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Abstract. Rational minimax approximation of real functions on real intervals is an established
topic, but when it comes to complex functions or domains, there appear to be no algorithms currently
in use. Such a method is introduced here, the AAA-Lawson algorithm, available in Chebfun. The
new algorithm solves a wide range of problems on arbitrary domains by a procedure consisting of
two steps. First, the standard AAA algorithm is run to obtain a near-best approximation and a
set of support points for a barycentric representation of the rational approximant. Then a “Lawson
phase” of iteratively reweighted least-squares adjustment of the barycentric coefficients is carried out
to improve the approximation to minimax.
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1. Introduction. Rational minimax approximation—the optimal approxima-
tion of a function f by a rational function r of given degree on a given domain in
the supremum norm—is an old idea. For real approximation on a real interval, best
approximations exist and are unique and are characterized by an equioscillation con-
dition. Algorithms appeared beginning in the 1960s [50, 89, 90], and the problem
became important for applications in the 1970s with the development of digital signal
processing [58]. A powerful implementation is available in the minimax command in
Chebfun [19, 23]. For complex functions or domains, however, the situation is very
different. The theory developed by Walsh in the 1930s shows that existence and espe-
cially uniqueness may fail [86, 87], and as for algorithms, there is not much available
apart from a pair of methods introduced by Ellacott and Williams (EW) (1976) and
Istace and Thiran (IT) (1993) based on earlier work by Osborne and Watson [60],
which, so far as we are aware, are not in use today [22, 40] (see section 7). This is
a striking gap, since rational approximations are of growing importance in computa-
tional complex analysis (Fig. 4.3) [29, 84], systems theory and model order reduction
(Fig. 4.6) [2, 3, 7, 12], low-rank data compression (Figs. 4.6, 4.7) [6, 46], electronic
structure calculation (Fig. 5.2) [47, 53], and solution of partial differential equations
(Fig. 5.4) [15, 20, 30, 31].

The aim of this paper is to introduce a new algorithm for complex rational min-
imax approximation together with a software implementation. Our “AAA-Lawson”
algorithm combines the rational barycentric AAA algorithm of [54] with an iteratively
reweighted least-squares (IRLS) iteration inspired by Lawson’s algorithm [44] but in
a nonlinear barycentric context. It works on discrete domains, typically containing
hundreds or thousands of points to approximate a continuum, which may take all
kinds of forms including Jordan regions, unions of Jordan regions, regions with holes,
intervals, unbounded domains, clouds of random points, and more. Being based on a
barycentric rational representation with greedy selection of support points, it inherits
the exceptional numerical stability of AAA and is able to handle even very difficult
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cases with exponentially clustered poles. Experiments show that for a wide range of
problems, the method converges quickly to an approximation whose error is close to
the minimax value.

The version of the AAA-Lawson algorithm described here was introduced in the
aaa command of Chebfun in August, 2019, and we hope its easy availability may
open up a new era of exploration of complex rational minimax approximation. For
example, Ellacott and Williams list minimax errors for 29 different approximation
problems in Tables 1 and 2 of their paper, each given to 3 digits of accuracy [22].
With Chebfun aaa, all of these problems can be solved in a total time of less than 2
seconds on a desktop computer, along with the three additional problems left blank
in their tables. (For hardware details see section 4.) Twelve of the EW numbers
turn out to be correct to all three digits, with the rest having small anomalies mainly
associated with discretization of a continuum by too few points. We shall discuss
comparisons with the EW and IT algorithms in section 7.

For complex polynomial approximation, more computational possibilities are avail-
able than in the rational case, including [5, 24, 28, 43, 57, 75]. The “complex Remez
algorithm” of Tang is particularly appealing [75]. Similarly there are a number of
non-minimax complex rational approximation algorithms, including vector fitting [33],
RKFIT [8], the Loewner framework [3], IRKA [32], and AGH [1], as well as the AAA
algorithm that is our own starting point [54]. Most of these methods apply to vec-
tor or matrix as well as scalar approximation problems, whereas the AAA-Lawson
method has only been developed so far for scalars. To extend it, one could perhaps
adapt some of the methods proposed for AAA in [48].

The possibility of a AAA-Lawson algorithm was first mentioned in the original
AAA paper [54], and it was developed further for part of the initialization process
for the Chebfun minimax command [23]. However, in these projects the power of
AAA-Lawson for general minimax approximation did not become fully apparent, for
a number of reasons. One was that AAA approximations are usually computed with
the degree not specified but adaptively chosen to get down to nearly machine precision,
and in this setting, AAA-Lawson will usually fail (it is trying to improve a result that
is already near the limit of precision). Another is that much of our attention was on
real intervals, where both AAA and AAA-Lawson are least robust. A third was that
we did not fully appreciate the crucial importance of choosing approximation grids
exponentially clustered near corners and other singular points, where poles of rational
approximations will be exponentially clustered. Finally, in those experiments we were
not including the support points themselves in the matrix associated with the IRLS
problem (see eq. (3.5) and the discussion preceding it), an omission that led to failure
in some cases.

We close this introduction with Fig. 1.1, illustrating the behavior of the algorithm
in a typical problem (the first example of section 4). The first, AAA phase rapidly
finds a near-minimax approximation, and this is improved to minimax in the second,
Lawson phase. This figure vividly raises a fundamental question. Is it worthwhile to
complicate an algorithm significantly, and slow it down by a factor of 2 or more, to
achieve just one more digit of accuracy in an approximation? From a practical point
of view, we believe the answer is sometimes yes and sometimes no. Optimal approx-
imations have long been regarded as important in signal processing applications, for
example, but in other larger-scale and less-embedded contexts, they may be less so.
However, there is also the theoretical point of view. Minimax approximations, with
their distinctive error curves that the rest of the figures of this paper will illustrate,
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Fig. 1.1. The two phases of the AAA-Lawson algorithm, illustrated here for degree 5 approx-
imation of ez on the unit disk. The AAA phase achieves rapid convergence to a near-minimax
approximant. This is then improved to minimax by a linearly convergent Lawson iteration.

have exercised a fascination since the days of Chebyshev, and they have been the
subject of a great deal of study by approximation theorists. An appealing aspect of
the AAA-Lawson algorithm is that it will facilitate new explorations in this area.

