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Abstract

At the ANZIAM conference in Hobart in February 2018, there were several talks on the
solution of Laplace problems in multiply connected domains by means of conformal
mapping. It appears to be not widely known that such problems can also be solved by the
elementary method of series expansions with coefficients determined by least-squares
fitting on the boundary. (These are not convergent series; the coefficients depend on the
degree of the approximation.) Here we give a tutorial introduction to this method, which
converges at an exponential rate if the boundary data are sufficiently well-behaved. The
mathematical foundations go back to Runge in 1885 and Walsh in 1929. One of our
examples involves an approximate Cantor set with up to 2048 components.
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1 Introduction

I am a card-carrying conformal mapper [22], but it is my view that conformal mapping
is usually not the best strategy for solving Laplace problems in multiply connected
regions. The trouble is that the conformal mapping problem is typically as difficult
as the original Laplace problem, or more so, because it may require resolution of
geometric issues that are absent from the original problem. The aim of this paper is
to give a tutorial introduction to the simple alternative of solving Laplace problems
by series expansion with least-squares matching of boundary data. Nothing here is
mathematically new, though these methods are not as well-known as they might be.

An important tool in connection with multiply connected conformal mapping is
the Schottky–Klein prime function [15, 16, 29, 43], which gives considerable insight
into the structure of such a map. If the prime function is known for a particular
domain, then it can be used to solve certain Laplace problems [13, 14]. However,
the prime function itself can only be computed numerically, and in fact, one of the best

1Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK;
e-mail: trefethen@maths.ox.ac.uk.
c© Australian Mathematical Society 2018

1

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1446181118000093
Downloaded from https://www.cambridge.org/core. Bodleian Libraries of the University of Oxford, on 27 Oct 2019 at 10:04:41, subject to the Cambridge Core terms

mailto:trefethen@maths.ox.ac.uk
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1446181118000093
https://www.cambridge.org/core


2 L. N. Trefethen [2]

methods for computing it makes use of the same kind of series expansions reviewed
here [15, 17]. All in all, though the idea of solving multiply connected Laplace
problems by conformal mapping is an old one—a book on such matters was published
30 years ago by Prosnak [47]—this approach is computationally unnecessary.

The aim of this paper is to show how series expansion methods can be used. It
is structured in a tutorial fashion, treating a succession of problems, with MATLAB
code listings given in the Appendix. These codes, which are descendants of codes in
the unpublished essay [55], are an essential part of the presentation, and they include
details that are not spelled out in the text.

For concreteness, most of the problems take the form of the computation of a
Green function with its logarithmic singularity at the origin. This amounts to the
computation of the harmonic measure [28, 48], that is, the function that determines the
probability density that a particle undergoing Brownian motion from the origin will
first encounter the boundary at each particular point. We also give a few examples
illustrating how other kinds of Laplace problems, involving nonconstant boundary
conditions for example, can be treated by the same approach. Although we do not
show an example, the same methods can be applied for Neumann or Robin as for
Dirichlet boundary conditions.

Many people have discovered versions of these ideas over the years, and I doubt
anyone has a comprehensive understanding of the literature. Some references are given
in Section 7, starting with Runge’s theorem of 1885.

2 Green function for a disk

We begin with a problem that could be solved analytically. What is the Green
function u(z) in the exterior of a disk of radius r centred at position z = c in the complex
plane? Specifically, we seek a function u satisfying

∆u = 0, u(z) = 0 for |z − c| = r, u(z) ∼ log |z| as z→ 0 (2.1)

in the region of the complex plane exterior to z = 0 and the circle |z − c| = r < |c|, with
regular behaviour at z = ∞, that is, u(z)→ u∞ as z→∞ for some constant u∞. (For
simplicity, we have omitted the factor 1/2π that would often appear in the definition
of the Green function.) Throughout this paper, we regard the plane as either real or
complex according to convenience. Thus the function log |z| in (2.1), for example, is
a real function in the x–y plane that has been expressed for simplicity in terms of the
complex variable z = x + iy.

To solve (2.1), we approximate u by a series expansion

u(z) = log |z| − log |z − c| + C +

N∑
k=1

[ak Re((z − c)−k) + bk Im ((z − c)−k)], (2.2)

which could be written in real form as

u(z) = log |z| − log r + C +

N∑
k=1

r−k[ak cos(kθ) − bk sin(kθ)]
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[3] Series solution of Laplace problems 3

with z − c = reiθ. The coefficients ak and bk are chosen to satisfy u(z) = 0 as nearly
as possible in a least-squares sense at npts� N sample points along the boundary.
The term log |z − c| is needed to make u regular as z→∞. (One could alternatively
use log |z − c̃| with c̃ equal to a different point in the interior of the disk.) Note that
only negative powers of z − c appear in the series, because the domain is unbounded.
Since the functions in play are analytic and the boundaries are smooth, geometric
convergence occurs as a function of N, and a modest value like N = 10 is more than
enough for plotting accuracy.

The MATLAB code disk1 computes the solution of (2.1) and plots contour lines
for the particular choices c = 3 + i and r = 1. Here as in all our codes, we strive to make
the computational first half compact but legible, following the philosophy of “ten digit
algorithms” [55]. Here is that first half of disk1:

% disk1.m Green function exterior to a disk

%

% We seek the function u(z) that is zero for |z-c| = r and harmonic outside this

% circle, including at z=infty, except with u(z)˜log|z| as z->0. u is expanded as

%

% u(z) = log|z| - log|z-c| + a(1)

% + SUM_{k=1}ˆN a(2k)*real((z-c)ˆ(-k)) + a(2k+1)*imag((z-c)ˆ(-k)) .

c = 3+1i; r = 1; % center and radius of disk

N = 10; npts = 3*N; % no. expansion terms and sample pts

z = c + r*exp(2i*pi*(1:npts)’/npts); % sample points

rhs = -log(abs(z)) + log(abs(z-c)); % right-hand side

A = ones(npts,2*N+1);

for k = 1:N % set up least-squares matrix

A(:,2*k ) = real((z-c).ˆ-k);

A(:,2*k+1) = imag((z-c).ˆ-k);

end

a = A\rhs; % solve least-squares problem

The second half of each code, devoted to plotting, has been made extremely compact
and is not very legible; see the Appendix.

The level curves computed by disk1 are shown in Figure 1. As a check of
accuracy, we find by computing with larger values of N that the arbitrary value
u(2) ≈ −0.5893274981708 is accurate to four digits with N = 4, to seven digits with
N = 8, and to 10 digits with N = 12. (Rigorous estimates can be based on the maximum
principle; see Section 8.) All three computations, including plotting, take much less
than a second on a laptop.

