit, we imagine continua of
interpolation points and poles defined by a signed measure μ supported on E , where
it is nonpositive with total mass −1, and on �, where it is nonnegative with total mass
1. The energy functional becomes

I (μ) = −
∫ ∫

log |z − t |dμ(z)dμ(t), (32)
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Fig. 14 Level curves |φ(z)|1/n = 0.4, 0.5, . . . , 0.9 in the limit n → ∞ of (23) (from inside out), or
equivalently, u = log(0.4), . . . , log(0.9) for the optimal charge configuration determined by solving a
Laplace problem for a potential u(z) taking constant values on both boundaries. The contours hug the
circle a little more closely than in Fig. 13 because that configuration was not quite optimal. The light grey
orthogonal curves, equispaced with respect to the normal derivative un on the boundaries, indicate the
optimal charge density distributions (interpolation points, poles) on the inner and outer boundaries

with associated potential function

u(z) = −
∫

log |z − t |dμ(t). (33)

It can be shown that there is a unique measure μ that minimizes I (μ), and that this
corresponds to a configuration where u is a harmonic function taking constant values
uE < 0 on E and u� = 0 on �. The minimum Imin = infμ I (μ), which is positive,
is the logarithm of the modulus of the pair (E, �), which we denote by mod(E, �).
The condenser capacity is

cap(E, �) = 1/ log(mod(E, �)) (34)

or equivalently
mod(E, �) = e1/cap(E,�). (35)

For example, if E is defined by |z| ≤ r1 and � by |z| = r2 > r1, then mod(E, �) =
r2/r1 and cap(E, �) = 1/ log(r2/r1). If E = [−1, 1] and� is the Bernstein ellipse Eρ

for some ρ > 1, then mod(E, �) = ρ and cap(E, �) = 1/ log ρ. A purely geometric
definition of cap(E, �) is also possible, involving the geometric mean distances of
charges in E and � divided by the geometric mean distance between the two [6].

Let us return to the problem of Fig. 13, taking E = [−1, 1] and � as the circle
of radius 2. The charge configuration we chose there, with {πk} equispaced and {zk}
equal to Chebyshev points, is a good one as n → ∞, giving exponential convergence,

123



1608 L. N. Trefethen

but it is not quite optimal. The optimal potential for n → ∞ concentrates charge a
little more near z = ±2 on the outer boundary, and is shown in Fig. 14.

We have just described the Laplace problem that was solved to produce Fig. 14, but
we did not prescribe it fully since we did not specify uE . This constant is determined
by the condition that there is−1 unit of charge on E or, equivalently, 1 unit on �. (The
charges must be equal and opposite because u = 0 on the outer boundary �.) The
charge density along � is 1/2π times the normal derivative un defined with respect to
the outward-pointing normal. Along ∂E the essence of the matter is the same, but if
E is an interval rather than a Jordan domain, one must think of it as having two sides,
each with half the charge density. Thus the additional condition to fully specify u is

1

2π

∫

�

un(z)dz = 1 (36)

or equivalently, subject to the qualification just mentioned,

1

2π

∫

∂E
un(z)dz = −1. (37)

In both cases the contours � or ∂E are traversed in the usual positive sense, with the
domain � always lying to the left.

All together, the Laplace problem in the region� between E and � that determines
asymptotic accuracy of Walsh rational interpolants is

�u = 0 in �, u = 0 on �, u = uE on ∂E (38)

with the constant uE being determined implicitly by (36) or (37).
Once the equilibrium potential u(z) for a condenser (E, �) has been found, the

associated convergence rates for rational interpolants follow essentially from (26) and
(27). Let us say that {rn}, n = 0, 1, 2, . . . , is a family of Walsh approximants of f
in (E, �) if it is a family of rational interpolants (21)–(22) defined by poles {πn} and
interpolation points {zk} asymptotically distributed according to the potential u(z).
(The notion of asymptotic distribution can be made precise; we omit details.) The next
theorem is due to Walsh [111, chap. 9].

Theorem 3 (Asymptotic accuracy of rational interpolants) Any family of Walsh
approximants {rn} for an analytic function f in a condenser (E, �) satisfies

lim sup
n→∞

| f (z) − rn(z)|1/n ≤ exp(u(z)) (39)

for each z enclosed by �. For z ∈ E this becomes

lim sup
n→∞

‖ f − rn‖1/nE ≤ euE = 1

mod(E, �)
= e−1/cap(E,�). (40)
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Note that (39) and (40) are inequalities, not equalities. The reason for this is that
they are derived from bounding the Hermite integral (27) via the absolute value of its
integrand, and f (z) − r(z) might be smaller if there is cancellation. This effect can
be arbitrarily strong, but in many cases of best and near-best approximations it is a
factor of exactly 2 for reasons of orthogonality, as we will discuss in the next section:
exp(−1/cap(E, �)) becomes exp(−2/cap(E, �)).

7 Rational approximation on E

How fast can rational approximations on a simply-connected compact continuum E
converge to a function f that is analytic there? Certainly exponential convergence
is always possible, since polynomials can achieve this, as established in the case
E = [−1, 1] by (3) and (4); for more general sets E ⊆ C this result is due to
Runge [85]. The convergence rate for rational approximations, however, is generally
much faster than polynomial approximations can achieve, and it depends on what
portion of C it is possible to analytically continue f to. In important cases the rate
improves to super-exponential.

We now apply the theory of the last section to study these convergence rates. As
always we assume that E is a simply-connected compact continuum and � is a Jordan
curve or collection of Jordan curves containing E inside which f is analytic.

Before considering the various cases, we make a comment about best vs. near-best
rational approximation. It is known that f has a best rational approximation of each
degree n, i.e., a function r∗

n that minimizes the supremum norm ‖ f − rn‖E [111].
(In general r∗

n need not be unique, though it is unique for real approximation of real
functions on an interval.) In the theoretical literature, many discussions are framed
in terms of best approximations, whether on a set E or in the limiting case of Padé
approximation at a point. In numerical practice, however, and certainly when using
the AAA algorithm, we are normally dealing with near-best rather than exactly best
approximations. Therefore in this paper, where possible, we avoid speaking of r∗

n .

7.1 Natural boundaries

The first case we consider is a simple one conceptually, but rarely turns up in applica-
tions. A natural boundary or natural barrier for an analytic function is a curve across
which no analytic continuation is possible. For example, a function f analytic in the
open unit disk has a natural boundary on the unit circle if there exists no function g
that takes the same values as f within the disk and is also analytic in some larger
connected domain. One source of examples of functions with natural boundaries is
Taylor or Chebyshev series with random coefficients, as we have seen with the amber
function A(z) of Fig. 3 and is discussed in the monograph by Kahane [59].

