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Abstract

It is known that even-order finite differ-
ence models of hyperbolic partial differential
equations generate spurious oscillations ar-
ound d;scontlnuxtles, and also that they are
unstable in P norms for pg2. This paper pre-
sents an elementary argument involving disper-
sion and dissipation which shows that these
two phenomena are closely related, explains
their physical basis, and reprcduces the known
estimates for the width of the region of os-
cillations and for the strength of the insta-
bility. .

l. Introduction

It is well known that finite difference
formulas for hyperbolic partial differential
equations often suffer from spurious oscilla-
tions near discontinuities. As a model hyper-~
bolic equation it is customary to consider the
simple linear first-order wave equation

ut'-’!ux, u(Xvo):uo () [ (1)
XE (=, ®), t20.

Various precise results for the behavior of
the region of oscillations generated by finite
difference approximations to (1) have been ob-
tained over the years by Apelkrans, Brenner,
Chin, Hedstrom, Serdjukova, Thomée, and others
{1,2,4,6,7]. 1In particular, Chin and Hedstrom
[4] have shown by saddle-point analysis that
the numerical solutions to (1) behave approxi=-
mately like integrals of generalized Airy
functions.

Another widely recognized fact, first
proved by Thomée (1964, unpublished) and also
mentioned on p. 100 of the book by Richtmyer
and Morton [8], is that every finite differ-
ence model of (1) with even order of accuracy
is unstable in the &P norm for every pell,=]
with p#2. See also [5]. For example the leap
frog, Lax-Wendroff, and Crank-Nicolson differ-
ence formulas are all ZP-unstable. The insta-
bility is weak, but it may have undesirable
consequences in extensions to nonlinear prob-
lems, where both %1 and £ have a natural sig-
nificance. For this reason a number of mathe=
maticians have studied 2P-instability of fi=-
nite difference formulas during the past twen-
ty-five years, including Brenner, Hedstrom,
Serdjukova, Stetter, Strang, Thomée, and Wahl-
bin. A wealth of results of this work are
presented in the monograph [3]. Most of the
proofs given there are based on techniques of
Fourier multipliers, the specialization to
constant coefficients of pseudodlfferentlal
operators.

The purpose_of this brief paéer is to
show that both #P-instability and oscillations

at discontinuities are caused by a single pro-
cess of numerical dlsper51on. An even=order
finite difference model is one for which dis-
persion dominates dissipation at low wave num-
bers, so that the wiggles introduced by dis=
persion are not all rapidly damped. By con=-
sidering the highest wave number for which
this remains true, and by estimating its as-
sociated group veloc;ty, we will reproduce
quantitatively the main results alluded to
above. The argument is only heuristiec, and
indeed we state it very loosely so as not to
obscure the physical idea with details. How-
ever, much of this can probably be made rigor-
ous.

In two or more space dimensions, an easily
visualized geometrical focusing process ren-
ders hyperbol;c differential equations ill-
posed in LP., The reason that finite differ-
ence models are 2P-unstable even in one space
dimension is that the dispersion introduced by
discretization can brlng about a similar kind
of focusing. Thlg is analogous to the situa-
tion regarding (R<=) stability of initial
boundary value problems: uncontrolled radia-
tion of waves from the boundary can cause ill-
posedness of a differential equation only in
two or more dimensions, but it can cause in-
stability of a finite dszerence model even in
one dimension [10].
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2, Estimates of dissipation and dispersion

Let Q be a consistent 22-stable finite
difference model of (1) with constant real co-
efficients. The solution to Q is a function
vz u(jh,nk) defined on a grid with space
s%ep h and time step k=constxh. We will also
write v(t) for vizu(.,nk). By substituting
the wave exp(i(Ex+wt)) into Q, where £ is the
wave number and w is the frequency, one ob-
tains the numerical dispeTrsion re¥ation (in
general complex) relating § and w. Consisten=-
cy implies that for £ and w near 0, this re-
lation is a function with the expansion

w =+ AL(iEn)* L « BE(ign) B~ 4+ ..., (2)

where A and B are nonzero real constants, a23
is an odd lnteger called the order of disper-
sion, and B22 is an even integer (possxbly @)
called the order of dissipation. The om;ttee
terms are understood to have order greater
than o if odd, greater than 8§ if even. The
order of accuracy of Q is min{a-1,8-1}, and is
even if a<f (dispersion dominates dissipation
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at low wave numbers), or odd if a>B (dissipa=
‘tion dominates dispersion). An equivalent way
to express (2) is to say that Q has the modi-
fied equation [12]

o B
= u, +an®h 28, puB-l 37w

u .
& x Ix BxB

The idea here is that if Q is applied with
smooth but nonconstant initial data, then the
evolution of the solution in time will be de~
Ecr%b?d more accurately by this equation than
¥y (1) .

: Let Q be applied with initial data con-=
taining a range of wave numbers centered at
£=0. According to (2), the frequency w cor-
responding to a real wave number 20 is not
real unless f=w, but contains aE imaginary
component on the order of £Bfhf~l, (Here and
‘throughout, we ignore constant factors and
wWOrry only about exponents.) It follows that
as t increases, the energy in v(t) at this
wave number will dissipage away on a time
scale on the order of £=Phl=B.” (We know the
sign of B is such that they energy decays ra-
tger than grows, because Q was agsumed to be
L4=gtable.) Conversely, at any fixed time &
we can expect that ener at wave numbers with
g=Byt- <<t, i.e, E>>t~t h(l-B)/B, will have
largely dissipated away, while energy with
E<<t°1/3h(l-6?/B will have decayed very lit-
tle. In other words the wave numbers present
to a significant degree in v(t) cover a range
AE(t) of order of magnitude

AE(t) = £TL/BL(1=8)/8. _ -1 -1/8 (3)

The first expression here implies that if t ig
held constant and the mesh is refined, the

range of wave numbers remaining at time t in-
crgases in proportion to the fractional power

h( 8 - The second implies that if h is
held constant and n increases, the range of

wave numbers decreases like n~ Both of
these interpretations are important, and so
eqs. (4) and (5) below will also be written in
two forms.