It is worth emphasizing that the series in (2.2), like all our series, is not made from
Taylor or Laurent coefficients, which would be independent of N and could achieve
convergence as N →∞ only in restricted regions of the plane. The coefficients in (2.2)
depend on N, and they allow convergence irrespective of the shape of any region of
analyticity or harmonicity. This situation is analogous to the well-known effect that
on the real interval [−1, 1], an analytic function f can be approximated by degree
N polynomials with geometric convergence as N → ∞, but these cannot be Taylor
polynomials unless f is analytic in a disk of radius >1 [56].

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1446181118000093
Downloaded from https://www.cambridge.org/core. Bodleian Libraries of the University of Oxford, on 27 Oct 2019 at 10:04:41, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1446181118000093
https://www.cambridge.org/core


4 L. N. Trefethen [4]

Figure 1. Green function u(z) outside a disk computed with disk1. The level curves are regularly spaced
between 0 on the boundary of the disk and −∞ at the singularity at z = 0.

The curves in Figure 1 are equipotentials u(z) = const, and as always with
harmonic functions, it is also interesting to examine an orthogonal system of curves
corresponding to streamlines. Among other benefits, these give a visual indication
of harmonic measure along the boundary of the circle.1 For this simple example, we
could compute the orthogonal system just as level curves of the imaginary part of the
same expansion. For multiply connected domains, however, that approach leads to
headaches of tracking branches of the complex logarithm. A simpler alternative is to
compute the orthogonal curves by solving an ordinary differential equation (ODE) to
climb the gradient,

dz
dt

=
∇u
‖∇u‖

, (2.3)

starting from points close to the singularity at z = 0 and equally spaced around it. The
gradient can be computed by taking advantage of the complex variables interpretation
to note that if f is a complex analytic function, then the gradient of its real part is given
(in the form of a vector represented as a complex number) by

∇[Re f (z)] = f ′(z).

In particular, if a, b and d are any real numbers,

u(z) = d log |z| =⇒ ∇u(z) = d/z

1The probabilistic interpretation of a streamline is as follows. Diffusion is governed by the heat
equation ut = ∆u, and a harmonic function u corresponds to a steady state satisfying the Laplace equation
∆u = 0. A streamline is a curve across which there is no net diffusion in this steady state. If we think of
the diffusion process as resulting from particles moving along Brownian paths, this means that the rate of
particles crossing from left to right at each point along the streamline equals the rate crossing from right
to left.
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[5] Series solution of Laplace problems 5

Figure 2. Repetition of Figure 1 but now with an orthogonal system of curves also included (streamlines),
computed with disk1ode by solving the ODE (2.3).

and
u(z) = a Re (z−k) + b Im (z−k) =⇒ ∇u(z) = −k(a + bi)/zk+1.

Our code for climbing the gradients of Figure 1 is called disk1ode, and the results are
shown in Figure 2. ODE methods for tracking contours have been used by Gautschi
and Waldvogel, as presented in [27, Ch. 25], by Weideman (for climbing poles of
solutions of Painlevé equations, unpublished), and no doubt by others.

Careful readers may note that to solve the ODE (2.3) numerically, the codes in the
Appendix call Matlab ode23 rather than, as one might expect, ode45. Both choices
work well for regions bounded by disks, but in the case of slits, we find that ode45,
with its larger time steps, more often introduces anomalies as a contour approaches a
slit because of hopping over the slit and making erroneous choices of branch.

3 Green function for several disks

Our next example is the same as before, except that instead of one disk defined by
|z − c| = r, we have J disks defined by |z − cj| = r j, 1 ≤ j ≤ J. The series approximation
is a generalization of (2.2),

u(z) = log |z| + C +

J∑
j=1

{
d j log |z − cj| +

N∑
k=1

[ajk Re((z − cj)
−k) + bjk Im ((z − cj)

−k)]
}
,

(3.1)
together with the condition

J∑
j=1

d j = −1. (3.2)
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6 L. N. Trefethen [6]

Figure 3. An analogous computation with several disks (code disks). Note that even very small disks
may have a large influence on the solution.

The only new issue that arises in moving from (2.2) to (3.1) is that the coefficients d j
are now unknowns, which are determined by imposing the condition (3.2) to ensure
nonsingular behaviour at z =∞. We do this by appending one more row to the matrix
A and one more entry to the right-hand side vector, though one could equally well
remove one of the variables such as d1. The code is called disks.

Figure 3 shows the equipotentials and streamlines for a configuration with four
disks, two large and two small. It is interesting to record the coefficients d1, . . . , d4,
which are the negatives of the harmonic measures of each disk:

d1 = −0.342977, d2 = −0.315902, d3 = −0.182248, d4 = −0.158873.

The disks are numbered in clockwise order beginning with the big one on the left, and
the diminishing sizes of these coefficients correspond to the diminishing proportions of
streamlines hitting each disk. (We list the numbers to six digits, although with N = 10
they have already converged to 13 digits of accuracy.) Note that although the small
disks are much smaller than the big ones, their harmonic measures are only somewhat
smaller. This is a familiar effect in potential theory, or equivalently in probability
theory: the influence of a structure of radius r diminishes only at a rate O(1/logr) as
r→ 0. See [9, 48], and the Cantor set example of Section 5.

Figure 4 shows the result of a variant computation. Here, instead of u(z) = 0 as
the boundary condition on all four disks, we require u(z) = 0 on the two larger disks
and u(z) = −1 on the two smaller ones (a straightforward change in the least-squares
problem, not listed in the Appendix). The equipotentials and streamlines change
considerably, and the numbers d j take quite different values:

d1 = −0.493167, d2 = −0.492543, d3 = −0.006514, d4 = −0.007775.
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[7] Series solution of Laplace problems 7

Figure 4. Modification in which the two small disks take boundary values u = −1 rather than u = 0. This
diminishes their influence greatly.

The tiny values of d3 and d4 show that the small disks now have little influence on the
solution. This is because the values of u specified on their boundaries are not much
different from the values u would have taken in their absence.1

4 Green function for one or several slits
If c and r , 0 are complex numbers, then c + r[−1, 1] is a complex interval that we

call a slit, and the exterior of the unit disk in the w-plane is conformally mapped to the
exterior of the slit by the function

z = c + r(w + w−1)/2.

The inverse map can be written for z < c + r[−1, 1] by

w = zc + s(zc)
√

z2
c − 1, zc = (z − c)/r, (4.1)

where s(zc) takes the value +1 for zc in the open right half-plane or the positive
imaginary axis and −1 for zc in the open left half-plane or the negative imaginary axis.
(These choices are designed to work with the standard branch of the square root.) For
z ∈ c + r[−1, 1], that is, zc ∈ [−1, 1], there are two values of w, and we avoid evaluating
w(z) for such values.