Taking themost straightforward case of this kind, let us suppose that f extends from
E to an analytic function throughout the region � bounded by E and a Jordan curve
or set of Jordan curves �, and that � is a natural boundary of f . Then convergence at
least as fast as the rate determined by the condenser capacity cap(E, �) is guaranteed.
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1610 L. N. Trefethen

Theorem 4 For an analytic function f with a natural boundary �, there exist rational
approximations {rn} with exponential convergence,

lim sup
n→∞

‖ f − rn‖1/nE ≤ e−1/cap(E,�). (41)

The bound (41) is sharp in the sense that, given E and �, there exist functions f
of the prescribed class for which the inequality is an equality. However, it is far from
sharp in that there also exist other functions of this class with rational approximants
that converge much faster, indeed arbitrarily fast. We can illustrate this by an example.
Consider the function f (z) defined for |z| < 1 by what looks like an infinite series of
simple poles on the unit circle,

f (z) =
∞∑

k=1

ck
z − eik

, (42)

where {ck} is an absolutely convergent series of nonzero coefficients, i.e.,∑ |ck | < ∞.
It is easily seen that f is analytic in the unit disk. But since the numbers eik are distinct,
it can also be shown that f cannot be analytically continued to any point eik , where
k is a positive integer.3 Since these points are dense on the unit circle, the unit circle
must be a natural boundary for f . (Thus the points eik are not actually poles of f .
Curiously, the same formula (42) also defines an analytic function f̃ outside the unit
circle, but f and f̃ are not analytically related.) Now pick coefficients in (42) that
decay as fast as you like, such as

f (z) = 1

z − ei
+ 10−10

z − e2i
+ 10−100

z − e3i
+ 10−1000

z − e4i
+ · · · . (43)

By truncating the series, we see that on any disk E = {z : |z| ≤ τ }, 0 < τ < 1, rational
approximations of degree n = 1, 2, 3, . . . can achieve errors bounded by 1.1/(1− τ)

times 10−10, 10−100, 10−1000, . . . . Thus the convergence can be arbitrarily fast, even
though f has a natural boundary.

7.2 Entire functions

At the other extreme, suppose there exists an analytic continuation of f to all of C:
f is entire. Here, (3) and (4) imply that polynomials, let along more general rational
functions, can achieve super-exponential convergence. Another way to say it is that if
a function is entire, it has super-exponentially convergent rational approximants even
if you constrain all their poles to lie at ∞. We do not state this as a theorem as it is so
basic and also a special case of the next theorem.

3 A proof can go like this. Suppose f can be analytically continued to some point z = ei J . Then the same
must be true of g, defined by the same series (42) but with enough terms k �= J discarded so that |cJ | is
greater than the sum of the remaining coefficients |ck |. Now it is readily seen that |g(rei J )| ↑ ∞ as r ↑ 1,
contradicting the assumption.
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E

Γ

Fig. 15 Sketch of the proof of Theorem 5 as a consequence of Theorem 3. For a function f with isolated
singularities, we may choose� defined by an arbitrarily large outer contour and arbitrarily small inner loops
around each singularity. The associated convergence rate 1/cap(E, �) can accordingly be made as fast as
we like

7.3 Isolated singularities

If f has singularities in the complex plane, Theorem 1 implies that polynomial approx-
imations will be limited to exponential convergence. Rational functions, however, can
still achieve super-exponential convergence if the singularities of f are isolated. For
a start, suppose f can be continued to all of C except for poles: f is meromorphic in
C. In such a case each pole is necessarily isolated from the others, and their number
is finite or at most countably infinite. Here, it is obvious that rational approximations
can converge super-exponentially, since they can “peel off poles” one after another
and thus effectively approximate over bigger and bigger regions of analyticity.

In fact, a kind of “peeling off singularities” works for essential singularities too,
and the theory of the last section explains why; the idea is sketched in Fig. 15. If f
can be continued to all of C apart from isolated singularities, then it is analytic within
curves and unions of curves � whose reciprocal condenser capacity 1/cap(E, �) can
be made as large as we want by making � hug the singularities more and more closely.
We enclose E in a large circuit of �, and around each essential singularity within
this outer circuit, we put a component of � in the form of a small loop. This gives a
convergence estimate based on the capacity cap(E, �). Taking larger and larger outer
circuits and smaller and smaller loops around the singularities, we canmake cap(E, �)

as small as we like and thus get any exponential rate of convergence.

Theorem 5 For a function f analytic inC except for isolated singularities, there exist
rational approximations {rn} with super-exponential convergence,

lim
n→∞ ‖ f − rn‖1/nE = 0. (44)

7.4 Branch points

There is another kind of structure we need to consider that appears all the time in
applications: branch points. A branch point is a singularity in a neighborhood of
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which f cannot be analytic and single-valued, like the point z = 2 for the function

f (z) = √
2 − z. (45)

As mathematicians, we are used to introducing branch cuts to handle such functions,
or to thinking of f as a multivalued function in the complex plane or a single-valued
function a Riemann surface. But a rational approximation is defined everywhere in C
and single-valued. What will happen when the analytic continuation involves branch
points?

The theory of the last section points the way, and the idea is sketched in Fig. 16. The
theory applies to any condenser domain (E, �) in which f is analytic (in the standard
single-valued sense). This means that we are free to make use of any choice � that
divides up C in such a way as to make the analytic continuation of f single-valued.
For any such choice, Theorem 3 will hold, with its bound (40) involving the modulus
exp(1/cap(E, �)). So we are free to adjust� to optimize this constant. The supremum
of all such moduli is called the extremal modulus for f and E :

mod∗( f , E) = sup
�

mod(E, �), (46)

where the supremum runs over all contours � inside which f is analytic. The extremal
modulus is ∞ for the cases considered in the last two subsections, but it is always
finite if f has branch points.

Theorem 6 For a function f analytic inC except for isolated singularities and branch
points, there exist rational approximations {rn} with exponential convergence at the
rate determined by the extremal modulus

lim
n→∞ ‖ f − rn‖1/nE ≤ 1/mod∗( f , E). (47)

As a converse of Theorem 6, it is known that if rational functions rn exist such that
limn→∞ ‖ f − rn‖1/nE = 0, or even lim infn→∞ ‖ f − rn‖1/nE = 0, then the analytic
extension of f—even though it may live in just a small portion of C—cannot have
any branch points [48].

The extremal modulus corresponds to a boundary � (no longer strictly composed
of Jordan curves) constituting an optimal branch cut or set of branch cuts for rational
approximation of f on E . Thus although the analytic continuation of a function f
intrinsically only has branch points, not branch cuts, its optimal rational approxima-
tions do indeed have a well-defined set of branch cuts. I have heard them called “God’s
branch cuts,” and a more sedate term might be “Stahl’s branch cuts” since they were
powerfully analyzed by Stahl for the case of Padé approximations [92, 94]. Stahl’s
results were later extended by Buslaev [26] to multipoint Padé approximation.

