7. Laplace equation

the basis of potential theory

The Laplace equation is so important that functions that satisfy it have a special name: they are
said to be harmonic. The equation is

Au=0, Q)

where A = 02/0x? + -+ + 02/8z§ is the operator known, inevitably, as the Laplacian. Other
standard notations for the Laplacian of u are V?u,V - Vu, and divgradu. The Laplacian operator
and thus the Laplace equation are isotropic, that is, invariant with respect to rotations of space.

There is even a name for the field of study of Laplace’s equation—potential theory—and this name
gives a hint as why the equation is so important. Throughout the sciences, a potential is a scalar
function of space whose gradient, a vector, represents a field that is divergence- and curl-free. As
a consequence, Laplace’s equation arises in the description of all kinds of conservative physical
systems in equilibrium. For example, if u is temperature, then Vu is the temperature gradient,
which is associated with flow of heat; if Au = 0, then energy is conserved and the heat fluxes
balance, so u is independent of time. For another example, if u is gravitational (or electrostatic)
potential, then Vu is the gravitational (electric) field, and the equation Au = 0 expresses the
condition of conservation of energy for a massive (charged) particle in a region free of other masses
(charges).

Laplace investigated his eponymous differential equation in several papers in the 1780s and made
it famous with his treatise Mécanique Céleste some years later. The equation had already been
studied by Euler in 1752 and Lagrange and others, however, and the essential ideas of potential
theory have their roots with Newton in the 17th century.

A fundamental solution of Laplace’s equation is a function u that satisfies (1) everywhere in space
except at a single point, where the behaviour is that of a delta function, Au = ¢. For any dimension
d > 3, the fundamental solution with singularity at the origin is

u(r) = Car®™*, 2

where 7 = (2} + -+ + 22)Y/2 and Cy = 7~¥2T(d/2)/(4 — 2d). (For d = 2 it is u(r) = (logr)/2n.)
In particular, the potential associated with a point mass or charge has the form 7! in 3D. The
nucleus of an atom and the sun in our solar system are perhaps the two most familiar electrostatic
and gravitational examples, respectively.

Laplace’s equation is the classic example of an elliptic PDE. This means that it has no character-
istics, and one typically encounters the problem of satisfying (1) in the interior of a domain subject
to one boundary condition at each point along the boundary. If the boundary data are function
values, this is a Dirichlet problem, and if they are normal derivatives, it is a Neumann problem.
Solutions to such problems are unique and infinitely differentiable—in fact, real analytic. Provided
the domain is connected, the solution depends at every point on all of the boundary data.

For certain domains of special forms, solutions to Laplace’s equation can be obtained by separation
of variables. In the three-dimensional box [0, 7]2, for example, one solution is sin(maz) sin(ny) exp(kz)
for any integers m and n and k?> = m? + n?, and general boundary data can be handled by ex-
pansion in series of these and similar functions. In a spherical ball in three dimensions, separation
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of variables leads to solutions known as solid harmonics, and their restrictions to the sphere are
known as spherical harmonics, illustrated in Figure 1.

Laplace’s equation is also the classic example of a PDE whose solutions satisfy a variational prin-
ciple. Given a function u defined in a domain  in d-space and satisfying Dirichlet boundary
conditions on the boundary, the associated Dirichlet integral is

ou ., ou
/Q(Vu)~(Vu)dz=/Q(8—xl) et (e drg. 3)

Under reasonable assumptions, it can be shown that there is a unique u that minimises (3), and
it is precisely the solution of Laplace’s equation with the given boundary data. This method of
construction, known as the Dirichlet principle, is the starting point of the finite element method,
the preeminent technique for solving elliptic PDE numerically.

Harmonic functions satisfy the mazimum principle: the maximum of any harmonic function v in a
domain  is achieved on the boundary of 2. (Symmetry gives us also a minimum principle.) If the
maximum is also achieved in the interior, then u must be constant throughout 2, and according to
Liowville’s theorem, if a function harmonic on all of IR? is bounded, then it must be constant.

Harmonic functions also satisfy the mean
value property: the value at any point is
equal to the mean of all the values on any
sphere centered there. (Conversely, a func-
tion that satisfies the mean value property
must be harmonic.) The value at a point
inside a sphere that is not the center can be
obtained by an integral known as Poisson’s
formula. By consideration of appropriately
weighted means, this idea can be gener-
alised to means over non-spherical surfaces,
and this is the starting point of the sub-
ject of integral equations. Further pursuit
of connections between behaviour of poten-
tials in a volume and on a boundary sur-
face leads to Gauss’s Law, Stokes’ Theo-
rem, Green’s theorems, and much more.

Fig. 1: The (6, 1) spherical harmonic
Y16 = (cos ¢) Pg (cos 0)
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