By transplanting the powers w−k, these maps give us good bases for series
expansions in regions with slits. Equation (2.2) becomes

u(z) = log |z| − log |w| + C +

N∑
k=1

[ak Re(w−k) + bk Im (w−k)],

1Bengt Fornberg points out in an email: “If you put u(z) = +1 rather than −1 on them, in spite of being
small, they would put up a massive field barrier. I guess this is the idea behind the old vacuum tube”.
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8 L. N. Trefethen [8]

Figure 5. Green function u(z) outside a slit computed with slit1. The same method is used as in Figure 1,
except with basis functions transplanted from the exterior of a disk to the exterior of the slit. Computing
the difference in imaginary part from one end of the slit to the other along each side (or equivalently,
integrating the gradient) shows that 58.2625% of the harmonic measure falls on the side facing the origin.

and the code slit1 is an analogue of disk1. Figure 5 shows the plot produced by this
code, which uses the choices c = 3 + i, r = 1 − 0.5i.

To treat a region with several slits, we can use this analogue of (3.1),

u(z) = log |z| + C +

J∑
j=1

{
d j log |w j(z)| +

N∑
k=1

[ajk Re(w j(z)−k) + bjk Im(w j(z)−k)]
}
,

where w j(z) denotes the map (4.1) with parameters cj and r j. Without further
discussion, we present in Figure 6 the result of executing slits.

5 Approximations to the Cantor set

The Cantor set is a canonical example of a fractal, a subset of the real axis with
infinitely many pieces, zero length and nonzero capacity. Figure 7 illustrates that
Green functions for finite approximations to a Cantor set are readily computed by
series expansions. The plots show that the potential fields associated with coarse
approximations to the Cantor set quickly settle down to close to the limiting form,
a consequence of the “familiar effect” mentioned in the penultimate paragraph of
Section 3. Figure 8 further illustrates this with closeups for m = 5 and m = 6.

Starting with the interval [−1.5, 1.5] of length 3, these domains are constructed by
removing the middle third of each remaining piece m times, where m is a positive
integer. To compute the fields of Figure 7, we could have used the code slits as
written, but there are many symmetries to be taken advantage of. Because of the real

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1446181118000093
Downloaded from https://www.cambridge.org/core. Bodleian Libraries of the University of Oxford, on 27 Oct 2019 at 10:04:41, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1446181118000093
https://www.cambridge.org/core


[9] Series solution of Laplace problems 9

Figure 6. Green function u(z) outside several slits, computed with slits.

symmetry, the imaginary terms can be removed from the expansions; also it is only
necessary to sample on one side of each slit. Because of the even symmetry, one can
combine terms in pairs from the left and right half-planes, and use sample points only
in one of the half-planes. And, of course, since the solution computed is left-right
and top-down symmetric, one need only compute field lines in a quadrant. A further
benefit is that for m ≥ 3, the slits are so short and well separated that a small value of N
suffices for six-digit accuracy or more; we take N = max{2, 6 − m}. The code cantor
used for Figure 7 exploits these effects, and for plots with m = 4, 5, . . . , 10, the times
required on a 2016 laptop are about 0.2, 0.3, 0.4, 0.8, 2.4, 12 and 80 s, respectively.
These geometries have 32, 64, . . . , 2048 slits.

The negatives of the coefficients d j of the calculation give us the harmonic measures
of each slit. From inside out, here are the harmonic measures of the 2m−1 slits in the
right half-plane for the level m finite Cantor sets with m = 1, 2, 3, 4. All these figures
are believed to be accurate to the six digits listed:

m = 1: 1/2
m = 2: 0.367776, 0.132224
m = 3: 0.253289, 0.111676, 0.066706, 0.068329
m = 4: 0.162063, 0.088794, 0.058116, 0.054538, 0.038156, 0.029363, 0.029460,

0.039509.

Analysis of such numbers confirms that once the slits in a finite Cantor set are small,
not much changes except very close to the slits. For example, suppose one adds up the
first halves of the harmonic measures as listed above to determine the total harmonic
measure of the half of the slits closer to the origin. For m = 4, 5, . . . , 10 one finds that
the measures add up to about 0.367776, 0.364965, 0.363512, 0.362773, 0.362397,
0.362205, 0.362107. These sums converge to a limit of about 0.362007. Doubling
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10 L. N. Trefethen [10]

Figure 7. Green function u(z) for finite approximations to the Cantor set with 2m slits, m = 1, . . . , 6,
computed with cantor. The solution is left-right and up-down symmetric, so only a portion of the right
half-plane is shown. Because of the O(1/ log r) effect associated with structures of size r � 1, the field
lines quickly settle down to nearly their final form. The computation of these six images takes a total of
about 2 s on a 2016 laptop.

Figure 8. Closeups of the last two images of Figure 7.

this figure to account for the left half-plane, we see that the inner slits of a Cantor set
correspond to about 72.4% of the harmonic measure.

Other numerical computations related to the Cantor set can be found in [30, 39, 49].
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[11] Series solution of Laplace problems 11

6 Other Laplace problems

The examples we have shown all involve an unbounded domain, a logarithmic
singularity, boundaries consisting of circles or slits, and constant Dirichlet boundary
conditions on each boundary component. We now indicate how series methods can be
applied for problems without these features.

Nonconstant boundary conditions. Here it is simply a matter of sampling the
boundary condition in an obvious fashion. If the boundary condition and the boundary
itself are smooth, one can expect rapid convergence.

Neumann or Robin boundary conditions. Boundary conditions involving
derivatives of the function u can be handled in the same manner as Dirichlet conditions:
differentiate the series representation and include the conditions in the least-squares
problem. An example called rayleigh_disks is given in [55].

Bounded domains. The presence of an outer boundary makes it necessary to include
positive-degree terms in a series expansion. For example, suppose we have a Laplace
problem in an annulus r1 < |z| < r2 with boundary data prescribed on the inner and
outer circles. Here we would need a series involving the real parts of both positive
and negative (and zero) powers of z, as well as log(z). Note that this is analogous
to the Laurent series appropriate for an analytic function in an annulus, except for
the inclusion of the log(z) term, which is not relevant to analytic functions since its
imaginary part is not single-valued.

More general boundary shapes. Smooth boundary components can be treated by
the same methods we have demonstrated. For a nonsmooth boundary component
that is not simply a slit, one must expect slow convergence unless special steps are
taken. One approach is to include additional terms capturing the local behaviour of
singularities at corners, as is explored for the Helmholtz rather than Laplace equation
in [6, 7, 25]. The important point to note in series methods is that singularities need
only be approximated locally; the boundary matching will take care of the global
connections. This is in contrast to methods based on conformal mapping, which
require one to resolve global relationships of singularities before progress is made
on the Laplace problem.

Figure 9, produced by the code bounded, illustrates the solution of a Laplace
problem in a bounded domain with no log singularities. The weights d2 and d3 on
the terms log |z − z2| and log |z − z3| come out as −0.840513 and −0.450685.