2. Existence, uniqueness, characterization, and convergence. A rational
function is a function of a complex variable that can be written in the form r(z) =
p(z)/q(z), where p and q are polynomials. We say that r is of type (m,n) for some
m,n ≥ 0 if it can be represented with p of degree at most m and q of degree at most n.
If m = n, the setting of this paper, we also say that r is of degree n, and we denote
by Rn the set of rational functions of degree n. A rational function is a map from
C+ to C+, where C+ is the extended complex plane C∪ {∞}, and if r ∈ Rn is not a
constant, then it takes each value in C+ at most n times, counted with multiplicity.
It is the function that is the fundamental object, not any particular representation of
it, and if a representation has isolated points corresponding to quotients 0/0 or ∞/∞,
we define the values there by limits from neighboring points.

Let Z ⊆ C be nonempty, let ‖ · ‖ be the supremum norm on Z, and let f be a
complex continuous function (not necessarily analytic) defined on Z. Our approxi-
mation problem is to find rational functions r such that ‖f − r‖ is small. If r∗ ∈ Rn

satisfies ‖f − r∗‖ = E∗ := infr∈Rn
‖f − r‖, then r is a best or minimax approximation

to f of degree n. Even if there is no minimax approximation, we will speak of the
minimax error E∗, which may be any number in the range [0,∞].

Polynomial best approximations of a given degree n always exist, and if Z is a
compact set with at least n+1 points, they are unique [77]. They can be characterized
by a condition due to Kolmogorov [42, 57, 71, 76], and if Z is a closed real interval of
positive length and f is real on Z, there is a simpler and more famous characterization
by equioscillation of the error (p− f)(x) between ≥ n+2 alternating extreme points.
In this case E∗ decreases exponentially as n → ∞ if and only if f is analytic on Z [82,
chapter 8], and the same result generalizes to any compact set Z ⊆ C [87].

The theory of complex rational best approximation, which begins with a 1931
paper by Walsh [86, 87], proves more problematic. First of all, best approximations
need not exist. For example, there is no degree 1 best approximation to data values
a, b, b with a 6= b on any set Z with three distinct points, for in such a case we have
E∗ = 0 but ‖f − r‖ > 0 for any choice of r, since a nonconstant function r ∈ R1

can only take each value once. However, Theorem 3 of [86] asserts that existence is
assured if E∗ < ∞ and Z has no isolated points.
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Concerning uniqueness, there is one main positive result: if Z is a closed real
interval of positive length and f is real, then a best real rational approximation in Rn

exists and is unique and characterized by an error curve that equioscillates between
sufficiently many extreme points. Without the restriction that r is real, however,
uniqueness is not assured [49, 66, 92]. For example, there are complex approximations
to |x| on [−1, 1] whose error is less than the value 1/2 achieved by the best real
approximation, from which it follows by the symmetry of complex conjugation that the
complex best approximation cannot be unique (see Exercise 24.3 of [82]). Examples
of nonuniqueness have also been investigated on the unit disk [36].

When it comes to characterization of rational best approximants, the Kolmogorov
condition diminishes to a necessary condition for local optimality: for a candidate
approximation to be locally optimal, it must be a minimal point with respect to
certain local linear perturbations. Discussions can be found in a number of sources,
including [34, 65, 71, 92], and we recommend in particular the papers [40, 76] by Istace
and Thiran. Sufficient conditions, and conditions for global optimality, are mostly not
available, though there are some results in [51] and [65]. We shall say more on these
subjects in sections 6 and 7.

These observations are daunting. However, although it is a fascinating mathe-
matical challenge to elucidate the properties of best approximations, what matters for
most applications is that we are able to compute good ones. An example is provided by
the “lightning Laplace solver” paper [31], which presents far-reaching theorems about
root-exponential convergence of rational approximations for solutions to Laplace prob-
lems with boundary singularities. The approximations are not minimax, but still they
lead to a very fast Laplace solver.

A major focus of the theoretical literature of rational approximation is the prob-
lem of approximability, the determination of necessary and sufficient conditions to
ensure that E∗ → 0 as n → ∞ in approximation of a function f on a set Z ⊆ C.
If Z is compact with at most a finite number of holes and f is analytic on Z, then
exponential decrease of E∗ to 0 was established by Runge in 1885 [64], but what if
f is merely analytic in the interior? Here we cannot expect exponential convergence,
but according to Vitushkin’s theorem [26, 27, 93], the generalization to rational ap-
proximation of Mergelyan’s theorem for polynomials, we still get E∗ → 0. And what
if there are infinitely many holes? Vitushkin’s theorem gives technical conditions for
this case too. But such questions are a long way from most applications of rational
approximation, where the whole point is to exploit circumstances in which E∗ → 0
very fast.

3. The AAA-Lawson algorithm. Let n+1 distinct support points t0, . . . , tn ∈
C be fixed for some n ≥ 0, and let ℓ be the node polynomial

ℓ(z) =

n
∏

k=0

(z − tk),(3.1)

which is monic and of degree n + 1. If αk, βk ∈ C are arbitrary complex numbers,
0 ≤ k ≤ n, with at least one βk being nonzero, then the quotient of partial fractions

r(z) =
n(z)

d(z)
=

n
∑

k=0

αk

z − tk

/

n
∑

k=0

βk

z − tk
(3.2)

is obviously a rational function of degree 2n+ 1, since this is true of any quotient of
one rational function of type (n, n+1) divided by another, so long as the latter is not
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identically zero. However, in this quotient the numerator and the denominator have
the same poles, so r is also of the smaller degree n. We can verify this algebraically
by multiplying both the numerator and the denominator of by ℓ. The expression (3.2)
is a barycentric representation for r [9].

