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Eight Perspectives on the
Exponentially Ill-Conditioned
Equation \bfitvarepsilon \bfity \prime \prime  - \bfitx \bfity \prime + \bfity = 0\ast 

Lloyd N. Trefethen\dagger 

Abstract. Boundary-value problems involving the linear differential equation \varepsilon y\prime \prime  - xy\prime + y = 0
have surprising properties as \varepsilon \rightarrow 0. We examine this equation from eight points of view,
showing how it sheds light on aspects of numerical analysis (backward error analysis and ill-
conditioning), asymptotics (boundary layer analysis), dynamical systems (slow manifolds),
ODE theory (Sturm--Liouville operators), spectral theory (eigenvalues and pseudospectra),
sensitivity analysis (adjoints and SVD), physics (ghost solutions), and PDE theory (Lewy
nonexistence).

Key words. ill-conditioning, boundary layer analysis, slow manifold, turning point, pseudospectra,
Sturm--Liouville operator
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1. Introduction. Recently I visited Bernd Krauskopf and Hinke Osinga and their
dynamical systems group at the University of Auckland. In our discussions, we were
fascinated to find the different perspectives we had on the simple equation

(1.1) \varepsilon y\prime \prime  - xy\prime + y = 0,

where \varepsilon is a small positive constant. My interpretations were rooted in numerical
analysis and theirs in geometry, and it was remarkable what deep differences in per-
ception this led to. As we examined the equation, we found many other viewpoints
coming into the picture too. This paper employs this archetypal equation to make
connections among a wide range of mathematical topics. It is aimed at anyone who
has studied differential equations and would like to see more of their implications.

Equations like (1.1) were mentioned at least as long ago as the 19th-century book
by Forsyth [14, section 58], and it is a variant of the Hermite equation y\prime \prime  - 2xy\prime = \lambda y
related to Hermite polynomials [46, Table 18.8.1]. Its crucial feature is the change
of sign of the coefficient x at x = 0, which is called a turning point, and attention
was drawn to the difficulties of such equations in a 1970 paper by Zuckerberg and
O'Malley [1]. In the Soviet literature, such problems had been considered by Tikhonov
and others beginning in the late 1940s [56, 57, 63], as reviewed in a SIAM book and a
SIAM Review article in the 1990s by Tikhonov's student Adelaida Vasilieva [61, 62].
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Our interest will be in the context of a two-point boundary-value problem on [ - 1, 1].
To be definite, let us arbitrarily fix the boundary values

(1.2) y( - 1) = 2, y(1) = 1.

The unusual properties of boundary-value problems involving (1.1) have been dis-
cussed in many works since [1], including [19, 20, 26, 34, 35, 36, 37, 39, 42, 49, 51, 59,
65], and surveys can be found in [53] and [64]. The present paper differs from most of
the existing literature in that it is not so much focused on solving these challenging
problems as on examining the deeper significance of what makes them challenging.

One aspect of (1.1) is that it is far from self-adjoint. Its adjoint equation,

(1.3) \varepsilon y\prime \prime + xy\prime + 2y = 0,

has equally extreme but complementary properties. In the final sections 8--10 of this
paper, the focus will be on (1.3) as much as (1.1).

2. Existence, Uniqueness, and Exact Solution. Equation (1.1) takes the form
of a linear, second-order, variable coefficient ODE with a nonvanishing leading-order
term. As shown in many textbooks, it will accordingly have a two-dimensional vector
space of solutions, and in fact, since the coefficients are analytic functions of x, the
solutions will be analytic for all x and could be computed in principle by Taylor series.
One solution is simply y(x) = x. The general solution can be written

(2.1) y(x) = Ayodd(x) +Byeven(x) = Ax+B

\biggl[ 
 - ex

2/2\varepsilon + x\varepsilon  - 1

\int x

0

es
2/2\varepsilon ds

\biggr] 
for arbitrary constants A and B (see [26, eq. (1.3.10)] or [64, eq. (16)]). Note that
this representation has the property that the first term is odd and the second is even.
Alternative formulas for the analytic solution in terms of parabolic cylinder (= Weber)
functions [45] are given in a number of references including [26, 37, 64].

