19. One-way wave equations

pseudodifferential operators € absorbing boundaries

The second-order wave equation (— ref) is isotropic: invariant with respect to rotation in space. In
two dimensions, for example, the equation uy = ugy + uy, admits plane wave solutions u(z,y,t) =
exp(i(wt + ku @ + kyy)) for any wave numbers k,, k, and frequency w that satisfy w? = k2 + k’;, and
the curves w = constant of this dispersion relation are concentric circles in the k;-k, plane.

What if we want a PDE that behaves like just half of the wave equation? To be specific, suppose
we want an equation that propagates a plane wave exactly like wy = 1z + uyy if the 2 component
of the velocity is negative, but does not propagate waves at all in any positive = direction. This
idea has proved fruitful in underwater acoustics, geophysical imaging (‘migration’), and the design
of numerical ‘radiation’ or ‘absorbing’ boundary conditions.

We can formulate the mathematical problem as follows. The dispersion relation for uy = tze + gy

can be written
ke = +wV1 — 82 (1)

with s = ky/w. The ideal one-way equation would have exactly half of this dispersion relation:
by = twV1 — s2. (2)
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Fig. 1: wave propagation directions (top) and dispersion relations (bottom)
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The problem with (2) is that it does not correspond to any partial differential equation. In fact, it
is the dispersion relation of a pseudodifferential equation which is non-local and not easily worked
with. This is the origin of the idea of approximate one-way wave equations, or one-way wave
equations for short. Such equations were proposed in the 1970s by Tappert and by Lindman and
made famous by Engquist and Majda.
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To get a PDE with approximate one-way wave behaviour, we replace the square root in (2) by a
rational function r(s), i.e., a quotient of polynomials of degrees m and n, to obtain

ky = wr(s). (3)

Specifically, let us take r(s) to be a Padé approximant of v/1 — s2, a rational function of specified
type whose Taylor series about s = 0 matches that of v/1 — s2 as far as possible. For example,
the Padé approximants of types (0,0), (2,0), and (2,2) are rgy(s) = 1, ry0(s) = 1 — 55% and
Too(s) = (1 — 3s%)/(1 — }s?). Setting ky = r(ky/w) and clearing denominators gives the dispersion
relations ky = w, kyw = w? — ;kﬁ, and kyw? — ikzkﬁ =w? — %wké. These correspond to the
PDEs uy, = wy, Uy = uy — %uw (known as the parazial equation), and

1 _ 3
Ugtt — Uzyy = Uttt — T Utyy- (4)

We put this third-order example in a box as a representative of an infinite sequence of one-way
wave equations derived from approximations along the ‘staircase’ of the Padé table of types (n,n)
and (n+2,n). It is known that in various senses, approximants from this staircase are well-posed,
whereas those from off the staircase are ill-posed.

Figure 2 illustrates the use of one-way wave equations as absorbing boundary conditions. To the
eye, the second order equation is already excellent, so there seems little need to go to the third-
order equation (4), though looking at numbers rather than pictures would reveal that (4) provides
a further improvement.

order (2,0) absorbing boundary condition
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Fig. 2: One-way wave equations as absorbing boundaries on [0,1.4] x [-0.7,0.7]
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