29. Boussinesq Equation

can an tll-posed equation be physical?

Russell’s discovery of solitary waves in the 1840s (— ref) raised a challenge: to devise a mathemat-
ical theory for water waves that would admit a wave solution that did not disperse with time. In
the 1870s, the French hydrodynamicist Joseph Boussinesq proposed what he believed was a suitable
model (Fig. 1). By assuming that the wave amplitude was small compared to the canal depth, he
arrived at the Boussinesq equation,

Ut — Uggy = Uggaz + (uz)za:a (1)

posed for z € IR and ¢ > 0 with initial conditions for u(z,0) and u'(z,0). This equation has
something of the flavour of a “square of the KAV equation” (derived two decades later) in that
it is symmetric with respect to z and —z. It consists of the 1D wave equation (— ref) plus two
dispersive terms, one linear and one nonlinear.

The Boussinesq model remained of interest mainly to hydrodynamicists until the discovery of
solitons in the 1970s, which sparked worldwide interest in nonlinear wave equations. Then it was
found that, like the KdV equation, (1) admits soliton solutions—locally supported waves which
interact with one another with a phase shift but no change in shape. The solitons travel in both
directions, allowing for head-on collisions. Hirota developed analytic expressions for solitons; a
typical interaction is shown in Figure 2. Other researchers devised inverse scattering techniques.
As with the Sine-Gordon equation (— ref), one can generate a series of solutions to the Boussinesq
equation from a single given solution using the Bécklund transform.

These remarkable developments could be carried out despite a basic fact about (1): it is explosively
ill-posed. This can be seen by considering low amplitude solutions (so that the nonlinear term is
negligible) of the form u(z,t) = ee/*#+«") . The dispersion relation is w? = k2 —k*, so for |k| > 1 we
have an imaginary frequency w and exponential growth in ¢ at a rate approximately ekzt7 which is un-
bounded since £ is unbounded. Because of this behaviour, results like that of Figure 2 are rather the-
oretical. The slightest perturbation of the initial data would change the behaviour utterly—and in-
deed, this figure was not generated
by a general-purpose discretisation
of the PDE applicable to arbitrary
initial conditions, for such a com-
putation would be impossible.

Profil d'une onde solitaire.

The literature on the Boussinesq
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Fig. 1: Illustration from Boussinesq (1872) tention should be directed to other
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posed. One is the “improved Boussinesq” equa-
tion,
Upt — Ugg = Ugatt + (UZ)zzv (2)

where the z-derivative on the fourth order term
has been replaced by a mixed derivative. This
gives rise to the dispersion relation w? = k2 /(1 +
k%). Dropping the non-linear term, we get the
“linear Boussinesq” equation, uy — Uz = Ugpgyt-
Equation (1) can also be altered by flipping the
sign on the fourth order derivative, yielding the
“good Boussinesq” equation,

Ut — Ugy = (u2)zz — Uggzzx- (3)

Now the dispersion relation is w? = k? + k%, and
again we have a well-posed problem. Both the
good and improved Boussinesq equations exhibit
many attractive properties of the classical Boussi-
nesq model, including solitons and analytic solu-
tions via the inverse scattering transform.

Research on the Boussinesq equation and its vari-
ants flourishes, with interesting questions con-
cerning existence and uniqueness of solutions,
blow-up in finite time, multidimensional ana-
logues, and unusual breather solitons, more fa-
miliarly associated with the Sine-Gordon equa-
tion (— ref).

Fig. 2: soliton interactions
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