The distinctive feature of (2.1) is the exponential growth of yeven when x is large,
whether positive or negative. This function consists of the difference of two positive
quantities, namely, ex

2/2\varepsilon and x\varepsilon  - 1 times its indefinite integral. For \varepsilon \ll x2, the latter
term dominates, making yeven exponentially large and positive. We use the word
``exponentially"" loosely. More precisely, yeven(x) \sim \varepsilon x - 2 exp(x2/2\varepsilon ) as \varepsilon x - 2 \rightarrow 0.

Now let us bring in the boundary conditions (1.2). This gives a mathematically
standard linear two-point boundary-value problem (BVP), which will have a unique
solution if and only if the corresponding homogeneous problem,

(2.2) \varepsilon y\prime \prime  - xy\prime + y = 0, y( - 1) = 0, y(1) = 0,

has only the zero solution. This is indeed the case when \varepsilon is small, as we can argue as
follows. Since yeven is even, zero boundary conditions imply A = 0 in (2.1). So B = 0
is the unique value satisfying (2.2) if and only if yeven(1) is nonzero. In fact, yeven(1)
is zero for \varepsilon \approx 0.585457706 and positive for smaller values of \varepsilon , growing exponentially
as \varepsilon \rightarrow 0, as explained above.

Figure 2.1 shows the solutions to (1.1)--(1.2) corresponding to \varepsilon = 0.1 and 0.02.
These curves, computed with a Chebyshev spectral collocation method by Cheb-
fun [11, 59], are correct to plotting accuracy (actually much better). The constants in
(2.1) for the exact solution are A =  - 1/2 and B = (3/2)/yeven(1), confirming that for
small \varepsilon , the solution consists of the straight line y(x) =  - x/2 plus narrow boundary
layers of amplitude 3/2.
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Fig. 2.1 Solutions to (1.1)--(1.2) for two values of \varepsilon show y(x) \approx  - x/2 in the interior with boundary
layers of equal amplitudes at the ends.

3. Numerical Analysis: Backward Error Analysis and Ill-Conditioning. As
soon as one tries smaller values of \varepsilon , however, seemingly nonsensical results be-
gin to appear. Figure 3.1 shows the solutions computed by Chebfun and by the
MATLAB code bvp4c [33] when \varepsilon is set to 0.009. These are nowhere near correct.
If we try various choices of \varepsilon about 0.018 or smaller, we get numerical solutions with
the straight segment in the middle oriented with an apparently arbitrary slope.1 (We
chose 0.009 rather than 0.01 for the figure because it happens to give a positive slope,
highlighting the contrast with Figure 2.1.)

Computational failures like this, which Bob O'Malley has called ``numerical night-
mares"" [49], must have disturbed a number of people over the years. In fact, during
the six months after the publication of Exploring ODEs [59], I was contacted inde-
pendently by two ODE experts about difficulties they were having with this kind of
equation in Chebfun (O'Malley in May 2018 and Folkmar Bornemann in July). This
added to the motivation to write this paper.

Why do Chebfun and bvp4c fail when \varepsilon is small? The numerical analyst quickly
spots the explanation (and deflects the blame): this is an illustration of the principle
of backward error analysis made famous by Wilkinson half a century ago [27, 66].
Wilkinson showed that for all kinds of good numerical algorithms, rounding errors
and other perturbations can be interpreted as having the effect that one computes
the exact solution to a slightly perturbed problem. If the problem is well-conditioned,
this implies that the computed solution will be close to correct, but if it is highly ill-
conditioned---that is, highly sensitive to perturbations---the computed solution may
be very far off. This is just what has happened here. For backward error analysis
applied specifically to differential equations, some references are given in [27].

To confirm this explanation of Figure 3.1, we can insert the erroneous computed
solution ycomp into the differential equation. As Wilkinson would have immediately

1For \varepsilon = 0.017 or \varepsilon = 0.018 in our experiments, bvp4c gives a warning message: ``Unable to meet
the tolerance."" With smaller values of \varepsilon , however, there is no message. For computations in such a
regime it may be effective to use a variable precision arithmetic tool such as Maple [64].
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Fig. 3.1 Erroneous solutions to (1.1)--(1.2) for the smaller value \varepsilon = 0.009. The first is computed
by Chebfun and the second by the MATLAB code bvp4c. Note that the boundary layers do
not even have the same sign, though we know from the exact solution (2.1) that they ought
to be equal in sign and magnitude.

understood, ycomp satisfies the equation to high accuracy, with a maximal error of
1.8 \times 10 - 9 near the boundaries and closer to 10 - 11 in most of the domain. In other
words, though the error ycomp - yexact is large, the residual L(ycomp - yexact), where L
is the differential operator L : y \mapsto \rightarrow \varepsilon y\prime \prime  - xy\prime + y, is very small. The computed
function ycomp is not near the solution of (1.1)--(1.2), but it is nearly a solution.