7 Mathematical foundations and history

The ideas underlying series expansion methods date to Runge’s theorem of
1885 [52].1 Runge showed that if f is an analytic function on a simply connected
compact set K in the complex plane, it can be approximated arbitrarily closely on K

1Runge is a hero of mine, who moved from pure to applied mathematics during his career and late
in life was appointed at Göttingen effectively as one of the first professors of numerical analysis in the
world. He was born 99 years before me to the day.
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12 L. N. Trefethen [12]

Figure 9. Solution of a Laplace problem in a bounded region. The boundary conditions are u = 0 on the
outer circle and u = 1 on the inner ones.

by polynomials. More generally, if K is multiply connected, say with J holes, then
f can be approximated on K by rational functions with poles at arbitrarily prescribed
points in each of the holes. Here is how the theorem is stated by Gaier [26], with KC

denoting the complement of K in the complex plane C.

Theorem 2 (Runge 1885). Suppose K is compact in C and f is analytic on K; further,
let ε > 0. Then there exists a rational function R with poles in KC such that

| f (z) − R(z)| < ε (z ∈ K).

In general these polynomial and rational approximations cannot come from
convergent series, such as Taylor polynomials, but must have coefficients that vary
with the degree N. It is enough for the poles of R to be restricted to lie in a fixed set of
arbitrarily chosen points c1, . . . , cJ , one in each hole.

Our concern here has been harmonic functions rather than analytic ones. The two
settings are almost the same, since the real part of an analytic function is harmonic,
and conversely, a harmonic function u has a harmonic conjugate v such that u + iv
is analytic. The complication is that in a multiply connected domain, the function v
will in general be multiple-valued, taking different values along different paths around
the holes (or equivalently, single-valued on a Riemann surface). This situation is
pinned down in the following statement from a beautiful paper by Sheldon Axler called
“Harmonic functions from a complex analysis viewpoint” [2]:

Logarithmic Conjugation Theorem. Suppose Ω is a finitely connected region, with
K1, . . . ,KN denoting the bounded components of the complement of Ω. For each j, let
a j be a point in K j. If u is a real valued harmonic function on Ω, then there exist an
analytic function f on Ω and real numbers c1, . . . , cN such that

u(z) = Re f (z) + c1 log |z − a1| + · · · + cN log |z − aN |

for every z in Ω.
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[13] Series solution of Laplace problems 13

This theorem leads to the generalization of Runge’s theorem from analytic to
harmonic functions, which consists essentially of adding a logarithmic term d j log |z −
cj| corresponding to each hole, exactly as in our codes. This was first spelled out in
a paper by Walsh in 1929 [57] (which Axler describes as “the only place I have been
able to find the logarithmic conjugation theorem written down with a proof”). For a
more modern (and purer) treatment see the book by Fisher [24, Theorem 2.1 of Ch. 4].

Thus the foundations of series methods for Laplace problems are a century old. It
is curious that it is so difficult to find mention of these foundations in the literature
of these methods. What happened over the years is that the mathematicians moved
on to ever more refined theorems, always seeking the weakest possible regularity
assumptions (and rarely mentioning harmonic functions). Building on work by
Keldysh in the late 1930s, a landmark of such developments was Mergelyan’s theorem
of 1951, which allows f to be just continuous on K and analytic in its complex interior,
if any, rather than analytic on all of K [26]. Such results are important, but they are
quite technical, and remote from most applications.

Walsh and his student Curtiss had an interest in the idea of constructing harmonic
approximations based on boundary fitting, though they did not do computations [19].
Unfortunately, like many authors, they focussed on interpolation rather than least-
squares. Interpolation formulations, with their square matrices, bring serious
challenges of distribution of points and convergence. (Curtiss writes: “The all-
important issue in the practical applications will certainly be the correct choice of the
interpolation points on the boundary of the region”.) When we switch to least-squares,
the matrices become rectangular and such difficulties go away so long as one samples
in sufficiently many points. Possibly the first advocate of using least-squares for
boundary-matching with Laplace problems was Moler in a Stanford technical report
of 1969 [41] (see also [21]).

Meanwhile, with little influence from the literature of theoretical mathematics,
series expansions were being used in innumerable applications. An early example
was Lord Rayleigh, in 1892, who used series to solve Laplace problems in a plane
with a periodic array of circular holes removed [50]; a related method for an
electromagnetic problem was applied by Záviška in 1913 [58]. The Soviet Union in
the mid-20th century was a centre of great expertise in the solution of boundary value
problems for linear partial differential equations (PDEs), with leading names including
Gakhov, Kantorovich, Krylov, Mikhlin and Mushkelishvili. In 1936 Kantorovich and
Krylov published their monograph Methods for the Approximate Solution of Partial
Differential Equations, which evolved into Approximate Methods of Higher Analysis,
the latest edition in 1960 [36]. Though the style is not very computational by modern
standards, the book has a great deal of material about series expansions for PDEs.

In the computer era, series methods have been applied not only for the Laplace
equation but also for the Helmholtz [4, 6, 7], biharmonic [8, 46] and Maxwell
equations, among others, and this is the basis for methods with names including
Trefftz’s method, the method of particular solutions [5–7, 25, 34], point-matching,
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14 L. N. Trefethen [14]

the method of plane waves and the method of fundamental solutions [4, 37, 38, 45],
also known as the charge simulation method [1, 40, 54]. Concerning the Laplace
equation, papers making use of series methods include [9], [17], [20, Section 4] and
[23]. These stem from my own methods reported in [55], but there are undoubtedly
other unrelated publications. One such that I am aware of is the very nice paper by
Rostand [51], which also applies least-squares fitting on the boundary.

Series methods have much the same flavour as the numerical solution of integral
equations [44], a very large subject—though they are not the same, as explained in [3].
Integral equations methods tend to take over when the problems feature complicated
geometries or nonsmooth data. For sufficiently complex problems, one finds oneself
in the worlds of H-matrices and the fast multipole method, which enable extremely
complicated geometries to be treated with nearly linear complexity [31–33, 42]. The
starting point of the fast multipole method is a recursive use of just the kinds of series
we have described. Although the present paper deals with two-dimensional problems,
all these methods apply in three dimensions too [10].

8 Numerical considerations

The aim of this paper has been to present series methods, not analyze them. The
starting point for analysis will be complex or harmonic approximation theory of the
kind mentioned in the last section. Without going into any details, we mention some
issues that must arise in a deeper treatment of series methods.

Boundary resolution. The great convenience of a least-squares formulation is that
it permits one to put plenty of points along the boundary, thereby bypassing subtle
questions related to interpolation. But how big must the ratio npts/N be to achieve
satisfactory accuracy? And can this come with guarantees? A mathematical analysis
will require attention to matters of polynomial or trigonometric interpolation related to
the Runge phenomenon [53] and the study of Lebesgue constants, and sharp answers
will depend on regions of analyticity of the solutions being computed [4, 56].

