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Notes of a Numerical Analyst

The Meaning of Eigenvalues

NICK TREFETHEN FRS

In mathematics, we idealize things. This is an essen-
tial and powerful part of what we do. But we must
be on our guard to make sure the idealizations don’t
lose contact with the phenomena they are intended
to shed light on.

Eigenvalues of nonsymmetric matrices and operators
are a particularly extreme case of this challenge. In
many applications, they don’t have the significance
we are trained to expect.

Let’s look at possibly the most extensively studied
nonsymmetric eigenvalue problem of all: the Orr-
Sommerfeld equation. The topic is stability of fluid
flows. The scientific question is, what makes high
speed flows go turbulent?
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To find answers, for more than a century, fluid me-
chanicians have investigated eigenvalues. The Navier-
Stokes equations are nonlinear, and the eigenvalues
are those of the linearization about a smooth, nontur-
bulent solution. The idea is that if all the eigenvalues
are in the left half-plane, the flow is stable, whereas
if there is an eigenvalue in the right half-plane, it
is unstable and the unstable mode may grow into
turbulence.

Consider the barely distinguishable plots above.
The Reynolds number R is the nondimensionalized
speed, and on the left, at R = 4000, the flow is eigen-
value stable. On the right, at R = 8000, it is eigen-
value unstable. An incredible amount is known about
these eigenvalues, and Steve Orszag got famous for
calculating that the critical value at which one of
them moves into the right half-plane is Re = 5772.22.

So the traditional view is that something suddenly
changes when R hits 5772.22. And of course, there
is a theorem which proves that in a certain sense
this is true.

Yet laboratory experiments almost never fit this pic-
ture. Actual flows don’t show a sharp Reynolds num-
ber for transition to turbulence, and turbulence is
often observed at both R = 4000 and 8000. The
reason becomes clear if we consider the eigenvalue
labeled in red. What exactly does it imply? It implies
that flow perturbations can grow at rate exp(0.003¢).
By ¢ = 300, such a perturbation will be amplified by a
factor of e. This corresponds to a channel 300 times
as long as it is wide, pretty much the limit of what
can be built in the lab. And of course, amplification
by ¢ is not going to drive turbulence; you'll need more
than that. So if you think about this image quantita-
tively, it is hardly surprising that the “instability” it
represents is not observed.

The actual mechanism of transition to turbulence in-
volves other parts of the spectrum, well in the stable
left half-plane, associated with strong nonnormality,
not shown in these pictures.

In fluid mechanics and in other applications, if an
eigenvalue is in the right half-plane, this implies noth-
ing about local behavior. The implications only con-
cern the potential fate of certain trajectories if the
system remains linear and unperturbed as ¢ — oo.
There are systems that behave like that, usually fea-
turing matrices or operators that are symmetric or
nearly so. But in plenty of other cases, certainly in
high Reynolds number fluid mechanics, eigenvalue
analysis has brought confusion. In areas like ecology
and food webs, with all their complexities and time-
dependencies, the idea of inferring anything precise
from whether or not there are eigenvalues in the
right half-plane is really very nebulous.
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