There are many ways of understanding the ill-conditioning of (1.1)--(1.2), and in
fact one could interpret this whole paper as an investigation of this matter from various
angles. Here in the numerical section, let us confirm the ill-conditioning numerically
by perturbing the problem a little in a regime where \varepsilon is large enough for accurate
numerical solutions. Figure 3.2 shows that the \varepsilon = 0.02 solution of Figure 2.1 changes
completely if Ly = 0 is replaced by Ly = f with f(x) =  - 10 - 7x, or by \~Ly = 0
with \~L : y \mapsto \rightarrow \varepsilon y\prime \prime  - xy\prime + 0.9999999y. Another solution much like the second of
these is produced with the perturbed operator \~L : y \mapsto \rightarrow \varepsilon y\prime \prime  - (x + 10 - 6x3)y\prime + y
(not shown). It is typical for perturbations of the problem (1.1)--(1.2) to lead to
solutions like these that are close to zero in the interior of the interval, an effect
that is analyzed in [1, 35, 51] and a number of other publications. In particular, a
solution close to zero will appear if the coefficient 1 multiplying the y term in (1.1)
is changed to anything other than a nonnegative integer. In the literature of turning
point problems, cases like (1.1) with nonzero behavior in the interior are regarded as
the special ones, characterized by what is known as the Matkowsky condition [41].

Examples of backward error analysis involving extreme ill-conditioning raise philo-
sophical questions. Have Chebfun and bvp4c simply failed in Figure 3.1, since their
results are far from correct, or have they in a deeper sense succeeded, since they
have computed the right answer to almost the right problem? There is justice in
both of these points of view. One sense in which both algorithms have truly failed is
that there are other algorithms which, even in the same 16-digit floating-point arith-
metic, can compute the right answer for \varepsilon = 0.009 or indeed for lower values of \varepsilon .
Bornemann has shown me successful results with the ultraspherical spectral method
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Fig. 3.2 Repetition of the second panel of Figure 2.1, but for two slightly perturbed problems. The
first image corresponds to Ly =  - 10 - 7x instead of Ly = 0 and the second to \~Ly = 0 with
\~L : y \mapsto \rightarrow \varepsilon y\prime \prime  - xy\prime + 0.9999999y. Though the perturbations are small, the solutions differ
greatly from those of Figure 2.1.

of Olver and Townsend [47] down to \varepsilon = 10 - 5, where the condition number with
respect to perturbations of the right-hand side is of order e50,000. An algorithm that
succeeds under such circumstances must exploit the fact that the right-hand side is
known to be exactly zero---analogously to an algorithm of numerical linear algebra
imposing a condition of structural sparsity. The same algorithm will still probably fail
for a problem Ly = f in which f is a nonzero function represented in floating-point
arithmetic.2 Similarly, it will probably fail for a homogeneous problem with variable
coefficients defined by functions represented numerically.

4. Asymptotics: Boundary Layer Analysis. The problem (1.1)--(1.2) happens to
have an analytic solution (2.1), but this is unusual. To treat more general problems
with small parameters, a powerful method of boundary layer analysis was developed
in the 20th century [7, 29, 32, 62, 63]. This provides a means to obtain approximate
solutions that are accurate for small \varepsilon and the become exact in the limit \varepsilon \rightarrow 0.

Let us apply boundary layer analysis to (1.1)--(1.2); see, e.g., [7, section 9.6].
The first step is to examine the solution in the so-called outer regions, outside any
layers with rapid transitions. Following the formulation of [59], we apply the following
principle:

1. Outside a boundary or interior layer, terms involving \varepsilon are negligible.

Deleting the \varepsilon term of (1.1) yields the outer equation

(4.1)  - xy\prime + y = 0, i.e.,
y\prime 

y
=

1

x
.