Conversely, regardless of the choice of the support points, every degree n ratio-
nal function r can be written in the form (3.2). The following theorem is adapted
from [54].

Theorem 3.1 (Rational barycentric representations). Let t0, . . . , tn be an arbi-

trary set of distinct complex numbers. As α0, . . . , αn and β0, . . . , βn range over all

complex values, with at least one βk being nonzero, the functions (3.2) range over the

set of all rational functions of degree n.

Proof.1 As just observed, any quotient (3.2) is a rational function r of degree n.
Conversely, suppose r is a rational function of degree n, and write r = p/q where p
and q are polynomials of degree at most n. It is enough to show that coefficients {αk}
and {βk} exist such that p = nℓ and q = dℓ in (3.2). Now dℓ is a linear combination
with coefficients β0, . . . , βn of n+1 monic polynomials of degree n, which are linearly
independent since they have different sets of roots. Thus q can be written (uniquely)
as dℓ, and similarly for p = nℓ.

This proof shows that there is a one-to-one correspondence between sets of co-
efficients {αk} in a barycentric representation (3.2) and polynomials p in a quotient
representation p/q, and likewise for {βk} and q. Thus we see that the barycentric
representation is unique to exactly the same degree as the quotient representation
p/q: unique up to a multiplicative constant if r has degree n but not n − 1, with
further nonuniqueness if r is of degree n− 1 or less.

Rational barycentric formulas with independent coefficients αk and βk are not well
known. Traditionally, barycentric formulas are used in “interpolatory mode,” where
function values {fk} are given and weights are chosen corresponding to αk/βk = fk
(and βk 6= 0), yielding r(tk) = fk for each k [9, 25, 54, 68]. To work with arbitrary
rational functions, however, with a complete decoupling of support points from ap-
proximation properties, one needs the “noninterpolatory” or “alpha-beta” mode (3.2).
Ultimately the αk and βk are devoted to approximation and the tk to numerical sta-
bility.

The AAA-Lawson algorithm consists of two steps. We assume that a discrete
domain Z and a set of corresponding function values F = f(Z) have been given,
together with a degree n.

(I) Run the AAA algorithm to get a rational approximant r(I) ≈ f of degree n
and a set of support points t0, . . . , tn.

(II) Carry out a linearized barycentric Lawson iteration with the same support

points t0, . . . , tn until a termination condition is reached.

Step (I) utilizes (3.2) in interpolatory mode, fixing αk = f(tk)βk for each k.
In outline, we begin with a support point t0 ∈ Z where |f(z)| attains its maximal
value and the corresponding degree 0 rational approximant r0 = f(t0). Then, for
m = 1, 2, . . . , n, we take the next support point to be a point tm ∈ Z where |f(z)−
rm−1(z)| attains its maximal value, and we define the degree m rational function

1An alternative proof can be based on the theory of partial fractions. The function q/ℓ is rational,
with a zero at ∞ and a simple pole at each point tk, or no pole at all if q(tk) = 0. This implies that
q/ℓ can be written in the form d of (3.2) [38, p. 553]. Similarly, p/ℓ can be written in the form n.
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rm by minimizing ‖rd − n‖2, in the notation of (3.2), over all choices of (m + 1)-
vectors β = (β0, . . . , βm)T with ‖β‖2 = 1. This calculation involves the singular
value decomposition, and ‖rd − n‖2 is the discrete 2-norm over the points of Z that
are not among the support points. Full details are presented in [54].

At the end of step (I), ‖f − r(I)‖ is typically within about an order of magnitude
of the minimax error, but since r(I) interpolates the data at the support points, it
cannot in general be the optimal approximant. It remains to describe step (II), which
switches to noninterpolatory mode.

Let Z = (zj), 1 ≤ j ≤ M be the sample set, interpreted as a column vector,
and let F = (fj), 1 ≤ j ≤ M be the corresponding vector of function values to be
matched. Let α and β be the coefficient vectors (α0, . . . , αn)

T and (β0, . . . , βn)
T , with

γ defined as their concatenation γ = [α; β ]. Our aim is to solve the minimax problem

min
γ

max
j

∣

∣

∣

∣

∣

fj −

n
∑

k=0

αk

zj − tk

/

n
∑

k=0

βk

zj − tk

∣

∣

∣

∣

∣

.(3.3)

The barycentric Lawson idea is to achieve this by solving a sequence of iteratively
reweighted least squares (IRLS) problems based on the linearization of (3.3), now
with αk and βk independent,

min
γ, ‖γ‖2=1

M
∑

j=1

′ wj

(

fj

n
∑

k=0

βk

zj − tk
−

n
∑

k=0

αk

zj − tk

)2

,(3.4)

where at each step, W = (wj), 1 ≤ j ≤ M, is a vector of weights wj ≥ 0. Note the
prime symbol on the summation sign. This signifies that special treatment is applied
at the n+ 1 sample points zj that coincide with a support point tk for some k = kj .
At these points the partial fractions in (3.4) will generally be infinite, and in the
standard AAA algorithm, they are simply omitted from the least-squares problem
since interpolation at these points is ensured by the barycentric formula. In the
AAA-Lawson algorithm, however, r will not necessarily interpolate f at the support
points, so it is necessary to include them explicitly in the approximation problem.
(Experiments show that this becomes particularly important on coarser grids, where
the omission of a single point may significantly affect the outcome. The examples of
Figure 4.4 below are of this type.) The quantity that we include in (3.4) at these
points is

wj

(

fjβkj
− αkj

)2
,(3.5)

derived by dividing out the common factor approaching ∞ as z → tkj
, in the spirit

of L’Hôpital’s rule.
Equation (3.4) is a routine problem of numerical linear algebra, which can be

written in matrix form as

min
γ, ‖γ‖2=1

∥

∥diag(W 1/2)
[

C,−diag(F )C
]

γ
∥

∥

2
,(3.6)

where C is the Cauchy matrix with entries cij = 1/(zj− tk) except in the n+1 special
rows. This is a minimal singular value problem involving a matrix of size M×(2n+2).