So much for dissipation. To quantify
dispersion, we consider the range of group
velocities present in v(t). Under the differ-
ential equation (1), all energy travels at
velocity exactly -1. But under Q, the energy
at each wave number travels instead approxi-
mately at the numerical gzoup velocity C(£) =
=dw (E) /dE obtained by dif erentiating the nu-
merical dispersion relation, provided that
this quantity has negligible imaginary part.
(For illustrations see [9,11].) From here on
let us assume a<8, so that Q is of even order.
"~ Then by (2), the group velocity is

) = -1 +o((gm®ly,

and its imag¥nary part is indeed negligible so
long as £ is not too large. From (3) it fol-
lows that the wave components present in v(t)

Span a range of group velocities AC(t) of the

ordex ‘

AC(t) = t(l#a)/ghsa-l)/ﬁ ~ n(l-a)/B_ (4)
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3. Oscillations around a discontinuity

Suppose the initial distribution contains
a discontinuity of some kind. The ensuing os-
cillations result from the fact that the var-
ious sinuscidal components composing this sig=-
nal travel at different group velocities under
Q, and therefore separate with time. At time
t the width Ax(t) of the train of ogcillations
will be on the order of tAC(t), or by (4),

WIDTH OF REGION OF OSCILLATIONS

Ax(t) a2 t(B‘Pl“Q)/Bh(a"l)/B -~ hn(B"'l-‘l)/B. (5)

From the second estimate we see that the num-

. ber of grid points covered by spurious oscil-

lations grows in proportion to a fractional
power of n as n+w, if R<w. In the nondisgi-
pative case B=w we get the limiting result of
linear growth Ax(t) = hn.

Equation (5) matches the results present-
ed in various forms in (1,2,4,6,7].

4. 9P-instability

The same dispersion process just described
also explains why Q is 2P-unstable for lgp<2.
Given a number t>0, construct initial data for
Q consisting of a narrow spike composed of
wave numbers in the same range +AZ as in (3},

AE(0) = h~1p=1/B, (6)

The point of this choice of wave numbers is
that by the reasoning of Sec. 2, the energy
will not dissipate significantly up to time t:
(3} will be valid, hence also (4) and (5). On
the other hand since the range of wave numbers
is limited, the initial spike can have width
no smaller than 1/AE, i.e.

Ax(0) = hnl/B, 7

From (5) and (7) we see that the initial
spike increases in width up to time t by a
ratio
A:‘(t) zn(B‘-a)/Bo (8)

Since the signal broadens, it must lose ampli-
tude. Assume that at each time, v is a wave
packet of more or less regular shape with amp-
litude llv]l,. (To achieve this, some care in
construction of the initial spike will actu-
ally be necessary.) The P norm [v]lo can then
be expected to have order of magnituge

33
ol = @ Py, = ax® "y, .

By the construction of (§), “vﬂz will not
change much from time 0 to ¢. From (8) we
therefore conclude )
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' is very weak.

For p<2 the exponent in (9) is positive, so
this construction generates growth in the &P
norm which gets worse as n increases, even if
h and k are decreased with t held constant.
This implies that Q is unstable in &P, and in
fact that the powers of the associated dig-
crete solution operator S grow at least as
fast as in (9),

Bafl 1)
Is™l, »n & 720,

We have shown that zp-instability for p<2
can be explained by the dispersion of a narrow
spike into an oscillatory wave train. Con-
versely, instability for p>2 is due to the
fact than an oscillatory wave train may coa-
lesce into a spike (see Fig. 12 of [9]). To
make this happen, in effect we need to reverse
time in the above example. Equivalently, let
vB: from the previgus experiment be taken as
new initial data v¥ for Q. Now if n addition-
al time steps are laken, the initially broad
wave packet will gather into a narrow spike

again. For this process the estimates (8) and
(9) are simply inverted, giving
lvee || 8—‘%(%'--!3
P v (10)

B
_'7‘-T2 = n
v 0)|p

that is, growth in 2P for p>2 ang decay for
p<2. Combining (9) and (10) now gives the
general growth rate bound

INSTABILITY IN &P

Ba|l _1f
lIs"Up »>n B li Pl. (11)

Thus Q is unstable in &P for all p¥2, as we
set out to show. Of course, the instability

For eyample, Is®l; ana [|s?|,
grow at the rates nl/2 and nl/8 for leap frog
and Lax-Wendroff, respectively.

The result (11) is exactly the growth
rate obtained rigorously by Brenner, et al. by
techniques of Fourier multipliers. In fact
Theorems 5.3.1 and 5.3.2 of [2] establish.a
two-gided bound

.é"_“.,ll,_l B“"!I&-&
MlnB 2 Plels| _<munB 127D (12)
P 2
for some constants Ml' ¢ under suitable as-
sumptions. (If B=0, eacﬁ term (B-ua)/B gets
replaced by 1.) Thus our dispersion argument
accounts for the full extent of instability of
finite difference models in 2P. By making the
argument rigorous one could presumably repro-
duce the lower bound (first inequality) in
(12). The upper bound must be obtained by
other means.

[3]
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