Convergence rate. As N →∞, the convergence will normally be exponential, at
a rate O( ρ−N) for some ρ > 1, if the boundaries and the boundary data are analytic.
The value of ρ will depend on matters of analytic continuation, as above [4]. Only in
simple cases would one expect to analyze such rates analytically.

Scaling. We have used powers (z − c)−k for all disks, regardless of their radius. In
problems with widely varying scales, however, it may be advantageous to scale such
terms relative to the radius. This is related to column scaling of the matrix A.

Complexity. Series methods rely on solving least-squares matrix problems, and the
cubic complexity will eventually show up if problems with enough components are
considered. In such cases one may turn to hierarchical approaches such as the fast
multipole method. As a rule of thumb, it seems clear that one should do this (in two
dimensions) for problems with thousands of components, but perhaps not if there are
merely hundreds of components.
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[15] Series solution of Laplace problems 15

Nearly touching boundary components. In some problems two holes, say, may
nearly touch, and convergence of a series method will degrade. In simple cases one
may solve the problem by using a point other than the centre for a local expansion (or
relatedly, a local Möbius transformation). In more complicated problems, this is one
of the situations where hierarchical methods prove their power [11, 12, 18, 33].

Three dimensions. Nothing that we have done is restricted to two dimensions,
apart from the use of a complex variable for convenience [10]. In three dimensions,
nevertheless, there is no denying that computations tend to require more human and
computer effort, and the role of simple series methods is perhaps smaller than in two
dimensions.

Maximum principle. One of the attractions about boundary matching for elliptic
problems is that the maximum principle allows easy a posteriori analysis of accuracy.
So long as the boundary data are closely matched, as can be verified by sampling finely,
one can be assured that the computed solution is accurate. See for example [25, 41].

9 Conclusion

The elementary solution methods we have presented are not always familiar to those
who might find them useful. They tend to be eclipsed by more general, more powerful
tools, which are necessary for sufficiently complicated problems but rely on much
more machinery. An explanation for this situation may lie in the disparate rates of
development of mathematics, algorithms, computers and software. Fifty years ago,
thanks to Runge and Walsh and Keldysh and others, the mathematical basis of series
methods was already in place and known (if not in mathematical detail) to the early
computer-era numerical analysts. And so one finds Hockney, for example, publishing
a paper in 1964 about series expansions for a Laplace problem involving “a round hole
in a square peg” [35]. But it took time for computers to grow powerful enough, and
software convenient enough, to enable such methods to be so easily used as we have
demonstrated. By the time that had happened, researchers had come to focus on more
advanced tools.

As our Cantor set example shows, elementary methods can work well even for
regions with hundreds of holes.
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Appendix

MATLAB codes

function disk1 % Green function exterior to a disk, equipotential curves only

%

% We seek the function u(z) that is zero for |z-c| = r and harmonic outside this

% circle, including at z=infty, except with u(z)˜log|z| as z->0. u is expanded as

%

% u(z) = log|z| - log|z-c| + a(1)

% + SUM_{k=1}ˆN a(2k)*real((z-c)ˆ(-k)) + a(2k+1)*imag((z-c)ˆ(-k)) .

c = 3+1i; r = 1; % center and radius of disk

N = 10; npts = 3*N; % no. expansion terms and sample pts

z = c + r*exp(2i*pi*(1:npts)’/npts); % sample points

rhs = -log(abs(z)) + log(abs(z-c)); % right-hand side

A = ones(npts,2*N+1);

for k = 1:N % set up least-squares matrix

A(:,2*k ) = real((z-c).ˆ-k);

A(:,2*k+1) = imag((z-c).ˆ-k);

end

a = A\rhs; % solve least-squares problem

% Contour plot

x = linspace(-5,5,145); y = linspace(-4,4,115); [xx,yy] = meshgrid(x,y);

zz = xx+1i*yy; uu = disk1fun(zz); z = c + r*exp(pi*1i*(-50:50)’/50);

fill(real(z),imag(z),[.7 .7 1]), hold on

plot(z,’b’), plot(0,0,’.r’,’markersize’,13)

levels = -3:.25:-.25; contour(xx,yy,uu,levels,’k’), axis equal, axis([-5 5 -4 4])

set(gca,’xtick’,-4:2:4,’ytick’,-4:2:4,’fontsize’,8), hold off, print -depsc disk1

function u = disk1fun(z)

u = log(abs(z)) - log(abs(z-c)) + a(1);

for k = 1:N, u = u + a(2*k)*real((z-c).ˆ(-k)) +a(2*k+1)*imag((z-c).ˆ(-k)); end

u(abs(z-c)<=r) = NaN;

end

end

function disk1ode % Green function exterior to a disk

%

% We seek the function u(z) that is zero for |z-c| = r and harmonic outside

% this circle, including at z=infty, except with u(z)˜log|z| as z->0.

% u is expanded as

%

% u(z) = log|z| - log|z-c| + a(1)

% + SUM_{k=1}ˆN a(2k)*real((z-c)ˆ(-k)) + a(2k+1)*imag((z-c)ˆ(-k)) .

c = 3+1i; r = 1; % center and radius of disk

N = 10; npts = 3*N; % no. expansion terms and sample pts

z = c + r*exp(2i*pi*(1:npts)’/npts); % sample points

rhs = -log(abs(z)) + log(abs(z-c)); % right-hand side

A = ones(npts,2*N+1);

for k = 1:N % set up least-squares matrix

A(:,2*k ) = real((z-c).ˆ-k);

A(:,2*k+1) = imag((z-c).ˆ-k);

end

a = A\rhs; % solve least-squares problem
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[17] Series solution of Laplace problems 17