From one IRLS step to the next, W is updated by the formula

w
(new)
j = wj |ej |,(3.7)
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where ej is the quantity inside absolute values in (3.3), i.e., the current nonlinear
error at zj . (For the n + 1 special values of j, ej = fj − αkj

/βkj
.) For convenience,

and floating-point arithmetic, we then renormalize the weights at each step so that
their maximum is 1.

The IRLS idea originated with Lawson in 1961 [44] for linear minimax approxi-
mation, and has subsequently been analyzed and generalized by a number of authors
beginning with Cline, Rice, and Usow [14, 62, 63]. Rice proved convergence at a linear
rate for real approximation under natural assumptions [62], and Ellacott and Williams
pointed out that the same proof extends to complex approximation [22]. IRLS algo-
rithms have also taken on importance for other kinds of linear Lp approximation,
particularly the case p = 1 of interest in data science [17, 59, 88]. Nonlinear general-
izations of IRLS, though fewer, include [16] and [70]. So far as we know, AAA-Lawson
is the first IRLS algorithm based on rational barycentric representations.

This completes our description of the core idea of the AAA-Lawson algorithm,
but three questions remain. (i) How do we terminate the iteration? (ii) What can be
proved about convergence? (iii) What measures can be taken to make convergence
faster or more reliable in troublesome cases? Even for linear IRLS approximation,
these are nontrivial matters, and the nonlinear case brings additional difficulties.
Chebfun’s current answer to (i) is that by default it takes 20 Lawson steps. This
number is large enough so that the approximation is usually brought much closer to
minimax, but small enough so that the additional expense is not too great. (In sections
4 and 5 we shall see that the Lawson phase typically multiplies the overall computing
time by a factor of 2–5.) We would expect this very simple stopping condition to
evolve as understanding of the algorithm deepens in the future. Questions (ii) and
(iii) will be discussed in section 6.

4. Numerical examples, complex. This section and the next are devoted to
numerical examples. These were executed in Chebfun on an Intel i5-8500T CPU
running at 2.10GHz (maximum speed 3.5GHz), with 16GB of RAM.

In this section we present fourteen examples of complex minimax approximations,
grouped into pairs for convenience. Each example is represented by three images in
the complex plane, the first showing the domain Z and the second and third showing
the error r(Z) − f(Z) in AAA and AAA-Lawson approximation. All computations
were done in Chebfun in the default mode, and computer timings are printed at
the tops of the figures. The codes of this section and the next are available in the
supplementary materials.

Figure 4.1 begins with the basic example of ez on the unit circle, discretized by 500
equispaced points. It 0.007 sec., AAA finds a near-best approximation for n = 5 with
error 3.83e-10. The black dots on the circle mark the six support points the algorithm
selects. Continuing with the same support points but now in noninterpolatory “alpha-
beta” mode, AAA-Lawson improves the approximation to close to minimax, with
error 9.944364e-11. By the maximum modulus principle for analytic functions, these
maximal errors on the circle are also the maximal errors over the whole disk. Note
that the error curve appears to be a perfect circle (of winding number 2n + 1 = 11,
though this cannot be distinguished in the figure). This near-circularity effect was
first identified in [78] and then investigated for polynomial approximation in [79] and
rational approximation in [80]. The error curve cannot be exactly circular (this would
imply that the function being approximated was rational), but as shown in [80], it
comes spectacularly close, varying in radius for this example, we estimate via Theorem
6.3 of [80], by less than one part in 1012. This effect led to the theory of Carathéodory–
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Fig. 4.1. Approximation on the unit circle of the analytic function ez and the meromorphic
function tan(2πz). The middle and right plots show error curves for AAA and AAA-Lawson approx-
imation, respectively, with red circles marking the maximum errors. The minimax error curves are
nearly circular (invisible here since they lie under the red circles), with winding numbers 2n+1 = 11
and 2n+1− 8 = 17. Red and black dots mark poles and support points of the AAA-Lawson approx-
imation.

Fejér (CF) approximation [37, 80, 82, 85], which establishes the lower bound E∗ ≥
σn+1, where {σk} are the singular values of the infinite Hankel matrix of Taylor
coefficients a1, a2, . . . = 1, 1/2!, . . . . Here the relevant value is σ6 = 9.944144081e-11.

The second example of Figure 4.1 is tan(2πz) for n = 12 in 1000 points of the
unit circle. This function is meromorphic but not analytic in the unit disk. Again
we get a nearly-circular error curve, whose winding number is not 25 but 17 because
of the four poles in the disk. Here AAA-Lawson improves the error from 3.16e-7 to
7.08e-8. The red dots in the left image mark poles of the AAA-Lawson approximation.
The poles inside the circle match the poles ±1/4 and ±3/4 of tan(2πz) to 13 digits of
accuracy. We can explain this by noting that these poles can be determined by certain
contour integrals of the boundary data [4, sec. 4], and since r matches tan(2πz) to
many digits on the boundary, the contour integrals must match too. The poles of r
outside the circle are at ±1.250011, ±1.7638, ±2.6420 and ±7.3844. (In the first row
of this figure, no red dots appear because the poles are off-scale. Their positions in
the case of Padé approximations were investigated by Saff and Varga [67].)

Figure 4.2 shows approximations on two noncircular domains. In the first row,
log(0.5 − z) is approximated in 2000 points on an ellipse of half-height 1 and half-
width 0.3. Note how the poles of the approximation line up along the branch cut, a
phenomenon analyzed for Padé approximations by Stahl [73]. It is also interesting to
see that all the support points chosen by AAA lie on that side of the ellipse. The
second row shows approximation of the Airy function Ai(2z) [56] in 4000 points on
the boundary of the unit square, 1000 points in a Chebyshev distribution on each
side. The error curve, with winding number 2n+1 = 21, is nearly circular along most
of its length, while retaining the four corners associated with the square.