Solving this ODE, we find that log y and log x are equal up to a constant, implying

(4.2) Outer solution: y = C1x, C1 = constant.

2Actually, for this problem the ill-conditioning is only excited if f is not even, so if f is even, it
would be enough for an algorithm to maintain exact symmetry.
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For this problem, (4.2) happens to be an exact solution of the ODE, though in general
the outer solution would only be approximately valid. Note that at this stage in the
analysis we have one parameter to be determined, the constant C1.

Next we turn to the transition layers. In general, a problem might have a bound-
ary layer at one or more boundaries, and it might also have interior layers at points
where a coefficient changes sign. These are the principles as stated in [59]:

2. Inside a layer, a low-order derivative is negligible compared with a higher-order
one.

3. Inside a layer, a variable coefficient can be approximated by a constant, at least
if it is locally nonzero.

Let us first apply these principles at x =  - 1. Equation (1.1) becomes \varepsilon y\prime \prime + y\prime = 0,
whose solution is

(4.3) y(x) = C2 + C3e
 - (1+x)/\varepsilon ,

where C2 and C3 are arbitrary. What is important here is that the C3 term involves
the exponentially decaying function e - x/\varepsilon rather than an exponentially growing one
such as ex/\varepsilon . This tells us that a boundary layer may indeed be possible at the left
boundary, and its thickness will scale as O(\varepsilon ). Moreover, following the procedure
known as matched asymptotic expansions (which in this case reduces to just adding
up the various terms), we can combine (4.2) and (4.3) into a single function

(4.4) y(x) = Cx+ (2 + C)e - (1+x)/\varepsilon .

For any value of C, this satisfies the boundary condition y( - 1) = 2, and it approxi-
mately satisfies the ODE everywhere, with improving accuracy as \varepsilon \rightarrow 0. Even better
approximations could be constructed by taking further terms in an asymptotic series
with respect to \varepsilon .

So far, this could be a standard application of boundary layer theory. If the
coefficient of the y\prime term in (1.1) did not change sign from one end of the domain to
the other, we would apply reasoning like that leading to (4.3) at x = 1 and again find
a solution involving a term decaying exponentially with x. This would rule out the
possibility of a boundary layer at the right, with the consequence that the choice of C
would be fixed by the right boundary condition. With this fixed C, we would have a
single approximate solution in the form (4.4) for the whole BVP (1.1)--(1.2).

However, the coefficient of the y\prime term in (1.1) does change sign: the equation has
a turning point at x = 0. Applying principles 2 and 3 at x = 1, we get the equation
\varepsilon y\prime \prime  - y\prime = 0, with solution

(4.5) y(x) = C4 + C5e
 - (1 - x)/\varepsilon 

for constants C4 and C5. Now the exponential term decays as x decreases, implying
that a boundary layer may appear at the right as well as at the left. This is too much
freedom! Boundary layer analysis has led us to the approximate global solution

(4.6) y(x) = Cx+ (2 + C)e - (1+x)/\varepsilon + (1 - C)e - (1 - x)/\varepsilon .

For any choice of C, this function nearly satisfies (1.1) and the boundary condi-
tions (1.2), with the approximation improving as \varepsilon \rightarrow 0 (see Figure 4.1). Yet it is
only for C =  - 1/2 that it approximates the true solution. The correct value of C
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Fig. 4.1 True solution (dashed) and two boundary layer analysis approximations (4.6) (solid) for
\varepsilon = 0.05. Only the curve with C =  - 1/2 approximates the true solution, but any choice of
C is valid in standard boundary layer theory.

is determined by exponentially weak coupling between the boundaries, and this is
missed by the standard boundary layer analysis. Many papers have been written on
such effects, including the work mentioned earlier introducing what became known as
Ackerberg--O'Malley resonance (or just resonance) [1]. More advanced techniques in-
cluding WKBJ analysis can be brought into play, and four of these are outlined in [42];
see also section 2 of [49]. One of the key references is [39], and others include [20] and
most of those given in the long list at the end of the introduction.

As usual, philosophical questions arise. We could say that boundary layer analysis
has failed, since it has not detected the condition C =  - 1/2. On the other hand, we
could say it has correctly identified the deeper ``physics"" of the problem. There would
undoubtedly be applications in which each of these views would be appropriate.

