
29. Boussinesq EquationRussell's discovery of solitary waves in the 1840s (! ref ) raised a challenge: to devise a mathemat-ical theory for water waves that would admit a wave solution that did not disperse with time. Inthe 1870s, the French hydrodynamicist Joseph Boussinesq proposed what he believed was a suitablemodel (Fig. 1). By assuming that the wave amplitude was small compared to the canal depth, hearrived at the Boussinesq equation,utt � uxx = uxxxx + (u2)xx; (1)posed for x 2 IR and t � 0 with initial conditions for u(x; 0) and u0(x; 0). This equation hassomething of the avour of a \square of the KdV equation" (derived two decades later) in thatit is symmetric with respect to x and �x. It consists of the 1D wave equation (! ref ) plus twodispersive terms, one linear and one nonlinear.The Boussinesq model remained of interest mainly to hydrodynamicists until the discovery ofsolitons in the 1970s, which sparked worldwide interest in nonlinear wave equations. Then it wasfound that, like the KdV equation, (1) admits soliton solutions|locally supported waves whichinteract with one another with a phase shift but no change in shape. The solitons travel in bothdirections, allowing for head-on collisions. Hirota developed analytic expressions for solitons; atypical interaction is shown in Figure 2. Other researchers devised inverse scattering techniques.As with the Sine{Gordon equation (! ref ), one can generate a series of solutions to the Boussinesqequation from a single given solution using the B�acklund transform.These remarkable developments could be carried out despite a basic fact about (1): it is explosivelyill-posed. This can be seen by considering low amplitude solutions (so that the nonlinear term isnegligible) of the form u(x; t) = "e i(kx+!t). The dispersion relation is !2 = k2�k4, so for jkj > 1 wehave an imaginary frequency ! and exponential growth in t at a rate approximately ek2t, which is un-bounded since k is unbounded. Because of this behaviour, results like that of Figure 2 are rather the-oretical. The slightest perturbation of the initial data would change the behaviour utterly|and in-

Fig. 1: Illustration from Boussinesq (1872)
deed, this �gure was not generatedby a general-purpose discretisationof the PDE applicable to arbitraryinitial conditions, for such a com-putation would be impossible.The literature on the Boussinesqequation, especially in earlier years,is not very clear on the matterof its ill-posedness. (Some au-thors tried to cope with its di�-cult behaviour numerically, as if ill-posedness of a PDE could be neu-tralised by su�ciently clever dis-cretisation.) Gradually, however,it became clear that perhaps at-tention should be directed to othersimilar equations that are well-14 August 2001: Mark Embree

can an ill-posed equation be physical?
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Fig. 2: soliton interactions

posed. One is the \improved Boussinesq" equa-tion, utt � uxx = uxxtt + (u2)xx; (2)where the x-derivative on the fourth order termhas been replaced by a mixed derivative. Thisgives rise to the dispersion relation !2 = k2=(1 +k2). Dropping the non-linear term, we get the\linear Boussinesq" equation, utt � uxx = uxxtt.Equation (1) can also be altered by ipping thesign on the fourth order derivative, yielding the\good Boussinesq" equation,utt � uxx = (u2)xx � uxxxx: (3)Now the dispersion relation is !2 = k2 + k4, andagain we have a well-posed problem. Both thegood and improved Boussinesq equations exhibitmany attractive properties of the classical Boussi-nesq model, including solitons and analytic solu-tions via the inverse scattering transform.Research on the Boussinesq equation and its vari-ants ourishes, with interesting questions con-cerning existence and uniqueness of solutions,blow-up in �nite time, multidimensional ana-logues, and unusual breather solitons, more fa-miliarly associated with the Sine{Gordon equa-tion (! ref ).
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