Figure 4.3 turns to problems with singularities on the boundary, where rational
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Fig. 4.2. Approximations on an ellipse and a square. The near-circularity effect appears again,
though on the square, the four corners persist. Here and in most of figures to follow, the axis scales
are different for the AAA and AAA-Lawson plots.

functions have their greatest power relative to polynomials, achieving root-exponential
convergence as n → ∞ by means of poles exponentially clustered near the singulari-
ties [29, 30, 31, 55]. In the first row, (1+z4)1/2 is approximated to degree n = 16. The
AAA-Lawson approximation improves the error from 1.38e-1 to 6.49e-3, with poles ly-
ing along branch cuts near each of the four singularities at radii 1.00046, 1.0085, 1.075,
and 1.59. For successful computation of approximations with clustered poles like this,
it is important that the sample grid be clustered too, and in this case the sample points
on the unit circle were placed at angles (π/4) · tanh(linspace(-12,12,1000)) to-
gether with their rotations by angles π/2, π, and 3π/2. Note that there are four
square roots in this function, hence four right angles in the error curve, but these
appear as one because they lie on top of one another.

The second row of Fig. 4.3 shows degree 20 approximation of an analytic function
representing a conformal map of an L-shaped region onto the unit disk, which has a
z2/3 type of singularity at the reentrant corner. Each of the six sides has sample points
with a distribution controlled by tanh(linspace(-12,12,1000)). In [29] it was
shown that AAA rational approximations of conformal maps of polygons can be 10–
1000 times more efficient to evaluate than the standard method of Driscoll’s Schwarz–
Christoffel Toolbox [18]. From Figure 4.3 we see that even better approximations are
available with AAA-Lawson, which improves the accuracy of the approximation in
this case from 8.21e-4 to 1.57e-4.

Figure 4.4 moves from essentially continuous domains to discrete ones consisting
of random points in a rectangle. A rational function of degree n could generically
interpolate 2n+1 data values exactly. Thus the first nontrivial fit occurs with 2n+2
data values, and this is shown in the first row of the figure, with n = 6 and 14 sample
points. As expected, the minimax error is attained at all 14 points. The second row
increases the number of sample points to 100, and now the maximum error, which is
10,000 times larger, is attained at 20 rather than 14 of them. (This is not evident
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Fig. 4.3. Two approximation problems with singularities on the boundary. The second row,
following [29], is the inverse of a Schwarz–Christoffel conformal map. Because of the prevalence of
corner singularities, rational approximations can be a powerful tool in numerical conformal mapping
and other areas of computational complex analysis.
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Fig. 4.4. Approximation of tan(z) at 14 and 100 random points in a rectangle in C. In the
first case, with just 2n+ 2 sample points, the minimax error is attained at every one.

with the calculation as run with the Chebfun default number of 20 Lawson steps, but
emerges if a few hundred Lawson steps are taken to give convergence to more digits
of accuracy.)

Figure 4.5 shows two approximations on domains that are just arcs, a semicircle
and an S-shape, both represented with 500 points in a Chebyshev distribution along
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reduction example of [12], defined on the imaginary axis via the resolvent of a 348× 348 matrix.

each semicircular piece. Figure 4.6 shows, first, an approximation on the unit circle
of a function with an essential singularity in the disk, and second, the clamped beam
example from the NICONET model order reduction collection [12], which was also
considered in [54]. (Another collection of more than 50 examples can be found at the
Model-Order-Reduction-Wiki [52].) Here the approximation domain is the imaginary
axis, which is discretized by 2000 points logarithmically spaced between 0.01i and 100i
together with their complex conjugates. The function to be approximated is defined
via the resolvent of a 348 × 348 matrix whose eigenvalues are in the left half-plane,
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Fig. 4.7. Approximations on the boundaries of an annulus (doubly connected) and a union of
disks (disconnected). In each case the errors corresponding to the two disjoint boundary components
are plotted in different colors. For the annulus, the small red mark near the origin reflects the fact
that the best approximation has error 57.1 times smaller on the outer circle than the inner one. The
two-disks example is related to problems of model order reduction and data compression [6, 46].

making it analytic in the right half-plane. The rightmost pole pairs of the degree 12
rational approximation match those of the underlying matrix to accuracies of 5.5e-7,
9.2e-6, 1.1e-4, and 1.2e-4, counting in from the imaginary axis. Note that in this
example, AAA-Lawson achieves reduction of the error in comparison with AAA by a
factor of about 4, from 6.15 to 1.49. This is 0.03% accuracy in a relative sense, since
the function being approximated takes values as large as 4550.

Our final pair of complex examples, shown in Fig. 4.7, involves domains of more
complicated connectivity. The upper example approximates the function (1− z−2)1/2

on the boundary of the annulus 1 ≤ |z| ≤ 2 (500 equispaced points on the outer
circle together with 500 points each in a tanh(12*linspace(-1,1)) distributions
on the upper and lower halves of the inner circle). Note that as usual, the poles
cluster near the singularities on the boundary, which in this case are at ±1. The
lower example approximates the function z sign(Re(z)) on the union of two circles of
radius 1 about −1.5 and 1.5 (1000 equispaced points on each circle). This function is
not globally analytic, and both AAA and AAA-Lawson tend to have difficulties with
such problems. Indeed if z sign(Re(z)) is replaced by sign(Re(z)), the iteration fails.
Rational approximations on domains with two components arise in data compression
and model order reduction [6, 46].

Reviewing the 14 AAA-Lawson error curves displayed in Figs. 4.1–4.7 (or error
dots, in the case of Fig. 4.4), we note that it seems vividly apparent from the near-
maximal values at most of the points that a near-minimax solution has been found; we
shall discuss the optimality question at the beginning of section 6. Proving this would
be a challenge, however, although the bound E∗ ≥ minz∈Z |r(z)− f(z)| follows from
arguments related to Rouché’s theorem in cases where the error curve is a near-circle
of sufficiently high winding number [35, 37, 41, 80].
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Fig. 5.1. Approximation on real intervals of an analytic function and a function with a sin-
gularity at one endpoint. The latter has exponentially clustered poles approaching within a distance
1.4e-8 of x = 1.