% Contour plot

x = linspace(-5,5,145); y = linspace(-4,4,115); [xx,yy] = meshgrid(x,y); zz = xx+1i*yy;

uu = disk1fun(zz); z = c + r*exp(pi*1i*(-50:50)’/50); fill(real(z),imag(z),[.7 .7 1])

hold on, plot(z,’b’), plot(0,0,’.r’,’markersize’,6), levels = -3:.25:-.25;

contour(xx,yy,uu,levels,’k’), axis equal, axis([-5 5 -4 4])

set(gca,’xtick’,-4:2:4,’ytick’,-4:2:4,’fontsize’,8), op = odeset(’events’,@event);

for t = pi*(1:32)/16, z0 = .01*exp(1i*t); sol = ode45(@dzdt,[0 500],z0,op);

plot(deval(sol,linspace(0,max(sol.x),300)),’k’), end

plot(0,0,’.r’,’markersize’,13), hold off, print -depsc disk1ode

function u = disk1fun(z)

u = log(abs(z)) - log(abs(z-c)) + a(1);

for k = 1:N, u = u + a(2*k)*real((z-c).ˆ(-k)) + a(2*k+1)*imag((z-c).ˆ(-k)); end

u(abs(z-c)<=r) = NaN;

end

function g = dzdt(t,z)

g = 1./conj(z) - 1./conj(z-c);

for k = 1:N, g = g - k*(a(2*k)+1i*a(2*k+1))./conj(z-c).ˆ(k+1); end

g = g./abs(g);

end

function [val,isterm,dir] = event(t,z)

dir = 0; isterm = 1; val = abs(z-c)-r;

end

end

function disks % Green function exterior to several disks

%

% We seek the function u(z) that is zero for |z-c(j)| = r(j), j = 1,...,J,

% and harmonic outside these circles, including at z=infty, except with

% u(z)˜log|z| as z->0. u is expanded as

%

% u(z) = log|z| + C + SUM_{j=1}ˆJ {d(j)*log|z-c(j)|

% + SUM_{k=1}ˆN [a(j,k)*real((z-z(j))ˆ-k + b(j,k)*imag((z-z(j))ˆ-k]}

%

% with SUM d(j) = -1; all these coefficients are collected in the vector X.

% The unknowns determined by linear least-squares are C, d(1),...,d(J),

% {a(j,k)}, {b(j,k)}. A has dimensions 1+J*npts by 1+J*(2N+1).

c = [-3 3i 3 2-3i]; % centers

r = [.7 .7 .2 .2]; J = 4; % radii

N = 10; npts = 3*N; % no. expansion terms and sample pts

circ = exp(2i*pi*(1:npts)’/npts); % roots of unity

z = []; for j = 1:J

z = [z; c(j)+r(j)*circ]; end % sample points on the bndry

A = ones(size(z)); % constant term

for j = 1:J

A = [A log(abs(z-c(j)))]; % logarithmic terms

for k = 1:N % set up least-squares matrix

zck = (z-c(j)).ˆ(-k);

A = [A real(zck) imag(zck)]; % algebraic terms

end

end

A = [A; zeros(1,1+J*(2*N+1))];

A(end,2:(2*N+1):end) = 1;
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18 L. N. Trefethen [18]

rhs = [-log(abs(z)); -1];

X = A\rhs; % solve least-squares problem

C = X(1); X(1) = []; % extract results

d = X(1:2*N+1:end), X(1:2*N+1:end) = [];

a = X(1:2:end); b = X(2:2:end);

% Contour plot

x = linspace(-5,5,145); y = linspace(-4,4,115); [xx,yy] = meshgrid(x,y); zz = xx+1i*yy;

uu = disksfun(zz); z = exp(2i*pi*(0:30)’/30);

for j = 1:J, disk = c(j)+r(j)*z; fill(real(disk),imag(disk),[.7 .7 1])

hold on, plot(disk,’b’), end, levels = -1.9:.2:-.1;

contour(xx,yy,uu,levels,’k’), axis equal, axis([-5 5 -4 4])

set(gca,’xtick’,-4:2:4,’ytick’,-4:2:4,’fontsize’,8), op = odeset(’events’,@disksevent);

for t = pi*(1:32)/16, z0 = .01*exp(1i*t); sol = ode45(@dzdt,[0 100],z0,op);

plot(deval(sol,linspace(0,max(sol.x),300)),’k’), end

plot(0,0,’.r’,’markersize’,13), hold off, print -depsc disks

function u = disksfun(z)

u = log(abs(z)) + C;

for j = 1:J

cj = c(j); u = u + d(j)*log(abs(z-cj));

for k = 1:N, zck = (z-cj).ˆ(-k); kk = k+(j-1)*N;

u = u+a(kk)*real(zck)+b(kk)*imag(zck);

end

u(abs(z-cj)<=r(j)) = NaN;

end

end

function g = dzdt(t,z)

g = conj(1./z);

for j = 1:J

zcj = z - c(j); g = g + d(j)./conj(zcj);

for k = 1:N, kk = k+(j-1)*N;

g = g - k*(a(kk)+1i*b(kk))./conj(zcj).ˆ(k+1);

end

end

g = g./abs(g);

end

function [val,isterm,dir] = disksevent(t,z)

dir = zeros(J,1); isterm = ones(J,1); val = abs(z-c.’)-r.’;

end

end

function slit1 % Green function exterior to a slit

%

% We seek the function u(z) that is zero on the interval c + r[-1,1] and harmonic outside

% this slit, including at z=infty, except with u(z)˜log|z| as z->0. u is expanded as

%

% u(z) = log|z| - log|w| + a(1)

% + SUM_{k=1}ˆN a(2k)*real(wˆ(-k)) + a(2k+1)*imag(wˆ(-k))

%

% where w(z) is a Joukowski map of exterior(slit) to exterior(unit disk).

c = 3+1i; r = 1-.5i; % center and half-length of slit

N = 10; npts = 3*N; % no. expansion terms and sample pts

circ = (1+1e-12)*exp(2i*pi*(1:npts)’/npts);
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z = c + r*(circ+1./circ)/2; % sample points

w = wz(z); rhs = -log(abs(z)) + log(abs(w)); % right-hand side

A = ones(npts,2*N+1);

for k = 1:N % set up least-squares matrix

A(:,2*k ) = real(w.ˆ-k);

A(:,2*k+1) = imag(w.ˆ-k);

end

a = A\rhs; % solve least-squares problem

% Contour plot

x = linspace(-5,5,145); y = linspace(-4,4,115); [xx,yy] = meshgrid(x,y);

zz = xx+1i*yy; uu = slit1fun(zz); z = c + r*[-1 1];

plot(z,’b’,’linewidth’,1.4), hold on

levels = -3:.25:-.25; contour(xx,yy,uu,levels,’k’), axis equal, axis([-5 5 -4 4])

set(gca,’xtick’,-4:2:4,’ytick’,-4:2:4,’fontsize’,8)

op = odeset(’events’,@event);

for t = pi*(1:32)/16, z0 = .01*exp(1i*t); sol = ode23(@dzdt,[0 50],z0,op);

plot(deval(sol,linspace(0,max(sol.x),300)),’k’), end

plot(0,0,’.r’,’markersize’,13), hold off, print -depsc slit1

function u = slit1fun(z)

w = wz(z); u = log(abs(z)) - log(abs(w)) + a(1);

for k = 1:N, u = u + a(2*k)*real(w.ˆ(-k)) + a(2*k+1)*imag(w.ˆ(-k)); end

end

function w = wz(z)

zc = (z-c)/r; sgn = real(zc)>0|(real(zc)==0&imag(zc)>0); sgn = 2*sgn - 1;

w = zc + sgn.*sqrt(zc.ˆ2-1);

end

function g = dzdt(t,z)

zc = (z-c)/r; sgn = real(zc)>0|(real(zc)==0&imag(zc)>0); sgn = 2*sgn - 1;

cw = conj(zc+sgn.*sqrt(zc.ˆ2-1)); dwdzc = conj((1+sgn*zc./sqrt(zc.ˆ2-1))/r);

g = 1./conj(z) - dwdzc./cw;

for k = 1:N, g = g - k*(a(2*k)+1i*a(2*k+1))*dwdzc./cw.ˆ(k+1); end

g = g./abs(g);

end

function [val,isterm,dir] = event(t,z)

dir = 0; isterm = 1; val = abs(wz(z))-1.03;

end

end

function slits % Green function exterior to several slits

%

% We seek the function u(z) that is zero on the complex intervals c(j)+r(j)[-1,1]