When rational approximations are computed for functions with branch points, the
theory we have just described emerges beautifully. One sees that they feature approx-
imate branch cuts delineated by interlacing zeros and poles. To illustrate this effect,
Fig. 17 shows a AAA approximant r to (45) on [−1, 1]. On the left are plotted the
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Fig. 16 If f has branch points,
then Walsh rational
approximants can only be
constructed in a domain
bounded by curves � that force
f to be single-valued.
Optimizing over all such curves
implicitly defines one or more
optimal branch cuts for rational
approximation of f over E

E

Γ

Fig. 17 On the left, poles (red) and zeros (black) of the AAA approximant r(z) to f (z) = √
2 − z on

[−1, 1], interlacing along the ray [2, ∞) with exponential clustering near the branch point at z = 2 [106].
On the right, the phase portrait of r , highlighting that the poles and zeros generate an approximation to a
branch cut

poles and zeros of r , interlacing along [2,∞) (six of each, five of which lie in the
region plotted), and the right image shows a phase portrait of r . Some approximation
to a branch cut along [2,∞) is clearly in play here. This has nothing to do with what
choice of branch cut the computer might make in evaluating

√
2 − z numerically; it

is a side-effect of the near-optimality of the approximant on [−1, 1].
Figure 18 shows analogous images for f (z) = √

z2 − 2z + 2, which has a pair
of branch points at z = 1 ± i . Now the rational approximation has an approximate
branch cut along a circular arc connecting these two points. For other functions f ,
more complicated curves will appear.

The poles and zeros of approximate branch cuts constructed by rational approx-
imations tend to be exponentially clustered near the branch points. (In Fig. 17, the
distances of the poles from z = 2 are about 123.3, 12.5, 3.72, 1.37, 0.472, 0.103, and
the distances of the zeros are 29.8, 6.50, 2.24, 0.822, 0.245, 0.025.) This clustering
effect goes back at least to Newman in 1964 [72] and is investigated in detail in [106].
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1614 L. N. Trefethen

Fig. 18 Same as Fig. 17 but for the function f (z) =
√
z2 − 2z + 2, which has branch points at z =

1 ± i . Now the approximate branch cut lies on a circle connecting the two branch points, as suggested
schematically in Fig. 16 and explained rigorously for Padé and multipoint Padé approximation by Stahl [92]
and Buslaev [26]

7.5 The factor of 2

All our discussion so far has concerned convergence at the rate determined by mod =
exp(1/cap(E, �)), which we can express loosely as

‖ f − rn‖E ≈ e−n/cap(E,�). (48)

In actuality, however, best and near-best rational functions often converge at twice this
rate:

‖ f − rn‖E ≈ e−2n/cap(E,�). (49)

For example, Fig. 3 shows that this is the case with the amber function. The polynomial
convergence behavior is that of (48),where� is theBernstein 2-ellipse. This is a natural
boundary, so Theorem 4would lead us to expect convergence of rational approximants
at the same rate. In fact, however, the rate is more like (49), as is reflected in the figure
showing comparable accuracies for polynomial degree 46 and rational degree 23.

The factor of 2 can be explained intuitively by rational functions of a given degree
n having twice as many parameters as polynomials of the same degree. At a deeper
level it is related to certain orthogonality properties [82], analogous to the factor of
2 boost that Gauss quadrature obtains from orthogonality in comparison with other
quadrature formulas [102]. Yet (49) does not always hold, and here is an example.
Consider approximation on the disk E = {z : |z| ≤ τ }, 0 < τ < 1, of the function

f (z) = z + z10 + z1000 + z1,000,000 + z10
10 + · · · , (50)
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which has a natural boundary on the unit circle. Polynomial truncations obviously
converge at the rate τ n , and it can be shown that in the lim-sup sense, rational approx-
imations can do no better.4

Examples like (50) are quite extreme: the approximation difficulty only arises for a
certain subset of degrees n. In fact there is a counter-result of Parfenov [74], confirming
a conjecture of Gonchar, that shows that the factor of 2 always applies if we look at
the lim-inf instead of the lim-sup [66, Eq. (21)]:

lim inf
n→∞ ‖ f − r∗

n‖1/nE ≤ e−2/cap(E,S). (51)

More satisfyingly, the doubled rate actually does hold in the lim-sup sense for a class of
problems that includes most applications: functions whose only non-isolated singular-
ities are algebraic branch points. More precisely, we assume that f is a (multivalued)
analytic function that can be analytically continued along arbitrary curves inC so long
as they avoid a fixed set S of capacity zero. We say that f is continuable along all
curves excluding S. The notion of a set of capacity zero (also known as a polar set) is
a standard one [83].

Theorem 7 (Gonchar–Stahl ρ2 theorem) Let f be an analytic function on a compact
set E which is continuable along all curves in C excluding a set S of capacity 0. Then
the best degree n rational approximations r∗

n to f on E satisfy

lim sup
n→∞

‖ f − r∗
n‖1/nE = e−2/cap(E,S). (52)

8 Analytic continuation beyond E

The last section explored the exponential or super-exponential convergence that is pos-
sible for rational approximants to analytic functions on a simply-connected compact
continuum E . We considered Walsh approximants, constructed on the basis of the
asymptotically optimal distribution of poles and interpolation points as determined
by potential theory, and for these rational functions, convergence outside E is also
assured, with exponential rates diminishing as one moves outward from E toward �.

Numerical analytic continuation, however, is not based on prescribed poles, for we
would not know where to put them. On the contrary, an approximation r ≈ f on E is
computed somehow based on just information on E . In this situation, can we expect
its behavior for z ∈ C\E to be comparable to that of Walsh approximants?

The rough answer is yes. In practice, best and near-best approximations, and AAA
approximants in particular, usually behave at most points z ∈ C\E about as the

4 The argument here, which originates with Erokhin in 1959, can be found in Sect. 6 of the appendix by
Levin and Tikhomirov to [35], as is mentioned in a discussion in [118]. If r has degree 8, then r − z has
degree 9 < 10. By Rouché’s theorem, it follows that ‖r− f ‖ can’t be much smaller than τ10. If r has degree
980, then r − (z+ z10) has degree 991 < 1000. By Rouché’s theorem, it follows that ‖r − f ‖ can’t be much
smaller than τ1000. If r has degree 998,000, then r − (z + z10 + z1000) has degree 999,010 < 1,000,000.
By Rouché’s theorem, it follows that ‖r − f ‖ can’t be much smaller than τ1,000,000. And so on, showing
that as n → ∞ there are always degrees n for which ‖ f − r‖ can not be much smaller than τn .
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theory of the last section would lead us to expect. Exponential or super-exponential
convergence is typically observed as expected. Most remarkably, as we have already
demonstrated by examples in Figs. 17 and 18, rational approximants to functions with
branch points typically converge in the region defined by the optimal branch cuts
associated with the extremal modulus. For high accuracy very close to the branch
points, however, or for continuation across branch cuts onto different Riemann sheets,
different methods are called for that are based on approximants which themselves
have branch cuts. A starting point is quadratic Padé approximation [36, 91], which
generalizes to Hermite-Padé approximation at higher orders [8, 21, 96], and AAA
analogues of such methods can also be devised. Another approach is reciprocal-log
approximation [4, 71].