5. Numerical examples, real. For real approximation on real intervals and
unions of real intervals, AAA-Lawson, like AAA itself, is less reliable than in the
complex case but retains its speed and flexibility. We shall present eight examples,
grouping them again in pairs.

The first example of Fig. 5.1 approximates Ai(x) on [−10, 10], which is discretized
by 1000 points in a Chebyshev distribution. Note how the poles lie along curves in
the left half-plane, where the function is larger. (The study of such curves in approx-
imation theory goes back to an investigation of roots of Taylor polynomials of ez by
Szegő [74].) In this case of an analytic function on a single interval, Chebfun’s minimax
gets the answer in 1.7 secs. and its Carathéodory–Fejér command cf does it in just 0.05
secs. [85]. The second example of the figure considers (1 − x)1/2, which has a singu-
larity at the right endpoint, discretized on the grid tanh(linspace(-12,12,1000)).
The poles of this approximation cluster near x = 1 at distances 15.3, 2.1, 0.19, 3.7e-2,
6.4e-3, 9.5e-4, 1.1e-4, 1.0e-5, 5.9e-7, and 1.4e-8. Chebfun minimax is unsuccessful for
this problem with n = 10, though it can handle degrees up to n = 7.

Figure 5.2 turns to functions with a singularity or near-singularity in the interior
of the interval. We pick two examples where AAA and AAA-Lawson are successful,
though failures are common with problems of this kind. The first example is |x|,
the problem made famous by Donald Newman, which is discretized by transplants
of tanh(linspace(-12,12)) to both [−1, 0] and [0, 1]; see [55] and [82, chapter 25].
The AAA-Lawson error of 1.23e-4 is a bit higher than the result 1.07e-4 computed
by Chebfun minimax in 1.2 seconds. As in Figs. 4.2 and 4.3, we see the 12 poles
lining up along a branch cut; their locations are approximately ±0.00138i, ±0.0102i,
±0.0448i, ±0.155i, ±0.4780i, and ±1.98i. The second is the Fermi–Dirac function
1/(1 + exp(10(x− 2))) on the interval [0, 10], as discussed for example in [47, 53], for
which AAA-Lawson gets an error of 9.09e-6. Chebfun minimax gets the better value
8.77e-6 in 0.2 secs. and cf does the same in 0.05 secs. (A more robust computational
strategy for Fermi–Dirac functions is to first transplant [0,∞) to [−1, 1] by a Möbius
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transformation [53, 83].)

Fig. 5.3 considers a pair of problems on a union of two intervals, [−3,−1]∪ [1, 3],
each discretized by 500 points in a Chebyshev distribution. The first function, sin(6x),
is globally analytic, but the second, |x| sin(x), is not. Note how the poles line up along
the imaginary axis, delineating once more an implicit branch cut.

The final pair of examples, shown in Fig. 5.4, are posed on infinite intervals.
The first is the Cody–Meinardus–Varga problem of approximation of ex on (−∞, 0]
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Fig. 5.4. Approximations on (−∞, 0] and (−∞,∞). The first example is the starting point of
the use of rational approximations for numerical solution of partial differential equations [15, 20, 81].

[15, 20, 54, 81, 82]. As described in section 4 of [81], one can compute approximations
for this problem by transplantation of (−∞, 0] to [−1, 1] followed by CF or minimax
approximation, but here, we approximate directly on the original untransplanted in-
terval, which is discretized by 2000 points logarithmically spaced from −106 to −10−6.
The success of such a computation highlights the extraordinary flexibility and stability
of barycentric representations based on support points selected by AAA. The second
example of Fig. 5.4 shows approximation of exp(−x2) on (−∞,∞), discretized by
100 equispaced points in [−1, 1] concatenated with 500 logarithmically spaced points
in [1, 106] and their negatives in [−106,−1]. AAA-Lawson improves the error from
6.92e-6 to 1.04e-6.

In general, we believe that the safest way to compute a real minimax approxima-
tion on a real interval is usually by the Remez algorithm as implemented in Chebfun
minimax, or if the function is smooth, by CF approximation as implemented in cf,
in both cases perhaps after softening up the problem by a Möbius transformation.
The AAA-Lawson approach is most important in cases where these simple tools are
inapplicable, such as unbounded or disjoint intervals as in Figs. 5.3 or 5.4.

6. Convergence properties. Our experience with applying the AAA-Lawson
method to hundreds of examples can be summarized as follows: for analytic functions
on well resolved complex domains, it almost always converges to the minimax solution,
and for nonanalytic functions or real domains, it often does so. The first thing to be
explained about these claims is, how do we know that convergence has successfully
occurred? There is no mathematical guarantee that applies in all cases, which would
indeed be a challenge for any algorithm in the absence of effective criteria for global
optimality. Nevertheless, there is evidence of various kinds. For real approximations
on intervals, there is the equiosillation characterization, which applies to the examples
of section 5. For smooth approximations on complex domains, an error curve is often
found that is virtually circular and of high enough winding number, in which case near-
optimality is guaranteed by arguments related to Rouché’s theorem, as mentioned at
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the end of section 4. This applies to the examples of Fig. 4.1, the first examples of
Figs. 4.2 and 4.6, and the second example of Fig. 4.7. In other cases, including most
of the rest of the examples of section 4, the error curve is nearly circular over most of
its range, suggesting near-optimality without providing a proof. Finally there is the
empirical evidence, as mentioned in the introduction, that the AAA-Lawson algorithm
successfully reproduces all 29 examples computed by Ellacott and Williams [22] by a
different method.

To give some details about the caveat that the problem should involve analytic
functions on well-resolved complex domains, we now summarize five contexts in which
we have found that AAA-Lawson is most likely to fail. After this summary, we will
turn to a particularly interesting aspect of potential nonconvergence.