We did not check the possibility of an interior layer at x = 0. For this problem
there is no interior layer, ultimately because (4.2) is an exact solution of the ODE since
the coefficients of the y\prime and y terms are x and 1. If these coefficients are perturbed,
the behavior of solutions near x = 0 changes fundamentally, as we saw in Figure 3.2.

5. Dynamical Systems: Slow Manifolds. Differential equations and continuous
time dynamical systems are fundamentally the same subject, but the fields have dif-
ferent emphases. In particular, dynamical systems favors analyses of problems based
on geometry. Let us consider (1.1)--(1.2) from this point of view. An early geomet-
ric analysis of turning point problems was published by Kopell [34], and a general
geometric theory for singular perturbation ODEs is due to Fenichel [12].

For a second-order ODE, the best known geometric tool is the use of the phase
plane, with y on one axis and y\prime on the other. If the equation is autonomous (i.e.,
without explicit dependence on x), the trajectories of the phase plane give a complete
description of the dynamics. Now (1.1) is nonautonomous, so this principle does not
apply, but it is still interesting to plot (y, y\prime ) for our solutions, as shown in Figure 5.1.
The images show the three stages of left boundary layer, solution in the interior, and
right boundary layer. As \varepsilon \rightarrow 0, the corners get sharper, and the slopes and heights
of the boundary layer segments increase at the rate O(\varepsilon  - 1).

To reduce the problem fully to geometry, we need to introduce a new variable so
that the equations are autonomous (though no longer linear). The standard trick is
to take t as the independent variable and add a differential equation so that t = x.
If we define p = y\prime , and use dots instead of primes to denote derivatives with respect
to t, then (1.1) becomes the three-variable first-order autonomous system

(5.1) \.x = 1, \.y = p, \.p = \varepsilon  - 1(xp - y),
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Fig. 5.1 Repetition of Figure 2.1 with the trajectories plotted in the (y, y\prime ) plane. Since the equation
is nonautonomous, this is not a true phase plane encapsulation of the dynamics, but still,
it reveals key features. The trajectory begins at the bottom of the picture and quickly moves
to the line y\prime \approx  - 1/2 (the left boundary layer). It moves steadily leftward along this line
until suddenly leaving it and moving to the top of the picture (the right boundary layer).

and (1.2) becomes the boundary conditions

(5.2) y( - 1) = 2, y(1) = 1, x( - 1) =  - 1.

This is called a slow-fast system, since the variables evolve on different time scales.
We have now reduced the problem fully to geometry in the sense that once we work
out the field of trajectories in x-p-y space, we will know everything.

Figure 5.2 shows the solution trajectory for \varepsilon = 0.02 (the portion of it restricted
to  - 2 \leq p \leq 2). The careful eye can see all the dynamics of the problem in this figure.
A unique trajectory passes through each point in phase space, and the collection of
these trajectories is the dynamical system. Because of the \varepsilon  - 1 factor in (5.1), the
motion is fast in most regions. On the critical manifold defined by xp = y, however,
the \varepsilon  - 1 term vanishes and the motion is slow. For x < 0, trajectories approach the
critical manifold exponentially: it is stable or attracting. For x > 0, trajectories depart
exponentially: it is unstable or repelling. Tikhonov, mentioned in the introduction,
was one of the first to appreciate this fundamental distinction [56], which he made
precise by one of the several results of his now known as Tikhonov's theorem [61, 62].

The exponential sensitivities of the problem can be understood in this framework.
Mathematically, given the data (x, p, y) corresponding to any point t0, the trajectory
for all t \in ( - \infty ,\infty ) is uniquely determined. In particular, when and how a curve like
the one shown in Figure 5.2 approaches the manifold for x < 0 exactly determines
when and how it will leave it for x > 0. However, the determining information is
exponentially squeezed along the way, since any trajectory that is near to the man-
ifold is exponentially attracted to it and thus nearly restricted to a two-dimensional
subspace. Thus, it is apparent simply as a matter of geometry that exponentially
small perturbations may change the fate of a trajectory completely.