All this encouraging news, however, as we said, is “rough.” Rational approximants
are not guaranteed always to converge cleanly, and anomalies often arise. In the next
two subsections we will describe the difficulty, which goes by the name of Froissart
doublets, followed by the theoretical notion that has been devised to cope with it,
namely convergence in capacity.

As a further observation of surprising effects that may appear with rational approx-
imation, we note that no matter how fast approximants rn converge to an analytic
function f on a set E , this will never guarantee that f is analytic at any particular
point of C\E . To see this, consider again the function (42) with a set of coeffi-
cients decaying very fast as in (43). By truncating the series, we see that on any
disk E = {z : |z| ≤ τ }, 0 < τ < 1, rational approximations of degree n = 1, 2, 3, . . .
can achieve errors bounded by 1.1/(1 − τ) times 10−10, 10−100, 10−1000, . . . . Thus
no rational approximation convergence rate, no matter how fast, implies that f can be
analytically continued to any domain beyond the unit circle. This is in marked contrast
to the situation with polynomials as asserted in Theorem 1. Natural boundaries may
be impassable, yet they can be surprisingly flimsy!

8.1 Froissart doublets

Rational approximations sometimes have poles where one doesn’t expect them, far
from any singularities of f , whichmay destroy the quality of an approximation at least
as measured in the∞-norm. Figure19 illustrates this effect. The left image repeats the
calculation of Fig. 1, showing in a closeup two of the seven poles of this AAA rational
approximation. The image on the right is the same, except that now, the approximation
has been computed from data corrupted by random noise of amplitude on the order of
10−13, which is the default tolerance of the Chebfun AAA code. The striking result is
the appearance of 41 new poles, 27 of them on the real axis and 7 conjugate pairs. To
judge by the figure, it would seem that we now have a useless approximation.

The first thing to say about bad poles is that they are often not as bad as they look.
The new poles in this experiment have extremely small residues, none bigger than
1.18×10−11.5 Thus each of these new poles corresponds to a contribution rk to r that

5 Such seemingly delicate computations are straightforwardwith the Chebfun codeaaa or its variantaaax
from [33], which calculate poles and zeros of a rational function in barycentric form bymeans of generalized
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Fig. 19 On the left, computed poles as in Fig. 1 for the AAA approximation of f (z) = tanh(z) in 100 points
of [−1, 1]. On the right, the same but with the approximation data perturbed by noise on the scale of 10−13.
Forty-one poles with negligible residues have appeared on or near [−1, 1], which contribute nothing useful
to the approximation

behaves locally for z ≈ zk like

rk(z) = dk
z − zk

(53)

with |dk | < 1.2 × 10−11. Such a pole with an extremely small residue, far from
singularities of f , is called a spurious pole. When the residue is so small, this means
that rk is of negligible size, for most purposes, except when z is extremely close to zk .
Thus, although spurious poles make the supremum-norm error of an approximation
over a region of interest infinite, theymayhardly showup at allwhen the approximation
is applied in practice.

If r has a pole with residue ε 
 1, it probably also has a zero nearby, at a distance
O(ε). For example, in the right image of Fig. 19, each of the 41 new poles has a zero
at a distance no greater than 10−10, and in all but two cases the distance is less than
10−14. A pole-zero pair like this is called a Froissart doublet, and this term highlights
another way to interpret the limited effect of spurious poles on approximations. Except
very close to zk , the pole and zero nearly cancel, making r behave for many purposes
almost as if they were not there. In this paper we speak interchangeably of spurious
poles and Froissart doublets; for consistency, the term we usually choose is Froissart
doublets.

In numerical rational approximation, Froissart doublets appear almost invariably
when one tries to approximate to an accuracy close to the level of rounding errors
or other noise. For discussions of this issue, many with fascinating numerical plots,
see [40, 43–45, 50, 51, 76, 96]. Sometimes robust algorithms can be devised to limit
the effect, for example by applying the singular value decomposition [50, 51]. Broadly
speaking, however, it is usually necessary to loosen the tolerance so that one is approx-

eigenvalue problems involving arrowhead matrices [70]. The actual computation of poles, residues, and
zeros is carried out by the Chebfun function prz, which has just 12 executable lines.
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imating to an accuracy well above the noise level. The Froissart doublets of Fig. 19
go away, for example, if aaa is called with a tolerance of 10−12 instead of the default
10−13. With AAA approximation on a discretization of a continuum E like [−1, 1],
Froissart doublets also often appear if the discretization is too coarse, in which case
it may be enough simply to take more sample points. This issue becomes particularly
important in problems with poles exponentially clustered near E , in which case it is
important that the sample points be exponentially clustered too [52, 106].

In a purely mathematical analysis, when rounding errors or other noise are not an
issue, Froissart doublets arise less commonly. Nevertheless, they may still appear. It
is a fact of rational approximation that optimality of approximations on a set E , or at a
point in the case of Padé approximation, may imply the appearance of pole-zero pairs
that seem to contribute nothing useful to an approximation and yet are mathematically
correct. This effect has been known since Perron early in the 20th century, who showed
that functions exist whose Padé approximations have poles appearing infinitely often
on a dense set of points in the complex plane [75, §78]. Later Wallin constructed a
function whose Padé approximations are unbounded for every z �= 0 [109]. A general
analysis of the phenomenon of spurious poles can be found in [93].

8.2 Convergence in capacity

In the face of this mathematical reality, it has of course been impossible to prove that
optimal rational approximations must converge beyond the domain of approximation
E as one would like. However, a slightly modified form of convergence can still be
established. As n → ∞, the residues of unwanted poles of certain degree n Padé
approximants are guaranteed to decrease fast enough that the portion of the complex
plane contaminated by them gets smaller and smaller. The initial idea, pursued by
Nuttall in 1970 [73], is that for any ε, themeasure of points in the complex plane where
| f (z) − r(z)| > ε must shrink to 0 as n → ∞. Shortly afterwards it was shown by
Pommerenke [78] that the same conclusion holds with measure replaced by capacity,
and this stronger and sharper result is now called theNuttall–Pommerenke theorem [8].
Although the theorem applies a priori just to Padé approximation of functions in a
certain class, it provides a model of what we may hope for more generally: that near-
optimal rational approximantswill converge in capacity as n → ∞ on compact subsets
of C disjoint from singularities of f .