1. Discretization too coarse. Most applications involve discretization of a con-
tinuum, and trouble often arises if the discretization is too coarse, especially near
singular points where poles need to accumulate. Perhaps this is unsurprising since
even existence of best approximations fails in general on discrete domains, as men-
tioned in section 2. As indicated in the discussion of examples in the last two sections,
we routinely use Chebyshev-type sample point clustering near nonsingular corners or
endpoints of domains and more extreme tanh(linspace(-12,12,npts)) type clus-
tering near singular points.

2. Too close to machine precision. By default, AAA delivers an approximation
with accuracy close to machine precision, and attempted Lawson iterations from such
a point tend to take on a random character, leading to failure. Instead, in standard
double precision arithmetic, it is best to use AAA-Lawson for approximations with
errors down to 10−12 or 10−13 but not much smaller. The Chebfun aaa code reflects
this by running without Lawson if no degree is specified, e.g. aaa(F,Z), and with
Lawson if a degree is specified, e.g. aaa(F,Z,'degree',10). These defaults can be
overridden by specifying aaa(...,'lawson',nsteps) in which case exactly nsteps

Lawson steps are taken, and none at all if nsteps = 0. When we want to com-
pute the minimax approximation to greater accuracy than is delivered by the default
parameters, we specify a large value of nsteps.

3. Degeneracy related to symmetry. Failure often occurs if one attempts a calcu-
lation that does not respect the symmetry of the problem, where the mathematically
correct best approximation is degenerate. For example, an attempt to compute a
degree 3 best approximation to exp(z2) on the unit disk will fail, because the result
should be of degree 2. If the degree specification is changed to 2, the calculation
succeeds.

4. Lack of analyticity. The examples of section 4 illustrated that AAA-Lawson has
little trouble with functions meromorphic in a disk or an annulus. Failures often occur
in the approximation of more deeply nonanalytic functions, however. For example,
the problem with 100 random points of Fig. 4.4 fails if f(z) is changed from tan(z)
to |z|.

5. Real domains. Failures are also common in approximation of real functions on
real domains. As discussed in [54], such problems are difficult for AAA itself.

We now mention a particular failure mode we have observed that is perhaps of
special mathematical interest: period-2 oscillations. Sometimes, even with an analytic
function on a seemingly well-resolved grid, the Lawson iteration enters into a cycle
in which one pattern of weights and errors appears at odd steps and another at even
ones. For example, as shown in Fig. 6.1, this happens with the Fermi–Dirac example
of Fig. 5.2 if 1/(1 + exp(10(x − 2))) is changed to 1/(1 + exp(50(x − 2))). We think
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Fig. 6.1. Convergence failure sometimes takes the form of period-2 oscillations in the Law-
son iteration. The effect is illustrated here for the Fermi–Dirac problem of Fig. 5.2, but with the
transition steepness parameter increased from 10 to 50.

this behavior results from fundamental mathematical properties associated with the
discrete weighted ℓ2 norm of (3.6) and (3.7), and that fixing the problem in a principled
way will require further theoretical and algorithmic developments. The issues in play
may be related to the nonconvergence phenomena for nonlinear Lawson iterations
investigated by Guoyong Shi in [69]. As a practical matter, one can usually fix the
problem by underrelaxation in the update formula (3.7), or by a better distribution of
sample points—here, by putting a larger fraction of points in the transition region—
but of course it would be much better to find a formulation that enabled convergence
without such human intervention. We regard this as an important matter for further
research.

As an engineering precaution against failure, the Chebfun code currently reverts
to the AAA solution if AAA-Lawson fails to make an improvement.

Another convergence puzzle to be investigated concerns the successful linear con-
vergence of the AAA-Lawson iteration in problems with nearly-circular error curves,
as in Fig. 4.1. Here, the nearly-constant error has the effect that the Lawson weight
distribution virtually stops changing from step to step [78], and in particular, effec-
tively never gets close to the sum of delta functions form that an asymptotic analysis
is likely to look for [14, 44]. Nevertheless, the approximations in such cases often
converge quickly, and we have observed that they converge much faster still if (3.7) is
modified to depend on |ej|

2 instead of |ej| (cf. [21, sec. 5]), although in other cases this
modification results in failure. Perhaps a deeper understanding of the convergence
properties of the AAA-Lawson iteration may shed light on these effects.

7. Comparison with Ellacott–Williams and Istace–Thiran algorithms.

As has been mentioned, algorithms for complex rational minimax approximation have
been published previously by Ellacott and Williams (EW) [22] and Istace and Thiran
(IT) [40], building on earlier work by Osborne and Watson [60]. In this section we
comment on the relationship of these to the AAA-Lawson algorithm.

The EW and IT algorithms start from the partial characterizations of best ap-
proximations mentioned in section 2. The local Kolmogorov criterion asserts that if
r = p/q is a local best approximation, then

∥

∥f −
p

q

∥

∥ ≤
∥

∥f −
p+ δp

q + δq

∥

∥(7.1)

for all sufficiently small polynomial perturbations δp and δq. Linearizing gives

p+ δp

q + δq
≈

p

q
+

qδp− pδq

q2
,
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and this suggests the following iteration. Determine an initial guess r0 = r0/q0, and
then define

rk+1 =
pk
qk

+
qkδpk − pkδqk

q2k
, k = 0, 1, . . .(7.2)

by the condition that rk+1 minimizes ‖f − rk+1‖ over polynomials δpk and δqk. Since
qk is known, this is a problem of linear minimax approximation. If δpk and δqk can
be calculated, they define what will usually be a descent direction for the nonlinear
problem of minimizing ‖f − r‖, and the actual choice of rk+1 may then be improved
by a line search in this direction.

