
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 12, December 2018, Pages 5219–5224
https://doi.org/10.1090/proc/14187

Article electronically published on September 4, 2018

RATIONAL APPROXIMATION OF xn

YUJI NAKATSUKASA AND LLOYD N. TREFETHEN

(Communicated by Yuan Xu)

Abstract. Let E
(n)
kk denote the minimax (i.e., best supremum norm) error in

approximation of xn on [0, 1] by rational functions of type (k, k) with k < n.

We show that in an appropriate limit E
(n)
kk ∼ 2Hk+1/2 independently of n,

where H ≈ 1/9.28903 is Halphen’s constant. This is the same formula as for
minimax approximation of ex on (−∞, 0].

1. Introduction

We consider minimax approximation of xn on [0, 1], that is, best approximation
with respect to the supremum norm ‖ · ‖ on [0, 1]. Although n is usually thought
of as an integer, we permit it to be any nonnegative real number. If n is an even
integer, approximation of xn on [−1, 1] is equivalent to approximation of xn/2 on
[0, 1], and results will be stated for both intervals.

For each integer k ≥ 0, there is a unique minimax approximant p
(n)
k of xn on

[0, 1] among polynomials of degree at most k [14]. Let E
(n)
k = ‖xn − p

(n)
k ‖ denote

the associated error, which will be nonzero whenever k < n. In 1976 Newman and
Rivlin [10] published theorems showing that

(1.1) E
(n)
k ≈ 1

2 erfc(k/
√
n ),

where erfc(s) = 2π−1/2
∫∞
s

exp(−t2)dt is the complementary error function. (The
constant 1/2 is our own, based on numerical experiments.) This formula implies
that a degree k = O(

√
n) suffices for polynomial approximation of xn to high

accuracy. To illustrate this effect, Figure 1 plots E
(n)
k against k2 for the cases

n = 250 and 1000, showing good agreement with (1.1). The data in our two figures
have been computed with the minimax command in Chebfun [3, 9].

We have found that rational functions are far more effective at approximating xn

than polynomials. To be precise, consider approximation by real rational functions
of type (k, k), that is, functions that can be written in the form r(x) = p(x)/q(x)
where p and q are real polynomials of degree at most k. Again, standard theory
shows that for each nonnegative real number n and each nonnegative integer k,

there exists a unique minimax approximant r
(n)
kk [14]; we denote the error by E

(n)
kk =

‖xn−r
(n)
kk ‖. Here we will prove that, as illustrated in Figure 2, the errors are closely

approximated by the formula

(1.2) E
(n)
kk ≈ 2Hk+1/2, H = 1/9.2890254919208 . . . ,
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Figure 1. Errors in minimax approximation of xn by polynomi-
als of degree k; the solid lines show the approximation (1.1). The
convergence is exponential as a function of k2/n. The horizontal
axis is scaled quadratically, so this behavior shows up as straight
lines.
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Figure 2. With rational functions of type (k, k), the convergence
is much faster: exponential as a function of k, approximately in-
dependent of n. The solid line shows the approximation (1.2). In
this experiment n = 1000, but the data would be approximately
the same for any other large value of n.

which has the remarkable property of being independent of n. The number H,
known as Halphen’s constant, appears in the problem of approximation of exp(x)
for x ∈ (−∞, 0], where the minimax errors are asymptotic to exactly the same
expression (1.2). Chapter 25 of [14] gives a review of this famous problem of ra-
tional approximation theory, a story that among others has involved Aptekarev,
Carpenter, Cody, Gonchar, Gutknecht, Magnus, Meinardus, Rakhmanov, Ruttan,
Trefethen, and Varga. Halphen first identified the number now named after him in
1886 [5], though not in connection with approximation theory.

2. Theorems

To prove that the errors satisfy an estimate of the form (1.2), we exploit the
fact that the set of rational functions of type (k, k) is invariant under Möbius
transformation. In particular, we transplant the approximation domain [0, 1] to
(−∞, 0] by the Möbius transformation that maps x = 0, 1 and 1 + 1/(n − 1) to
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s = −∞, 0, and 1:

x =
n

n− s
, s =

n(x− 1)

x
.

The function xn transplants to

(2.1) xn = (n/(n− s))n = (1− s/n)−n,

and this establishes our first lemma.

Lemma 2.1. For any real number n > 0 and integer k ≥ 0, the error E
(n)
kk in

type (k, k) minimax approximation of xn on [0, 1] is equal to the error in type (k, k)
minimax approximation of (1− s/n)−n on (−∞, 0].

Our second lemma quantifies the fact that (1− s/n)−n ≈ es for s ∈ (−∞, 0].

Lemma 2.2. For any n ∈ (0,∞) and s ∈ (−∞, 0),

(2.2) 0 < (1− s/n)−n − es ≤ 1

en
.

Proof. Given n, define g(s) = (1 − s/n)−n − es, with g(−∞) = g(0) = 0. From
a binomial series we may verify that (1 − s/n)n < e−s for each s, and taking
reciprocals we establish that (1− s/n)−n > es, i.e., g(s) > 0. The maximum value
of g(s) will be attained at a point s = σ where the derivative

g′(s) = (1− s/n)−(n+1) − es

is zero, i.e., (1− σ/n)−(n+1) = eσ. At such a point we calculate

g(σ) = eσ(1− σ/n)− eσ = −σeσ/n,

and to complete the proof we note that 0 < −σeσ ≤ 1/e for σ ∈ (−∞, 0). �

We can now derive our main result.