We say that rn converges in capacity to f on � if for any ε, η > 0, there are sets
Dn ⊆ C such that cap(Dn) < η and |( f − rn)(z)| < ε for z ∈ �\Dn , for sufficiently
large n.

Theorem 8 (Nuttall–Pommerenke theorem) Let f be a single-valued analytic func-
tion in C\S, where S has capacity 0, which is analytic at z = ∞. Then the Padé
approximants to f at z = ∞ converge super-exponentially to f in capacity.

If f has branch points, then a similar result holds with exponential convergence,
as proved by Stahl [92, 94]. For the following theorem, we assume that f is a (multi-
valued) analytic function that can be analytically continued along arbitrary curves in
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C so long as they avoid a fixed set S of capacity zero. As before, we say that such a
function is continuable along all curves excluding S.

Theorem 9 (Stahl’s theorem for convergence with branch points) Let f be a multi-
valued analytic function in C\S, where S has capacity 0, which is analytic at z = ∞
and continuable along all curves excluding S. Then there is a certain branch-cut set
S ⊆ C such that the Padé approximants to f at z = ∞ converge exponentially to f
in capacity everywhere in C\S.

As commented above, mathematical Froissart doublets, in the absence of rounding
errors or other noise, are not as common as these worst-case results might suggest, and
they are certainly unlikely to be found at much of a distance from the approximation
set E . The reason is that a pole with a very small residue can contribute very little to
the accuracy of an approximation on E . Therefore a pole of this kind can only appear
in a marginal situation where a different pole with a bigger residue could not be useful.
In particular, if a degree n rational approximation exhibits a Froissart doublet, then an
almost equally good approximationmust exist of degree n−1. Thus Froissart doublets
are associated with stagnation of convergence curves.6

8.3 Return to the one-wavelength principle

I do not know a formulation of the one-wavelength principle precise enough to be
called a conjecture, so of course I do not have a proof. However, an indication can be
given of the kind of balance that leads in this direction.

Theorem 2 presented the Hermite integral for the accuracy of rational approxima-
tions,

f (z) − r(z) = 1

2π i

∫

�

φ(z)

φ(t)

f (t)

t − z
dt . (54)

As emphasized in the boxed formula (28) and the subsequent discussion of sections
6–8, good rational approximations are associated with poles lying on contours � far
enough from the approximation set E that |φ(t)| is very big for t ∈ �. If f is entire,
say, then� could be taken as large as desired, but there is a tradeoff because f will then
be very large. For the model problem of degree n rational approximation on [−1, 1]
of the function f (z) = sin(z), taking � as the circle |z| = R gives the rough estimate

size of f on � : eR, size of φ on � : Rn .

Dividing these quantities gives

size of f

size of φ
on � : eR−n log R,

6 This situation is analogous to effects that arise in Krylovmatrix iterations, for example in the investigation
of “look-ahead” variants of the unsymmetric Lanczos iteration [39]. Actually, this is more than just an
analogy, since these iterations are connected with Padé approximation [54].
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and differentiating the exponent with respect to R shows that this ratio takes its min-
imum value with R = n. So we expect R, and hence the number of wavelengths of
f that are approximated, to grow roughly linearly with n. Since the convergence will
also be roughly exponential with n, this suggests a roughly linear relationship between
digits of approximation accuracy and wavelengths of analytic continuation. We hasten
to add that this argument is only a very crude first approximation to a phenomenon
that is certainly more complicated.

The asymptotically linear growth of the scale of poles and zeros of rational
approximations as functions of degree was investigated comprehensively for Padé
approximation of ez by Saff and Varga [87], extending an earlier result for zeros of
Taylor polynomial approximations due to Szegő [99].

9 ODE and PDE applications

Throughout the mathematical sciences one finds problems involving ordinary and
partial differential equations (ODEs and PDEs) posed, for the most part, in terms
of real variables. Typically the solutions are real analytic, and it may be of interest
to know, what happens in the complex plane? For example, many problems feature
rapid transitions, and these tend to be associated with complex singularities close
to the real axis. Some authors have argued, for problems ranging from the Navier–
Stokes equations to the nonlinear Schrödinger equation, that a full understanding of the
dynamics is only possible through an analysis of complex singularities. For example,
see [27, 108].

One-dimensional analytic continuation problems may involve a time variable t
and/or a space variable x . In the present section we will focus on cases where a
solution has been computed numerically, and it is desired to explore how the solution
changes if a variable becomes complex. Sometimes it may be possible to compute
the solution in the complex plane directly by a suitable extension of the numerical
discretization. When this is not feasible, or just for speed or simplicity, an alternative
is to use numerical analytic continuation.

9.1 Lorenz equations

For an example involving just t-dependence, consider the Lorenz equations, a system
of three coupled nonlinear ODEs,

u′ = 10(v − u), v′ = 28u − v − uw, w′ = uv − 8
3w. (55)

The upper plot of Fig. 20 shows the trajectory u(t) for 0 ≤ t ≤ 5, numerically
computed from the initial data u(0) = v(0) = −15, w(0) = 20. One sees a few
cycles of the familiar chaotic oscillation, and gray lines have been drawn to mark local
maxima of |u(t)|.

For the lower half of the figure, aAAAapproximation r(t) to this trajectory has been
computed based on 500 equispaced samples (degree 60, 0.2 s of desktop time), using
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Fig. 20 Above, a short segment
of a chaotic trajectory u(t) of the
Lorentz equations (55). Below,
poles in the complex plane of a
AAA approximation of u(t),
giving an indication of where
singularities of the analytic
continuation lie. Compare [100,
108, 112]

a AAA tolerance of 10−8 to roughly match the accuracy of the numerical trajectory.
The poles of r have then been plotted as red dots in the complex plane.7 We see from
this computation that u(t) appears to be analytic about the real axis in a complex strip
of half-width about 0.2, and within this strip, r(t) will presumably be an accurate
approximation of the true analytic continuation of u(t). Note that the singularities
come close to the real axis at the times where |u(t)| reaches its maxima. This is
typical of all kinds of dynamical processes: rapid transitions for real t reflect nearby
singularities for complex t .

From an image like Fig. 20 alone, one does not get much information about whether
the complex singularities of the problem are poles, branch points, or more compli-
cated. Analysis of the Lorenz equations by Tabor and Weiss and later Viswanath and
Sahatoglu has indicated that in this case, the singularities are branch points formed
from powers of logarithms (“psi series”) [100, 108].

