15. Wave equation in 1D

In one dimension the wave equation (— ref) takes the form

Utt = Ugz, (1)

the simplest second order hyperbolic PDE. The standard example of a physical system governed
by the wave equation is a vibrating ideal elastic string (such as a guitar string) fixed at both
ends. If the string is distorted, or plucked, at some initial time and then allowed to vibrate, the
displacement of the resulting transverse wave will be a solution of (1). This equation also models
many other physical problems, such as propagation of sound waves in a tube.

An initial value problem can be posed by combining (1) with initial conditions

u(w,O) :f(z)v ut(z,O) =g($).

The unique solution to this problem can be expressed by d’Alembert’s formula,

(e, t) = %[f(z—&-t) T

dy.
5/, g(y)dy

Alternatively, for any initial data, solutions
to (1) can be written as a linear combina-
tion

U
' u(z,t) = F(z +1) + Gz — 1),
where F' represents a left-going and G a
right-going wave. D’Alembert’s solution is
the special case in which the left-going and

t I right-going waves are
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Fig. 1: Propagation in a single direction G(z) = if(z) ~3 g(y) dy.
0

Consider an example with initial conditions F(z) = e~*" and G(z) = 0, i.e., a left-going Gaussian
pulse. In Figure 1 we do not specify any boundary conditions but just observe the propagation of
the wave as time progresses. In Figure 2, on the other hand, we restrict the same problem to the
interval [—L, L] and specify boundary conditions

u(—L,t) =0 (Dirichlet),
=0

ug (L, t) (Neumann).
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left-going and right-going characteristics

Darker and lighter lines indicate positive
and negative wave heights, respectively.
The Dirichlet condition asserts that the
solution vanishes at the left boundary.
Thus as the wave approaches and hits
the wall, the crest diminishes and is re-
flected back along the boundary. The
Neumann condition requires the normal
derivative to be zero at the right end.
Here the wave approaches the wall and
is reflected back just as it came. This
wave pattern can be interpreted as an
idealisation of sound waves in a clarinet,
where the pressure deviation from am-
bient is zero at the open end while its
derivative is zero at the reed.

Like its n-dimensional generalisation,
the 1D wave equation can be stud- Fig. 2: Effect of Dirichlet (left) and
ied by Fourier analysis. For any wave Neumann (right) boundary conditions
number k£ € IR, the wave e¢i(kztwt)
is a solution to (1) provided that the
frequency w satisfies w? = k2, ie.,
w = *|k|. This dispersion relation is right-going left-going
sketched in Figure 3. On a bounded waves waves

domain [0, L] with Dirichlet boundary
conditions, the eigenfunctions of the
Laplacian are just the sine functions
sin(jrz /L), so Fourier analysis remains
applicable, with the continuous ra.nge of Fig. 3: Dispersion relation
wave numbers replaced by the discrete
subset, 7/L,27/L,3n/L,....

The 1D wave equation is a starting point for more complicated hyperbolic PDEs. For example, a
forcing function F(z,t) can be incorporated which acts as a source or sink for the wave form,

Ut = Ugpy + .7:(1, t) (2)

Two forcing functions of particular interest give the Klein—Gordon and Sine-Gordon equations
(— refs).
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