Both the EW and IT algorithms aim to execute an iteration of this kind until
convergence to a suitable tolerance; of course we are omitting numerous details. One
of the differences between the algorithms consists in how the minimization subproblem
is solved. Ellacott and Williams do this via a linear Lawson iteration, making their
algorithm potentially slow because it contains an inner iteration embedded in the
outer iteration. Istace and Thiran propose the use of Tang’s Remez-type Chebyshev
approximation algorithm instead [75]. This is potentially quicker, with quadratic
instead of linear convergence. A disadvantage is that a derivative of the error function
is required, which may not be available in applications where f is unknown and can
only be sampled.

This outline highlights four ways in which AAA-Lawson differs from EW and IT:

1. The outer iteration converges linearly, not quadratically.
2. There is no inner iteration, just a linear least-squares problem.
3. The initial guess comes from the AAA algorithm.
4. The rational function is represented in barycentric form.

These are substantial differences, and in the absence of software for EW and IT, it
is unclear how most appropriately to compare AAA-Lawson against them. As just
a partial step, we have made comparisons with our own implementation of the EW
method. First we used the initial guess r0 proposed by Ellacott and Williams, based
on a linear minimax problem, but it proved much more reliable, following (3), to get
r0 from the AAA algorithm. With this improvement, we have been able to solve
about half the problems of sections 4 and 5 by the EW algorithm. (We can also solve
all 29 of the EW test problems, but these are relatively easy examples involving low
degrees ≤ 5 and simple functions on the disk, the half-disk, or the quarter-disk.) In
some of the unsuccessful cases, there appears to be convergence to a local minimum
that is not the global minimum.

We believe that one reason for convergence difficulties of EW is its use of a p/q
representation, with p and q each represented in the monomial basis. Some improve-
ment could probably be achieved by the use of other bases when the domain is not
a disk, calculated perhaps on-the-fly by the Vandermonde-with-Arnoldi method [11].
However, we suspect a greater improvement might be achieved if the algorithm could
be converted to a barycentric form so as to eliminate the difference (4) in the list
above. Explanations of the great difference in stability between p/q and barycentric
representations can be found in [23, sec. 2] and [54, sec. 11]. The development of a
barycentric-EW or barycentric-IT algorithm would be a very interesting subject for
investigation.

8. Discussion. The AAA-Lawson algorithm makes it easy for the first time to
compute real and complex minimax rational approximations on all kinds of domains.
In Chebfun, for example, the commands
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Z = exp(2i*pi*(1:500)/500);

F = exp(Z);

r = aaa(F,Z,'degree',3);

produce a function handle r for the best degree 3 rational approximation of f on
the unit circle in 0.05 secs. on the computer specified in section 4. The calculation
norm(F-r(Z),inf) then gives 9.9318e-6, matching the result published in [22] many
years ago.

What makes the algorithm so effective is that it combines the exceptional stability
of barycentric rational representations, as exploited by the AAA algorithm [54], with
the long-established technique of IRLS iteration to improve the error to minimax—
though in a novel nonlinear barycentric context. It is interesting that, unlike its
predecessors by Ellacott and Williams [22] and Istace and Thiran [40], AAA-Lawson
is not based on an attempt to satisfy optimality conditions.

As discussed in the last two sections, AAA-Lawson has little theoretical founda-
tion at present, and it also suffers from just linear asymptotic convergence, sometimes
at a low rate. These drawbacks of IRLS iteration have been recognized for many
years, as can be seen in this quote from p. 50 of Osborne’s book of 1985 [59]:

The evidence presented here does not provide a recommendation for
the technique [IRLS]. It is shown that the convergence rate is only
first order in general and that even this cannot be guaranteed.

And yet, thanks to its simplicity and lack of dependence on a characterization of
optimal solutions, IRLS has enabled us to develop an algorithm that appears fast and
robust.

This article has considered only standard minimax approximations, without weight
functions. Nonconstant weights are easily introduced by modifying (3.7). Another re-
striction is that we have treated only rational approximations of type (n, n), not type
(m,n) with m 6= n. The more general problem is certainly interesting, and AAA itself
can be generalized to m 6= n as described in [54]. However, though the “Walsh table”
of approximations of a function of all rational types is fascinating, the overwhelming
majority of applications are concerned with types (n, n) or (n− 1, n).
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[54] Y. Nakatsukasa, O. Sète, and L. N. Trefethen, The AAA algorithm for rational approxi-

mation, SIAM J. Sci. Comput., 40 (2018), pp. A1494–A1522.
[55] D. J. Newman, Rational approximation to |x|, Mich. Math. J., 11 (1964), pp. 11–14.
[56] F. W. J. Olver, et al., NIST Handbook of Mathematical Functions, Cambridge, 2010.
[57] G. Opfer, An algorithm for the construction of best approximations based on Kolmogorov’s

criterion, J. Approx. Th., 23 (1978), pp. 299–317.
[58] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Pearson, 2014.
[59] M. R. Osborne, Finite algorithms in optimization and data analysis, Wiley, 1985.
[60] M. R. Osborne and G. A. Watson, An algorithm for minimax approximation in the nonlinear

case, Comput. J., 12 (1969), pp. 63–68.
[61] E. Y. Remes, On approximations in the complex domain, Dokl. Akad. Nauk SSSR, 77 (1951),

pp. 965–968 (Russian).
[62] J. R. Rice, The Approximation of Functions, v. 2, Addison-Wesley, 1969.
[63] J. R. Rice and K. H. Usow, The Lawson algorithm and extensions, Math. Comput., 22 (1968),

pp. 118–127.
[64] C. Runge, Zur Theorie der eindeutigen analytischen Functionen, Acta Math. 6 (1885), 229–

244.
[65] A. Ruttan, A characterization of best complex rational approximants in a fundamental case,

Constr. Approx., 1 (1985), pp. 287–296.
[66] E. B. Saff and R. S. Varga, Nonuniqueness of best approximating complex rational functions,

Bull. AMS, 83 (1977), pp. 375–377.
[67] E. B. Saff and R. S. Varga, On the zeros and poles of Padé approximants to ez. III, Numer.
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