For an earlier experiment involving rational approximation as in Fig. 20, though
based on least-squares fitting in Chebyshev points (Chebfun ratinterp) instead of
AAA, see the paper byWebb [112], who also applies rational extrapolation techniques
to theLotka–Volterra equations and choreography solutions of the three-bodyproblem.

9.2 Blasius equation

The Blasius equation is a 3rd-order nonlinear ODE originating in the analysis of
boundary layers of fluid flows [16]. The standard formulation poses the equation on
[0,∞) with two boundary conditions at x = 0 and an inhomogeneous Neumann
condition at x = ∞:

u′′′ + 1
2uu

′′ = 0, x ∈ [0,∞), u(0) = u′(0) = 0, u′(∞) = 1. (56)

7 If the default AAA tolerance of 10−13 is used, 17 additional spurious poles appear on or near the real
axis, as discussed in Sect. 6.3.
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Fig. 21 AAA extrapolation into
C of the solution to the Blasius
problem (56) computed
numerically on the interval
[0, 8] (marked in blue). The
extrapolant catches the 3-fold
symmetry of the solution, with
the triad of poles closest to zero
having moduli within a few
percent of the true value
5.69003805 . . . [19]. The
absolute value |u(z)| is plotted

To solve this numerically, it is convenient to chop the domain to [0, L] for a modest
value of L . The following Chebfun code does this with L = 8 (requiring around 0.5
s on a laptop) and then takes the computed solution as data for a AAA approximant
(degree 11, 0.01 s).

N = chebop(@(u) diff(u,3) + u*diff(u,2)/2, [0 8]);
N.lbc = [0;0]; N.rbc = @(u) diff(u)-1;
u = N\0;
X = linspace(0,8,100);
[r,pol] = aaa(u(X),X);

(An alternative solution method, about twice as fast in Chebfun, is to fix u′′(0) to an
arbitrary nonzero value and solve an initial-value problem, which can then be rescaled
to satisfy u′(L) = 1.)

Figure 21 presents a contour plot of the absolute value of the rational approximation
r computed by the code segment just listed. In the complex plane, we see approximate
three-fold symmetry; it is known that the true solution has this property exactly. The
pole on the negative real axis is at about −5.505, and the conjugate pair in the right
half-plane have moduli about 5.679; the exact value is about 5.690. These numbers
are not known analytically, but have been computed to high accuracy along with many
other quantities in a paper by Boyd [19], which includes this charming comment:

The smoothness and monotonicity for real x belie a complex-plane structure
which is rather complicated. No nonlinear differential equation relevant to engi-
neering, it seems, is too simple to be uncomplicated off the real axis.
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9.3 Burgers equation

A problem whose behavior in the complex plane has had a good deal of attention is
the viscous Burgers equation,

ut + uux = νuxx , (57)

where the subscripts denote partial derivatives and ν > 0 is a viscosity parameter. For
computational simplicity, periodic boundary conditions are often chosen,

u(−π) = u(π), ux (−π) = ux (π), (58)

though there is no fundamental need for this restriction.
The idea of numerical analytic continuation of numerical solutions of (57) into

the complex x-plane goes back to Sulem, Sulem, and Frisch in 1983 [98] and Kida
shortly thereafter [60]. Their method involved Fourier series, which, as a periodic
analogue of polynomials, aremostly useful for locating the closest complex singularity
to the solution of interest. (A multivariate generalization can be found in [67].) In
other words, Fourier series used in this fashion give an approximation to u(x, t) in
a strip of analyticity around the real x-axis, but not beyond. Later authors including
Caflisch, et al. [27] and Weideman [116] took the step to rational approximations,
using Fourier–Padé approximation to fit the periodic data [8]. (Some authors just
call the technique Padé approximation, since it amounts to Padé approximation with
respect to the variable z = eix .) Most recently, AAA approximation has been used for
this problem by VandenHeuvel et al. [107]; see also [30] for another application. We
do not claim that AAA is superior to Fourier–Padé for this application, merely that it
is a fast and universal tool applicable in almost any context.

Figure 22 shows an example of AAA approximation for (57)–(58) with ν = 0.075
based on the initial condition u(x, 0) = − sin(x). Although exact solutions for this
equation are possible via the Cole–Hopf transformation [107], the PDE was solved by
a 128-point Fourier spectral discretization in space coupled with the MATLAB solver
ode113 with tolerance 10−8 in time. (The computational part of the code is just a
dozen lines long.) At each time t = 0, 0.3, 1.5, 4, and 10, an AAA fit with tolerance
10−6 has been computed to the 128-point data. The poles are plotted together with a
label indicating the total number of poles of theAAAapproximation, about half of them
off-screen. (Note that in this experiment, ordinary non-periodic AAA approximation
is used, even though the problem is periodic and there exists a trigonometric variant
of AAA approximation for periodic approximations, with a corresponding Chebfun
code AAAtrig [3].) The computation is very fast, and works well for a real time
movie with a new AAA computation at each time step.

There is much to be said about the poles of Burgers solutions, and of their AAA
approximations as shown in Fig. 22. Theoretically, for this initial data, it is known
that for each t > 0, the analytic continuation of u(x, t) is a meromorphic function
in the complex x-plane with an infinite sequence of conjugate pole pairs extending
along the imaginary axis to ±i∞. (The Painlevé property that all singularities are
poles holds for the Burgers equation generally for t > 0, for any initial data [107].) As
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Fig. 22 In the upper row, numerically computed solutions u(x, t) of the periodic Burgers equation (57)–(58)
with ν = 0.075 at five times t , starting from initial data u(x, 0) = − sin(x). In the lower row, poles in
the complex x-plane of AAA approximations to these five solutions. As t increases, the shock sharpens up
and the poles move in from ∞ to approach the real axis. As it increases further, the shock weakens and
the poles move slowly back to ∞. The singularities of the exact analytic continuation of solutions of the
Burgers equation are known to consist of an infinite number of poles

the approximate shock steepens, these poles move toward the real axis, and then they
diverge off to ∞ again as t → ∞ and the shock loses amplitude. This is true for any
positive viscosity ν in (57), but as ν decreases, the poles come closer together, and in
the inviscid case ν = 0, we have a pair of branch points, and the analytic continuation
of u(x, t) is no longer single-valued inC [15]. At the critical time Tc = 1, a true shock
forms and the branch points coalesce on the real axis. There has been a great deal of
study of these effects [15, 27, 36, 60, 89, 90, 98, 107, 116]. For example, in the recent
paper [107], a case is considered where the initial function already has singularities
in the complex x-plane, namely u(x, 0) = (1 + x2)−1. It is found that as soon as t
becomes positive, there are an infinity of nearby poles.