The critical manifold is an exact solution of (5.1), so any trajectory that touches
the manifold is confined to it for all t \in ( - \infty ,\infty ). It follows that no trajectory
can cross the critical manifold. The curves of Figure 3.1, however, must correspond
to trajectories that do cross the manifold, since their boundary layers have opposite
signs. This confirms from a new point of view that these curves must be erroneous.
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Fig. 5.2 Solution trajectory with \varepsilon = 0.02 in three-dimensional x-p-y phase space. The surface is
the critical manifold obtained by setting \varepsilon = 0, which for this problem can also be regarded
as the slow manifold for \varepsilon \ll 1. The trajectory starts away from the manifold but quickly
moves exponentially close to it. It then lies almost exactly along the straight line y = px
for a constant value of p (solid lines) until eventually zooming away again. In this image
the trajectory has been artificially lowered a distance 0.08 to emphasize that it lies below
the manifold.

We have spoken of the critical manifold for (5.1), which is a geometric repre-
sentation of the solutions of the outer equation (4.1) corresponding to \varepsilon = 0. For
our problem, solutions of the outer equation also happen to be solutions of the full
equation for any \varepsilon > 0. For general problems with multiple time scales, however, this
is not the case, and one must be more careful. This is where the idea of a slow man-
ifold comes in [12, 16, 40]. Roughly speaking, a slow manifold in an n-dimensional
slow-fast system is an m-dimensional subset of the phase space, m < n, along which
the motion is at speed O(1) rather than O(\varepsilon  - 1). Although it would be nice to know
the shape of such a surface throughout n-space, more realistically one attempts to
approximate it computationally over a finite range. The required definitions are non-
trivial and contain some arbitrariness that sharpens up as \varepsilon \rightarrow 0. Algorithms for
such problems have been developed by Krauskopf and Osinga and their collaborators
and applied to applications in three and four dimensions, generally more complex
than (1.1)--(1.2) [8, 21, 25, 44]. This group uses Doedel's software tool AUTO for
continuation and bifurcation analysis as the computational engine [2, 9].

6. ODE Theory: Sturm–Liouville Operators. The theme of this article is that
(1.1)--(1.2) is unusual, yet from one point of view it appears entirely standard: it is

a Sturm--Liouville problem. Upon multiplying (1.1) by the integrating factor e - x2/2\varepsilon ,

we find that it is equivalent to the equation \varepsilon (e - x2/2\varepsilon y\prime )\prime + e - x2/2\varepsilon y = 0 or, after a

further multiplication by ex
2/2\varepsilon ,

(6.1) \varepsilon ex
2/2\varepsilon (e - x2/2\varepsilon y\prime )\prime + y = 0.
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This form amounts to a rewriting of the differential operator L associated with (1.1),

(6.2) L: y \mapsto \rightarrow \varepsilon y\prime \prime  - xy\prime + y,

in the equivalent form

(6.3) L: y \mapsto \rightarrow \varepsilon w - 1(wy\prime )\prime + y

with w(x) = e - x2/2\varepsilon . Sturm--Liouville theory tells us that L is a self-adjoint operator
whose eigenvalues are a sequence of real, distinct numbers decreasing to  - \infty , and that
the corresponding eigenfunctions can be taken to be real (as opposed to complex) and
form a complete orthogonal set, with the jth eigenfunction having j  - 1 simple zeros
in ( - 1, 1). The idea is that any Sturm--Liouville operator has essentially the same
behavior as the basic operator y \mapsto \rightarrow y\prime \prime , whose eigenfunctions are sines and cosines.

All this sounds good, but when we look at exactly what the words mean, we find
there is a catch of exponentially large magnitude. The operator L is self-adjoint not
in the usual L2 inner product, but in the weighted inner product defined by

(6.4) \langle u, v\rangle =
\int 
wuv,

where the integral is over [ - 1, 1].3 Self-adjointness means that if u and v are smooth
functions vanishing at x = \pm 1, then \langle u, Lv\rangle = \langle Lu, v\rangle . To verify this condition, we
compute \langle u, Lv\rangle =

\int 
wu(\varepsilon w - 1(wv\prime )\prime ) +wuv =

\int 
\varepsilon u(wv\prime )\prime +wuv. Integration by parts

gives \langle u, Lv\rangle =  - 
\int 
\varepsilon u\prime (wv\prime )+wuv =  - 

\int 
\varepsilon (wu\prime )v\prime +wuv, and a second integration by

parts gives \langle u, Lv\rangle =
\int 
\varepsilon (wu\prime )\prime v + wuv =

\int 
w(Lu)v = \langle Lu, v\rangle .

