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Abstract
Müntz’s theorem asserts, for example, that the linear span of the even powers
1, x2, x4, . . . is dense in C([0, 1]). We show that the associated expansions are so
inefficient as to have no conceivable relevance to any actual computation. For exam-
ple, approximating f (x) = x to accuracy ε = 10−6 in this basis requires powers larger
than x280,000 and coefficients larger than 10107,000. We present a theorem establishing
exponential growth of coefficients with respect to 1/ε.
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1 Introduction

TheMüntz approximation theorem, conjectured byBernstein [4] and proved byMüntz
[12], is a beautiful result. Suppose we are interested in continuous functions on [0, 1],
i.e., f ∈ C([0, 1]), and we want to approximate them by linear combinations of the
monomials

xa1 , xa2 , . . . ,

where {ak} is a set of exponents (not necessarily integers) satisfying

0 = a0 < a1 < a2 < · · · .

Certainly this is possible if ak = k for each k, by the Weierstrass approximation
theorem [14], but what if the set of powers is sparser? For example, is the span of the
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even powers
1, x2, x4, . . . (1)

dense in C([0, 1])? The theorem characterizes all suitable sets of exponents:

Theorem 1 (Müntz approximation theorem) The linear span of the family {xak } is
dense in C([0, 1]) if and only if

∞∑

k=1

1

ak
= ∞. (2)

Thus the set (1) easily qualifies, as do many other collections of exponents, such as
the primes:

1, x2, x3, . . . , x89, x97, . . . (3)

For discussions of the theoremwith proofs, see [2, 6, 11]. After 1914,Müntz’s theorem
was generalized by Szász and others.

As a numerical analyst, I work with algorithms based on expanding functions in
nonorthogonal bases, a powerful technique in certain contexts [1, 10]. This led me to
consider Müntz’s theorem from a computational angle, and what emerged is startling.
To make the point, it is enough to consider a particular case of what might be regarded
as the most basic nontrivial Müntz approximation. The name “E” alludes to the use of
even powers.

Problem E. Given ε > 0, find an integer n ≥ 0 and coefficients c0, . . . , cn such
that ∣∣∣x −

n∑

k=0

ckx
2k

∣∣∣ ≤ ε, x ∈ [0, 1]. (4)

We shall prove

Theorem 2 If ε < 1/2, then any solution of Problem E has

n >
1

20ε
(5)

and
max
k

|ck | > 0.75ε21/(40ε). (6)

Actually, I believe the following sharper bounds hold:

n >
1

8ε
, (7)

max
k

|ck | >
(1 + √

2)2n

16n1.5
. (8)

For accuracy ε = 10−6, my estimate is that one needs n > 140,000 and maxk |ck | >

10107,000. In such an expansion, the enormous coefficients have oscillating signs, so
that they cancel almost exactly (namely to one part in 10107,000). On a computer in
floating-point arithmetic, all information will be lost unless one works in a precision
of more than 107,000 digits. (The usual precision is 16 digits.)
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2 Proof

Problem E is equivalent to the more familiar problem of approximation of |x | on
[−1, 1]:

∣∣∣|x | −
n∑

k=0

ckx
2k

∣∣∣ ≤ ε, x ∈ [−1, 1]. (9)

Since Lebesgue first used approximations of |x | for a proof of the Weierstrass approx-
imation theorem at age 23 in 1898, a great deal has been learned about this problem,
as recounted in chapter 25 of [14]. In particular, Bernstein’s 1914 paper [5] was a
landmark contribution. Among many other things, Bernstein proved that ε satisfies

ε >
1

4(1 + √
2)(2n − 1)

(10)

for any n ≥ 1, which implies, since 4(1 + √
2) ≈ 9.66,

n >
1

20ε
. (11)

Since ε < 1/2 in (9) implies n ≥ 1, this establishes condition (5) of Theorem 2.
To establish condition (6), we make use of (11). Given ε, let n and {ck} define a

solution (4) of Problem E. If we split the series into roughly the first quarter and the
last three-quarters,then by (11), the first part can approximate |x | no more closely