Figure 23 shows a phase portrait of the degree 12 AAA rational approximation to
u(x, t) at t = 1.5, now on larger axes −2π ≤ Rex, Imx ≤ 2π , with poles marked
by white dots and zeros by black dots. The figure emphasizes that of course, the ratio-
nal approximation captures only a few of the infinity of poles of the exact solution.
From a theorist’s point of view this may seem unfortunate, but as always in analytic
continuation, the poles far from the real x-axis are of negligible importance to the
approximation, and would change completely if the initial condition were perturbed
even very slightly. We see this sensitivity to perturbations in the fact that the approxi-
mate branch cut of the AAA approximation is curved rather than lying exactly on the
imaginary axis. The curvature has only a small effect on the accuracy of the approx-
imation on the real axis. It would be hard to argue that the exact poles of u(x, t) far
from the real x-axis are of much physical or mathematical significance.
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Fig. 23 Phase portrait in the
complex x-plane of the AAA
rational approximation of the
numerically computed solution
u(x, t) of Fig. 22 at t = 1.5. The
poles near the real axis are good
approximations to those of the
exact analytic continuation

10 Analytic continuation in two variables

In this finalmajor sectionwe consider the numerical continuation of a function f (x, y)
that is real analytic on a domain E in the real x-y plane.Analyticity at a point (x0, y0) ∈
E means that the bivariate Taylor series exists at that point and converges to f for
(x, y) in a real neighborhood of (x0, y0). This will imply that the series also converges
in a complex neighborhood of (x0, y0). We speak of two variables for concreteness,
but everything carries over immediately to higher dimensions.

The theme of this article has been the power of rational approximation, and for
a bivariate function f , one might expect a bivariate rational approximation to be
effective. This may be true in principle [31], and I have been sent some encouraging
experiments by Anthony Austin (private communication) based on the recently devel-
oped methods presented in [2]. However, it appears that no algorithm for multivariate
rational approximation is yet known that approaches the speed of AAA approxima-
tion in the univariate case. For this reason, our discussion will be restricted to taking
advantage of standard, univariate AAA.

The idea is simply to apply AAA along line segments or other analytic arcs. If
S is a line segment in E , we can parametrize S as (x(t), y(t)) with x(t) = at + b
and y(t) = ct + d for t ∈ [0, 1] and some real constants a, b, c, d. This gives us a
univariate function F(t) = f (x(t), y(t)) that is analytic in t and can be analytically
continued by AAA approximation in the usual way. The same applies if S is a segment
of a circle or any other analytic arc. Univariate extensions for bivariate functions have
certainly been applied by authors previously; see e.g. [12, p. 137] and [23].

10.1 Oscillatory function in 2D

For a starting example, consider the function

f (x, y) = sin(2x + y), (59)
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Fig. 24 Bivariate AAA analytic continuation of the smooth oscillatory function f (x, y) = sin(2x + y).
On the left, level curves | f (x, y)| = −0.75,−0.5, . . . , 0.75; the negative levels are marked in red. On the
right, the same plot for the approximation g(x, y) computed by AAA approximation along the horizontal
lines marked by black dots

which is analytic for all (x, y). Figure24 shows numerical analytic continuation from
data with −4 ≤ x ≤ −2 into the region −2 ≤ x ≤ 4. The AAA algorithm is applied
along lines y = const., with the approximation in each case based on data at 21 points
(x, y) with y fixed and x equispaced from −4 to −2. All together, this amounts to
the construction of 81 different AAA approximations (taking about 0.1 s all together).
The resulting plot nicely illustrates the one-wavelength principle.

10.2 Absolute value function

Next we look at an example with a single singularity,

f (x, y) =
√

x2 + y2, (60)

that is, the 2-norm of the vector (x, y)T . This function is analytic throughout the real
(x, y)-plane except at the point (0, 0). (If x and y are viewed as complex variables, f
is analytic everywhere in C

2 except on the planes x = iy and x = −iy.) Following
the same pattern as in Fig. 24, Fig. 25 illustrates the method of AAA approximation
for f . We see that the accuracy is good along lines that are well separated from the
singularity at (0, 0).

This example illustrates a point mentioned in section 2 for polynomials. There
exist bivariate rational functions r(x, y) that approximate f accurately all around the
singularity; it is just that one can not expect to find them by approximation of data at
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Fig. 25 Bivariate AAA analytic continuation of the absolute value function f (x, y) =
√
x2 + y2. On the

left, level curves | f (x, y)| = 0.25, 0.5, . . . , 3.0. On the right, the same levels for the approximation g(x, y)
computed by AAA approximation along the horizontal lines marked by black dots

a distance. For example, the function

r(x, y) = 0.026 + 5.585(x2 + y2) + 5.180(x2 + y2)2

1 + 9.091(x2 + y2) + 0.928(x2 + y2)2
(61)

is radially symmetric and matches f with maximal error about 0.026 over the domain
−3 ≤ x, y ≤ 3, producing a figure almost indistinguishable from that on the left
of Fig. 25 (not shown). This approximation is derived from the type (2, 2) minimax
approximation of

√
s on [0, 9], exploiting the fact that f (x, y) depends only on s =

x2 + y2.

10.3 Singular values and pseudospectra

The absolute value function (60) can be interpreted as the minimal singular value of
a matrix,

f (x, y) = σmin(A − (x + iy)I ), (62)

in the trivial case where A is the zero matrix of dimension 1 × 1 (or indeed of any
dimension). Singular values of parametrized matrices are real analytic functions [18,
24]. In particular, the level curves of σmin(A − z I ) are the boundaries of the pseu-
dospectra of A in the complex z-plane [105]. Thus the pseudospectra of a matrix A
may be mathematically determined throughout the complex plane by the behavior
in a small neighborhood, though as always, computing the analytic continuation in
practice will be challenging.

Figure 26 applies numerical analytic continuation in the case where A is the random
4×4matrix generatedby theMATLABcommandsrng(1),A = (randn(n)+1i*
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Fig. 26 Bivariate AAA analytic continuation of the function σmin(A−(x+ iy)I ) for a 4×4 randommatrix
A, showing in each case levels 0.1, 0.3, 0.5, . . . , 1.9 (from inside out) on the domain −3 ≤ x, y ≤ 3. The
first image corresponds to A and the second to analytic continuation along vertical lines from data points
with −3 ≤ y ≤ −2. The blue dots are the eigenvalues of A

Fig. 27 On the left, an image as
in the right side of Fig. 26 but
now with AAA approximations
based on two-sided data at
2 ≤ y ≤ 3 as well as
−3 ≤ y ≤ 2. On the right, the
procedure of Section 5 is applied
to produce a global smooth
blend between the same two
stripes of data values

randn(n))/sqrt(n). As in Fig. 25, we see that the approximation is quite good
away from singularities.

