
19. One-way wave equationsThe second-order wave equation (! ref ) is isotropic: invariant with respect to rotation in space. Intwo dimensions, for example, the equation utt = uxx + uyy admits plane wave solutions u(x; y; t) =exp(i(!t+kxx+kyy)) for any wave numbers kx, ky and frequency ! that satisfy !2 = k2x+k2y, andthe curves ! = constant of this dispersion relation are concentric circles in the kx-ky plane.What if we want a PDE that behaves like just half of the wave equation? To be speci�c, supposewe want an equation that propagates a plane wave exactly like utt = uxx + uyy if the x componentof the velocity is negative, but does not propagate waves at all in any positive x direction. Thisidea has proved fruitful in underwater acoustics, geophysical imaging (`migration'), and the designof numerical `radiation' or `absorbing' boundary conditions.We can formulate the mathematical problem as follows. The dispersion relation for utt = uxx+uyycan be written kx = �!p1� s2; (1)with s = ky=!. The ideal one-way equation would have exactly half of this dispersion relation:kx = +!p1� s2: (2)
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ky kxFig. 1: wave propagation directions (top) and dispersion relations (bottom)The problem with (2) is that it does not correspond to any partial di�erential equation. In fact, itis the dispersion relation of a pseudodi�erential equation which is non-local and not easily workedwith. This is the origin of the idea of approximate one-way wave equations, or one-way waveequations for short. Such equations were proposed in the 1970s by Tappert and by Lindman andmade famous by Engquist and Majda.4 March 2001: Lloyd N. Trefethen

pseudodi�erential operators & absorbing boundariesTo get a PDE with approximate one-way wave behaviour, we replace the square root in (2) by arational function r(s), i.e., a quotient of polynomials of degrees m and n, to obtainkx = !r(s): (3)Speci�cally, let us take r(s) to be a Pad�e approximant of p1� s2, a rational function of speci�edtype whose Taylor series about s = 0 matches that of p1� s2 as far as possible. For example,the Pad�e approximants of types (0; 0), (2; 0), and (2; 2) are r0;0(s) = 1, r2;0(s) = 1 � 12s2, andr2;2(s) = (1� 34s2)=(1 � 14s2). Setting kx = r(ky=!) and clearing denominators gives the dispersionrelations kx = !, kx! = !2 � 12k2y, and kx!2 � 14kxk2y = !3 � 34!k2y . These correspond to thePDEs ux = ut, uxt = utt � 12uyy (known as the paraxial equation), anduxtt � 14uxyy = uttt � 34utyy : (4)We put this third-order example in a box as a representative of an in�nite sequence of one-waywave equations derived from approximations along the `staircase' of the Pad�e table of types (n; n)and (n+2; n). It is known that in various senses, approximants from this staircase are well-posed,whereas those from o� the staircase are ill-posed.Figure 2 illustrates the use of one-way wave equations as absorbing boundary conditions. To theeye, the second order equation is already excellent, so there seems little need to go to the third-order equation (4), though looking at numbers rather than pictures would reveal that (4) providesa further improvement. order (2; 0) absorbing boundary condition

order (0; 0) absorbing boundary conditionFig. 2: One-way wave equations as absorbing boundaries on [0; 1:4] � [�0:7; 0:7]ReferencesJ. F. Claerbout, Imaging the earth's interior, Blackwell, London, 1985.B. Engquist and A. Majda, Absorbing boundary conditions for the the numerical simulation of waves, Math.Comp., 31 (1977), 629{651.L. Halpern and L. N. Trefethen,Wide-angle one-way wave equations, J. Acoust. Soc. Am., 84 (1988), 1397{1404.E. L. Lindman, `Free-space' boundary conditions for the time dependent wave equation, J. Comp. Phys., 18 (1975),66{78.F. D. Tappert, The parabolic approximation method, in Wave propagation and underwater acoustics, eds. J. B.Keller and J. S. Papadakis, Lect. Notes Phys. 70, Springer, 1977, 224{287. c1999