�1/(80ε)	∑

k=0

ckx
2k +

n∑

k=1+�1/(80ε)	
ckx

2k, (12)

than 4ε. More to our purpose, by a linear scaling, it can approximate |x | over the
subinterval [−1/2, 1/2] no more closely than 2ε. Therefore, since the sum of the two
series in (12) has accuracy better than ε, the second series must have maximal size at
least ε over [−1/2, 1/2]. Since |x2k | ≤ 2−2k for x ∈ [−1/2, 1/2], this implies that
there must be some huge coefficients. Specifically, summing a power series involving
powers of 4 shows that the second series of (12) is bounded by

n∑

k=1+�1/(80ε)	
|ckx2k | ≤ 4

3
max
k

|ck |2−2(�1/(80ε)	+1). (13)

Therefore, we must have

4

3
max
k

|ck |2−2(�1/(80ε)	+1) > ε, (14)

that is,
max
k

|ck | > 0.75ε22(�1/(80ε)	+1). (15)
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This implies (6), completing the proof of Theorem 2. 
�

3 Numerical Estimates

The theorem and proof just given were all about lower bounds, but now let us look at
more accurate (though unrigorous) estimates. Bernstein [5] also proved that the best
degree 2n maximum-norm approximation errors ε satisfy

ε ∼ β

2n
, n → ∞ (16)

for some β, and in 1985, Varga and Carpenter [16] gave the numerical estimate

β ≈ 0.28016949902386913303643649 . . . . (17)

To achieve ε ≤ 10−1, 10−2, 10−3, and 10−4, respectively, this suggests (rounding up
to the next even numbers) that we will need degrees 2n of approximately 4, 28, 282,
and 2802. It turns out that the actual minimal degrees (as computed with the Chebfun
minimax command [7, 8]) are exactly these four numbers. For accuracy 10−6, for
example, though this is beyond Chebfun, it seems clear that the required degree will
be close to n = 280,170.

Thus we see again that an approximation (4) requires degrees of order O(1/ε),
but why are the coefficients so large? The explanation is that the monomials
1, x2, x4, . . . , x2n are an exponentially ill-behaved basis for the space of even degree
2n polynomials on [−1, 1]. Numerical analysts quantify this observation by noting
that the condition number of this set of functions is of the approximate order

κ2n ≈ (1 + √
2)2n ≈ 100.766n (18)

[3, 9]. With 2n = 280,170 for accuracy 10−6, this suggests the expansion coefficients
will need to be of order about 10107,000. Our best empirical approximation based on
calculations for n up to 300 is

max
k

|ck | ≈ 0.066 × (1 + √
2)2n

n1.5
. (19)

Table 1 summarizes our computations and estimates for accuracies ε = 10−1, . . . , 10−8.

Figure 1 illustrates graphically where the big coefficients come from. For 2n =
28, 56, . . . , 140, it plots the coefficients |ck | for k = 0, 1, . . . , n in a monomial expan-
sion of the best approximations.

4 A Remark About Mathematics

Theorem 2 is startling and interesting. From the usual mathematical point of view,
however, it is not much more than that. After all, Müntz’s theorem remains valid
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Table 1 Numerical data for approximation of x by even powers on [0, 1], or equivalently, approximation
of |x | on [−1, 1]. The numbers up to 2802 are based on numerical computations, and the remaining ones
are estimates

accuracy ε minimal degree 2n maximal coefficient |ck |

10−1 4 1.93

10−2 28 7.4 × 107

10−3 282 3.5 × 10103

10−4 2802 101068

10−5 28018 1010,700

10−6 280170 10107,000

10−7 2801696 101,070,000

10−8 28016950 1010,700,000

Fig. 1 Monomial coefficients
|ck | of best approximations of x
by even powers on [0, 1], or
equivalently, of |x | on [−1, 1],
for 2n = 28, 56, . . . , 140. These
values correspond to
approximation errors
approximately
0.01, 0.01/2, . . . , 0.01/5. The
end of the curve is of order 22n ,
and the peak in the middle is of
order (1 + √

2)2n

and beautiful. From the usual mathematical perspective, Müntz’s theorem expresses
a fundamental truth, and Theorem 2, however interesting, is an engineering footnote.

As I have discussed in the context of other problems [13, 15], I believe this usual
perspective is too comfortable. Theorem 2 implies that typical sets of powers deemed
useful by Müntz’s theorem would in fact be useless in any actual application. If it is
not the business of mathematicians to notice and analyze such an effect, then whose
business is it?
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