Theorem 2.3. The errors in type (k, k) rational minimax approximation of xn on
[0, 1] satisfy

(2.3) lim
k→∞

lim
n→∞

E
(n)
kk

/
2Hk+1/2 = 1,

where H ≈ 1/9.28903 is Halphen’s constant. In this formula n may range over
nonnegative real numbers or over nonnegative integers.

Proof. Let Fkk denote the error in minimax type (k, k) rational approximation of
es on (−∞, 0]. Aptekarev [1] established the identity

(2.4) lim
k→∞

Fkk

/
2Hk+1/2 = 1,

which had been conjectured earlier by Magnus [6]. On the other hand, Lemmas 2.1
and 2.2 imply that

(2.5) Fkk = lim
n→∞

E
(n)
kk .

Equation (2.3) follows from (2.4) and (2.5). �
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Equation (2.3) says little about the errors associated with any finite value of n.
Numerical data such as those plotted in Figure 2 suggest that much sharper esti-

mates are probably valid, with E
(n)
kk coming much closer to 2Hk+1/2 than is shown

by our arguments.
As mentioned at the outset, approximation of xn on [−1, 1] is equivalent to

approximation of xn/2 on [0, 1] when n is an even integer. The equivalence is
spelled out in the proof of the following theorem, which uses the same notation

E
(n)
kk for [−1, 1] as used previously for [0, 1].

Theorem 2.4. The errors in type (k, k) rational minimax approximation of xn on
[−1, 1] satisfy

(2.6) lim
k→∞

lim
n→∞
n even

E
(n)
kk

/
2H�k/2�+1/2 = 1.

In this formula n ranges over nonnegative even integers.

Proof. Let n be a nonnegative even integer. If k is even, then by the change of
variables s = x2 (see for example p. 213 of [14]), we find that type (k, k) approxi-
mation of xn on [−1, 1] is equivalent to type (k/2, k/2) approximation of xn/2 on
[0, 1]. If k is odd, then the uniqueness of best approximants implies that the type
(k, k) approximant of xn on [−1, 1] must still be even, hence the same as the type
(k−1, k−1) approximant (see e.g. Exercise 24.1 of [14]). These observations justify
the floor function 	k/2
 of (2.6). �

If n is odd, the errors are approximately but not exactly the same.

3. Discussion

In [14] it is emphasized that rational approximants tend to greatly outperform
polynomials in cases where (i) the function to be approximated has a nearby singu-
larity or (ii) the domain of approximation is unbounded. Approximation of xn on
[0, 1] is essentially a problem of type (i), with nearly singular behavior at x ≈ 1 (not
technically singular, of course, but one could speak of a “pseudo-singularity”). It is
interesting that the proof of Theorem 2.3 proceeds by conversion to an equivalent
problem of type (ii).

The k = O(
√
n) effect for polynomial approximation of xn has practical conse-

quences. For example, Chebfun’s method of numerical computation with functions
depends on representing them adaptively to approximate machine precision (≈16
digits) by Chebyshev expansions. Table 1 lists the degrees k of the Chebfun poly-
nomials representing various powers xn on [0, 1]. We see that for small n, the
system requires that k = n, but for larger values, each quadrupling of n brings
approximately just a doubling of k.

Another aspect of the k = O(
√
n) effect is discussed by Cornelius Lanczos in

a fascinating video recording from 1972 available online [7] (beginning at about
time 10:00); for a written discussion see chapter 5 of his book [8]. Lanczos speaks
of the monomials {xn} as a “tremendously nonorthogonal system,” a fact quan-
tified by the Müntz–Szász theorem [12], and observes that it was this effect that
led him to invent what are now called Chebyshev spectral methods for the nu-
merical solution of differential equations [2,8,14]. Numerical analysts would rarely
cite the Müntz–Szász theorem, but they are well aware that monomials provide
exponentially ill-conditioned bases on real intervals, making them nearly useless for
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Table 1. Chebfun [3] constructs a polynomial of an adaptively
determined degree k to represent a function on a given interval to
about 16 digits of accuracy. For xn on [0, 1], k = n is needed for
smaller values of n, whereas for larger values, k grows at a rate
O(

√
n) consistent with (1.1).

n 1 4 16 64 256 1024 4096

k 1 4 16 44 91 178 349

numerical computing, whereas suitably scaled Chebyshev polynomials are excellent
for computation because they give well-conditioned bases.

One can explain intuitively why k = O(
√
n) suffices for polynomial approxima-

tion of xn as follows. As is well known, polynomials are intrinsically nonuniform in
their representation power on an interval [4, 14]. They have more power near the
endpoints than in the middle, an effect quantified by the O((1−x2)−1/2) factor that
appears widely in analyses of orthogonal polynomials on [−1, 1]. For example, the
grids used in Chebyshev spectral methods cluster quadratically near the endpoints
and give enhanced resolution of functions with boundary layers. This enhanced
resolution is precisely the issue, for xn is a function with a boundary layer, making
its transition from 0 to 1 over a region x ≈ 1 of a width that scales as O(1/n).
Since polynomials have quadratic resolution for x ≈ 1, degree k = O(

√
n) is the

right scaling to resolve this function.
These observations pertain to polynomial approximation of xn, whereas the new

results of this paper concern the much greater power of rational approximations.
There is some previous literature on rational approximation of xn, and an early
survey can be found in [11]. The most developed part of this problem has been the
case in which n is a fixed positive number that is not an integer and k → ∞. Here
one obtains root-exponential convergence with respect to k; see [13] for both sharp
results and a survey of earlier work. The more basic phenomenon considered in the
present paper of exponential convergence for k → ∞ for large n seems not to have
been noted previously nor, in particular, the connection with ≈9.28903. Perhaps
there may be applications where this too will have practical consequences.
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