Singular value surfaces offer thought-provoking examples of real analyticity.Wher-
ever the singular value of σk(A − (x + iy)I ) is simple, the dependence on x and y is
analytic, but where singular values coalesce, one must be more careful. Any normal
matrix, starting with a 2 × 2 case like A = [0 0; 0 1], will have singular values that
change their order at points equidistant between eigenvalues. Analytic continuation
still makes sense, but ceases to give the information one might hope for. In particular,
σ1 now typically becomes σ2; see [18] and [24]. If A is a normal matrix, one cannot
learn anything from analytic continuation of pseudospectra near one eigenvalue about
any of the other eigenvalues.

Figure 27 considers the same function as in Fig. 26 from twomore angles. In the first
image, AAA approximants are computed based on data from both sides, both −3 ≤
y ≤ −2 and 2 ≤ y ≤ 3. It is not surprising that one now gets a good approximation to
much of the surface, apart from near the eigenvalues of A. As mentioned in the final
paragraph of section 5, if this function were globally analytic, this would be a problem
of missing data, and we would expect the two-sided approximation to be accurate
everywhere. In the second image, based on the same data values with −3 ≤ y ≤ −2
and 2 ≤ y ≤ 3, the procedure illustrated in Fig. 11 has been applied. First, AAA
approximation is used to extrapolate values from −3 ≤ y ≤ −2 to −2 < y ≤ −1
and from 2 ≤ y ≤ 3 to 1 ≤ y < 2. These values are then analytically stretched to
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Fig. 28 Analytic continuation of
the solution (64) of (63) along
the x-axis of the x-y-plane. The
AAA approximation, based on
150 equispaced data points with
−1 ≤ x ≤ 1, gives good
accuracy for a little more than
one wavelength at both ends of
the interval

−2 ≤ y ≤ 2 as described in Sect. 5 and patched together by the formulas (14)–(16)
(with 3.2x adjusted to 1.6y). This gives us a function of (x, y) that can be expected
to be smooth with respect to both x and y, though analyticity with respect to the x
variable is not actually guaranteed since AAA approximations are involved that are
not guaranteed to vary analytically with x .

10.4 Helmholtz wave field

Our remaining three examples illustrate different aspects of analytic continuation of
solutions to the Helmholtz equation

�u + k2u = 0, (63)

where k is a constant. (The function of Fig. 24 was also a Helmholtz solution.) This
generalization of the Laplace equation governs wave propagation in acoustics, elas-
ticity, and electromagnetics.

Figure 28 shows a plot of a solution to (63) with k = 40,

u(x, y) = J1(40|z − (2 + i)|), z = x + iy, (64)

where J1 is the Bessel function of the first kind of order 1. This corresponds to a
field of concentric waves around a point source at x = 2, y = 1. In the figure, AAA
approximation has been applied on 150 equispaced points with y = 0 and x ∈ [−1, 1]
to extrapolate the solution to other values of x with y = 0. Good accuracy appears to
be maintained for a little more than one wavelength at both ends, near x = −1 and
x = 1.
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Fig. 29 Eigenmodes of an L-shaped drum. In each case the lower-right portion of the eigenmode has been
analytically continued by AAA approximation upward into the upper-right quadrant, as suggested by the
white arrows. The third image is special in that the center point is nonsingular

10.5 Eigenmodes of a drum

The next example concerns eigenmodes of the Laplace operator on a planar drum, the
L-shaped region consisting of a 2 × 2 square with one quarter removed. The first six
eigenvalues λ (another name for k2 in (63)) are approximately

λ = 9.63972, 15.19725, 19.73921, 29.52148, 31.91264, 41.47451. (65)

Figure29 shows the corresponding eigenmodes, and in addition, each contour plot has
been analytically continued into the upper-right quadrant, which is not part of the L
shape. This continuation has been computed by AAA approximation along vertical
lines from the lower-right leg of the L, as suggested by the white arrows in the first
image. For this problem, the exact analytic continuation is just a reflection because
of the Schwarz reflection principle. Near the right edge of each image, the numerical
continuation is evidently accurate, as we would expect in view of the one-wavelength
principle. Toward the center, however, the continuation loses accuracy because of
the singularity at the center point, much as in Figs. 25, 26, and 27. Only the third
eigenmode shows no inaccuracy, because in this case the domain decouples into three
squares and there is no singularity.
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Fig. 30 Numerical extension of a 2D function across a boundary, after [41]. The function is given inside
the starfish curve, where it is sampled on a polar grid. These samples are then used as data for AAA
approximations, one for each angle of the grid. About one wavelength of successful extension is achieved.
This computation of 80 AAA approximants takes about 0.1 s on a laptop

10.6 2D function extension

Our final example comes from a paper of Fryklund, Lehto, and Tornberg [41], rep-
resentative of a wider literature. For a variety of reasons, especially related to the
numerical solution of PDEs by integral equations and other methods, it is often desir-
able to extend a smooth function in the interior of a domain locally into the exterior [23,
41, 61]. Various methods have been proposed, and [41] presents a local 2D radial basis
function (RBF) approximation, which can then be evaluated on the other side of the
boundary and also made global via a partition of unity decomposition.

The computation of Fig. 30, modeled on the example shown in Figure 5 of [41], is
based on a polar grid with 80 radial lines each sampled at 90 equispaced points.

11 Discussion

Analytic continuation is a large and old subject, and there are many other aspects of
it that might have been discussed here. A particularly interesting one is the Schwarz
function, which is the analytic function S defined in a neighborhood of an analytic
arc � that satisfies S(z) = z for z ∈ � [29]. As discussed in [11], S is a natural
starting point for understanding the analytic continuation of analytic and real-analytic
functions across curved boundaries, and it can be computed numerically by AAA
approximation. I hope to consider the Schwarz function in a future paper.

The speed and power of AAA approximation for analytic continuation were illus-
trated by an example that came up in mywork recently. InMatlab, I needed to evaluate
the reciprocal gamma function f (z) = 1/�(z) for complex values of z in the range
0 ≤ Rez ≤ 3, −1.5 ≤ Imz ≤ 1.5. The Matlab gamma command, however, only
works for real arguments. At first, I assumed I would have to track down some gamma
function software for complex arguments. Then I realized that, for mid-range accu-
racy at any rate, this was a routine problem of analytic continuation. (Indeed, rational
approximations are an established method for computing the gamma function [88].)
The code segment
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X = linspace(-3,6,50);
r = aaa(1./gamma(X),X);

runs on my laptop in a couple of milliseconds and produces a function handle r for a
rational function of degree 14 whose maximum error |r(z) − f (z)| over the region of
interest is less than 10−8. Evaluations of r take a fraction of a microsecond per point
z, so I was able to evaluate f (z) to 8-digit accuracy by this method at a million points
in one second.
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