For small \varepsilon , the inner product (6.4) is unrecognizably different from the ordinary
inner product of L2([ - 1, 1]). With \varepsilon = 0.01, for example, w(x) takes the value 1 at
x = 0 and e - 50 \approx 10 - 22 at x = \pm 1. Such enormous disparities in magnitude imply
that in measuring the inner product of two functions u and v, (6.4) essentially doesn't
care about their behavior near x = \pm 1.

We can see the consequences by looking at eigenfunctions, a central topic of
Sturm--Liouville theory. The eigenvalue equation for L is

(6.5) \varepsilon y\prime \prime  - xy\prime + y = \lambda y, y( - 1) = y(1) = 0,

and if this is satisfied for a nonzero function y, then \lambda is an eigenvalue of L and y
is a corresponding eigenfunction. The theory asserts that eigenfunctions yj and yk
corresponding to distinct eigenvalues are orthogonal in the inner product (6.4),

(6.6)

\int 1

 - 1

e - x2/2\varepsilon yj(x)yk(x)dx = 0, j \not = k.

Figure 6.1 shows the first four eigenfunctions for \varepsilon = 0.2 and \varepsilon = 0.02. The first
set look something like the sines and cosines one might expect for a Sturm--Liouville
problem, but the second set are completely different, approximating the monomials
1, x, x2, and x3. The monomials are famously nonorthogonal in the L2 inner product
on [ - 1, 1], with the condition number of the set 1, x, . . . , xn growing exponentially as

3In linear algebra, the analogue would be a matrix A that is not symmetric but can be sym-
metrized by a diagonal similarity transformation, B = DAD - 1. Since all the effects at issue in this
paper are real, we dispense with complex conjugate bars in defining inner products.
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Fig. 6.1 The first four eigenfunctions of the operator L of (6.2), orthogonal with respect to the
inner product (6.4). With large \varepsilon , on the left, the inner product is reasonably close to that
of L2([ - 1, 1]) and the eigenfunctions show the familiar oscillations of sines and cosines.
With small \varepsilon , on the right, the inner product effectively ignores behavior near x = \pm 1, and
the eigenfunctions approximate the monomials 1, x, x2, x3 except in the boundary layers.
The associated eigenvalues approximate the numbers 1, 0,  - 1, and  - 2 to about 10, 9, 7,
and 6 digits, respectively.

-1 -0.5 0 0.5 1

 

0

 

-1 -0.5 0 0.5 1

 

0

 

Fig. 6.2 Repetition of Figure 6.1 for eigenfunctions 11 and 13 (i.e., even eigenfunctions 6 and 7).
With \varepsilon = 0.2 we recognize the eigenfunctions as relatives of sines and cosines, but with
\varepsilon = 0.02 the shape is very different and the eigenfunctions are obviously far from orthogonal
in L2.

n \rightarrow \infty at a rate of approximately (1+
\surd 
2)n [15].4 For example, the set \{ 1, x, . . . , x30\} 

has condition number about 1.1\times 1011. If one examines the first n+1 eigenfunctions
of L for various \varepsilon , one finds condition numbers of this magnitude for \varepsilon \ll n - 1.
For example, the first 31 eigenfunctions of L have condition number about 8 \times 104

for \varepsilon = 0.02, 3 \times 108 for \varepsilon = 0.01, and between 1010 and 1011 for \varepsilon = 0.005. In
the presence of such ill-conditioning, it would be hard to argue that eigenfunction
expansions are the right tool for the investigation of (1.1).

Figure 6.2 repeats Figure 6.1 but for eigenfunctions 11 and 13, that is, even eigen-
functions 6 and 7. The image for \varepsilon = 0.02 highlights how far from orthogonal these
functions are in L2 (their L2 inner product is about 0.9924). Higher eigenfunctions
continue the pattern of having almost all their amplitude in the boundary layers.