% j = 1,...,J, and harmonic outside these slits, including at z=infty, except with

% u(z)˜log|z| as z->0. u is expanded as

%

% u(z) = log|z| + C + SUM_{j=1}ˆJ {d(j)*log|wj(z)|

% + SUM_{k=1}ˆN [a(j,k)*real(wj(z)ˆ(-k)) + b(j,k)*imag(wj(z)ˆ(-k)]},

%

% where wj(z) is a Joukowski map of exterior(slit j) to exterior(unit disk),

% with SUM d(j) = -1; all these coefficients are collected in the vector X.

% The unknowns determined by linear least-squares are C, d(1),...,d(J),

% {a(j,k)}, {b(j,k)}. A has dimensions 1+J*npts by 1+J*(2N+1).
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20 L. N. Trefethen [20]

c = [-3 3i 3 2-3i]; % centers

r = [.5i .5 .3+.3i 1.5+.2i]; J = 4; % radii

N = 10; npts = 3*N; % no. expansion terms and sample pts

circ = (1+1e-8)*exp(2i*pi*(1:npts)’/npts); % roots of unity

z = []; for j = 1:J

z = [z; c(j)+r(j)*(circ+1./circ)/2]; end % sample points on the bndry

A = ones(size(z)); % constant term

for j = 1:J

wj = wz(z,j); A = [A log(abs(wj))]; % logarithmic terms

for k = 1:N % set up least-squares matrix

wck = wj.ˆ(-k);

A = [A real(wck) imag(wck)]; % algebraic terms

end

end

A = [A; zeros(1,1+J*(2*N+1))];

A(end,2:(2*N+1):end) = 1;

rhs = [-log(abs(z)); -1];

X = A\rhs; % solve least-squares problem

C = X(1); X(1) = []; % extract results

d = X(1:2*N+1:end), X(1:2*N+1:end) = [];

a = X(1:2:end); b = X(2:2:end);

% Contour plot

x = linspace(-5,5,145); y = linspace(-4,4,115); [xx,yy] = meshgrid(x,y);

zz = xx+1i*yy; uu = slitsfun(zz);

for j = 1:J, slit = c(j)+r(j)*[-1 1]; plot(slit+1e-12i,’b’,’linewidth’,1.4), hold on, end

levels = -2.3:.2:-.1; contour(xx,yy,uu,levels,’k’), axis equal, axis([-5 5 -4 4])

set(gca,’xtick’,-4:2:4,’ytick’,-4:2:4,’fontsize’,8), op = odeset(’events’,@event);

for t = pi*(1:32)/16, z0 = .01*exp(1i*t); sol = ode23(@dzdt,[0 100],z0,op);

plot(deval(sol,linspace(0,max(sol.x),300)),’k’), end

plot(0,0,’.r’,’markersize’,13), hold off, print -depsc slits

function u = slitsfun(z)

u = log(abs(z)) + C;

for j = 1:J

cj = c(j); w = wz(z,j); u = u + d(j)*log(abs(w));

for k = 1:N, wk = w.ˆ(-k); kk = k+(j-1)*N;

u = u+a(kk)*real(wk)+b(kk)*imag(wk);

end

u(abs(w)<=1.01) = NaN;

end

end

function w = wz(z,j)

zc = (z-c(j))/r(j); sgn = real(zc)>0|(real(zc)==0&imag(zc)>0); sgn = 2*sgn - 1;

w = zc + sgn.*sqrt(zc.ˆ2-1);

end

function g = dzdt(t,z)

g = 1./conj(z);

for j = 1:J

zc = (z-c(j))/r(j); sgn = real(zc)>0|(real(zc)==0&imag(zc)>0); sgn = 2*sgn - 1;

cw = conj(zc+sgn.*sqrt(zc.ˆ2-1)); dwdzc = conj((1+sgn*zc./sqrt(zc.ˆ2-1))/r(j));

g = g + d(j)*dwdzc./cw;

for k = 1:N, kk = k+(j-1)*N; g = g - k*(a(kk)+1i*b(kk))*dwdzc./cw.ˆ(k+1); end

end

g = g./abs(g);

end
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function [val,isterm,dir] = event(t,z)

dir = zeros(J,1); isterm = ones(J,1);

val = zeros(J,1); for j = 1:J; val(j) = abs(wz(z,j))-1.03; end

end

end

function cantor % Green function exterior to a finite approximate Cantor set

%

% We seek the function u(z) that is zero on the real intervals c(j)+r(j)[-1,1]

% j = 1,...,J, and harmonic outside these slits, including at z=infty, except with

% u(z)˜log|z| as z->0. u is expanded as

%

% u(z) = log|z| + C + SUM_{j=1}ˆJ {d(j)*log|wj(z)|

% + SUM_{k=1}ˆN a(j,k)*real(wj(z)ˆ(-k)),

%

% where wj(z) is a Joukowski map of exterior(slit j) to exterior(unit disk),

% with SUM d(j) = -1; all these coefficients are collected in the vector X.

% The unknowns determined by linear least-squares are C, d(1),...,d(J),

% {a(j,k)}. A has dimensions 1+J*npts by 1+J*(N+1).

m = 5; J=2ˆm; c = 0; r = 1.5; % level of finite Cantor set

for i = 1:m

r = r/3; c = [c+2*r c-2*r];

end

N = max(2,6-m); npts = round(1.5*N); % no. expansion terms and sample pts

circ = (1+1e-12)*exp(1i*pi*(.5:npts)’/npts); % roots of unity

z = []; for j = 1:J

z = [z; c(j)+r*(circ+1./circ)/2]; end % sample points on the bndry

A = ones(size(z)); % constant term

for j = 1:J

wj = wz(z,j); A = [A log(abs(wj))]; % logarithmic terms

for k = 1:N, A = [A real(wj.ˆ(-k))]; end % set up least-squares matrix

end

A = [A; zeros(1,1+J*(N+1))];

A(end,2:N+1:end) = 1;

rhs = [-log(abs(z)); -1];

X = A\rhs; % solve least-squares problem

C = X(1); X(1) = []; % extract results

d = X(1:N+1:end); X(1:N+1:end) = []; a = X;

% Contour plot

x = linspace(0,1.8,145); y = linspace(-0.2,0.8,75); [xx,yy] = meshgrid(x,y);

zz = xx+1i*yy; uu = cantorfun(zz);

for j = 1:J, slit = c(j)+r*[-1 1]; plot(slit+1e-12i,’-b’,’linewidth’,1.2), hold on, end

levels = -10.ˆ(-1.2:.1:.2); contour(xx,yy,uu,levels,’k’), axis equal, axis([0 1.8 -.2 .8])

set(gca,’xtick’,0:.4:2,’ytick’,-.8:.4:.8,’fontsize’,5), op = odeset(’events’,@event);

for t = pi*(1:2:23)/48, z0 = .01*exp(1i*t); sol = ode23(@dzdt,[0 100],z0,op);

z = deval(sol,linspace(0,max(sol.x),300)); plot(z,’k’), plot(conj(z),’k’), end

plot(0,0,’.r’,’markersize’,16), hold off

function u = cantorfun(z)

u = log(abs(z)) + e;

for j = 1:J

cj = c(j); w = wz(z,j); u = u + d(j)*log(abs(w));

for k = 1:N, wk = w.ˆ(-k); kk = k+(j-1)*N; u = u+a(kk)*real(wk); end

u(abs(w)<=1.01) = NaN;

end
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end

function w = wz(z,j)

zc = (z-c(j))/r; sgn = real(zc)>0|(real(zc)==0&imag(zc)>0); sgn = 2*sgn - 1;

w = zc + sgn.*sqrt(zc.ˆ2-1);

end

function g = dzdt(t,z)

g = 1./conj(z);

for j = 1:J

zc = (z-c(j))/r; sgn = real(zc)>0|(real(zc)==0&imag(zc)>0); sgn = 2*sgn - 1;

cw = conj(zc+sgn.*sqrt(zc.ˆ2-1)); dwdzc = conj((1+sgn*zc./sqrt(zc.ˆ2-1))/r);

g = g + d(j)*dwdzc./cw;

for k = 1:N, kk = k+(j-1)*N; g = g - k*a(kk)*dwdzc./cw.ˆ(k+1); end

end

g = g./abs(g);

end

function [val,isterm,dir] = event(t,z)

dir = zeros(J,1); isterm = ones(J,1);

val = zeros(J,1); for j = 1:J; val(j) = abs(wz(z,j))-(1+.01/r); end

end

end

function bounded % Harmonic function in a region bounded by disks

%

% We seek the function u with u(z)=0 for |z-c(1)|=r(1)>>1 and u(z)=1 for |z-c(j)|=r(j),

% j = 2,...,J, that is harmonic in the region between these circles. u is expanded as

%

% u(z) = C + SUM_{k=1}ˆN [a(1,k)*real((z-z(j))ˆk + b(1,k)*imag((z-z(j))ˆk]

% + SUM_{j=2}ˆJ {d(j)*log|z-c(j)|

% + SUM_{k=1}ˆN [a(j,k)*real((z-z(j))ˆ-k + b(j,k)*imag((z-z(j))ˆ-k]}

%

% all these coefficients are collected in the vector X. The unknowns determined by

% linear least-squares are C, d(2),...,d(J), {a(j,k)}, {b(j,k)}. A has dimensions

% J*npts by J*(2N+1).

c = [0 -1.6+.8i 1.6+.8i]; % centers

r = [3.8 1 .5]; J = 3; % radii

N = 10; npts = 3*N; % no. expansion terms and sample pts

circ = exp(2i*pi*(1:npts)’/npts); % roots of unity

z = []; for j = 1:J

z = [z; c(j)+r(j)*circ]; end % sample points on the bndry

A = ones(size(z)); % constant term

for j = 1:J

s = 1;

if j>1

s = -1; A = [A log(abs(z-c(j)))]; % logarithmic terms

end

for k = 1:N % set up least-squares matrix

zck = (z-c(j)).ˆ(s*k);

A = [A real(zck) imag(zck)]; % algebraic terms

end

end

rhs = ones(size(z)); rhs(1:npts) = 0;

X = A\rhs; % solve least-squares problem

C = X(1); X(1) = []; % extract results
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d = [NaN; X(2*N+1:2*N+1:end)]

X(2*N+1:2*N+1:end) = [];

a = X(1:2:end); b = X(2:2:end);

% Contour plot

x = linspace(-5,5,145); y = linspace(-4,4,115); [xx,yy] = meshgrid(x,y); zz = xx+1i*yy;

uu = boundedfun(zz); z = exp(2i*pi*(0:300)’/150);

plot(c(1)+r(1)*z,’r’,’linewidth’,1.2), hold on

for j = 2:J, disk = c(j)+r(j)*z; fill(real(disk),imag(disk),[.7 .7 1])

plot(disk,’b’), end, levels = .1:.1:.9;

contour(xx,yy,uu,levels,’k’), axis equal, axis([-5 5 -4 4])

set(gca,’xtick’,-4:2:4,’ytick’,-4:2:4,’fontsize’,8), op = odeset(’events’,@boundedevent);

for t = pi*(1:64)/32, z0 = r(1)*exp(1i*t); sol = ode23(@dzdt,[0 10],z0,op);

plot(deval(sol,linspace(0,max(sol.x),300)),’k’), end

hold off, axis off, print -depsc bounded

function u = boundedfun(z)

u = C*ones(size(z));

for k = 1:N

zck = (z-c(1)).ˆk; u = u+a(k)*real(zck)+b(k)*imag(zck);

end

u(abs(z-c(1))>=r(1)) = NaN;

for j = 2:J

cj = c(j); u = u + d(j)*log(abs(z-cj));

for k = 1:N

zck = (z-cj).ˆ(-k); kk = k+(j-1)*N; u = u+a(kk)*real(zck)+b(kk)*imag(zck);

end

u(abs(z-cj)<=r(j)) = NaN;

end

end

function g = dzdt(t,z)

g = zeros(size(z));

for k = 1:N, g = g + k*(a(k)+1i*b(k)).*conj(z-c(1)).ˆ(k-1); end

for j = 2:J

zcj = z - c(j); g = g + d(j)./conj(zcj);

for k = 1:N, kk = k+(j-1)*N;

g = g - k*(a(kk)+1i*b(kk))./conj(zcj).ˆ(k+1);

end

end

g = g./abs(g);

end

function [val,isterm,dir] = boundedevent(t,z)

dir = zeros(J,1); isterm = ones(J,1); val = abs(z-c.’)-r.’;

end

end
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