4Another reflection of the nonorthogonality of monomials is the M\"untz--Szasz theorem, which
asserts that a continuous function on [0, 1] can be approximated arbitrarily closely by linear combi-
nations of the functions 1, x\alpha 1 , x\alpha 2 , . . . for any choice of exponents satisfying

\sum 
\alpha  - 1
k = \infty [52].
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We can explain as follows why small values of \varepsilon lead to eigenfunctions approximat-
ing monomials. For small \varepsilon , the inner product (6.4) essentially ignores the boundary
conditions, and we end up approximately with polynomials orthogonal with respect to
e - x2/2\varepsilon over [ - 1, 1], or equivalently, with respect to e - x2

over [ - (2\varepsilon ) - 1/2, (2\varepsilon ) - 1/2].
These are essentially the Hermite polynomials H0, H1, . . . , which closely approximate
the monomials if they are rescaled from [ - (2\varepsilon ) - 1/2, (2\varepsilon ) - 1/2] back to [ - 1, 1] with
magnitude 1. The corresponding eigenvalues are close to 1, 0, - 1, - 2, . . . .

7. Spectral Theory: Eigenvalues and Pseudospectra. We have just noted that
Sturm--Liouville theory ensures that the eigenvalues of L are real and distinct, de-
creasing toward  - \infty . We now consider the significance of these eigenvalues.

As we saw in Figure 6.1, for small \varepsilon , the functions 1, x, x2, . . . approximately
satisfy the eigenvalue equation (6.5) except in the boundary layer. This is readily
explained by boundary layer analysis, where following (4.1), we find the outer equation
for the eigenvalue problem,  - xy\prime + y = \lambda y, that is, y\prime /y = (1 - \lambda )/x. This equation
is satisfied by the monomial y = x1 - \lambda for any integer \lambda \leq 1.

One of the eigenvalues of L is particularly important: the one that is exponentially
close to zero and becomes exactly zero in the limit \varepsilon = 0, which we shall call \lambda 0. For
\varepsilon = 0.1, 0.05, and 0.02 we have \lambda 0 \approx  - 0.13,  - 0.0027, and  - 3.7\times 10 - 9, respectively,
and computations guided by the estimates of [20] suggest that for \varepsilon \rightarrow 0 the behavior
is

(7.1) \lambda 0 \sim C\varepsilon  - 3/2e - 1/2\varepsilon , C \approx  - 0.8.

Now when an operator has a small eigenvalue, that implies that its inverse is large
in norm. In particular, if L - 1 denotes the solution operator for the problem Lu = f
with boundary conditions y(\pm 1) = 0, then we have

(7.2) \| L - 1\| \geq | \lambda 0|  - 1.

Thus we see that although L is mathematically nonsingular for all small \varepsilon , its inverse
will be huge. The solution y of Ly = f for almost any choice of f will be close
to a multiple of the eigenfunction y0 associated with \lambda 0, which has the shape of a
sawtooth, as can be seen in the second image of Figure 6.1. Figure 7.1 shows this
function again for \varepsilon = 0.03 and \varepsilon = 0.01. We call y0 a pseudonull function, since it
very nearly satisfies the condition Ly = 0. It is y0 that explains why the curves of
the first four figures of this paper all have approximately the same form. Figure 7.2
shows the effect explicitly by plotting a smooth random function f produced by the
Chebfun randnfun command together with the corresponding solution of Ly = f with
zero boundary conditions.

What about the other eigenvalues and eigenfunctions of L? Sturm--Liouville
analysis suggests that these should be important for understanding the behavior of
the operator. We have already argued via ill-conditioning of the set of eigenfunctions,
however, that this expectation is mistaken when \varepsilon is small. We shall now derive the
same conclusion via the theory of pseudospectra.

An operator with a complete set of orthogonal eigenfunctions is said to be normal.
(The definition generalizes to other classes of operators, but we won't need this.) For
small \varepsilon , L is far from this situation, and we say that it is highly nonnormal. The
resolvent of L is the operator (\lambda I  - L) - 1 depending on a complex variable \lambda , and to
assess nonnormality we look at its 2-norm \| (\lambda I  - L) - 1\| as a function of \lambda . Let \sigma (L)
denote the spectrum of L, which for our operator is simply the set of eigenvalues. If
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Fig. 7.1 Pseudonull functions of L for two values of \varepsilon . These are the eigenfunctions y0 of L
associated with the eigenvalue \lambda 0 that falls very close to zero. Solutions to Ly = f will
tend to have approximately this shape, with very large amplitude, except for special choices
of f .
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8

Fig. 7.2 Above: the smooth random function f computed by the Chebfun commands rng(0), f =

randnfun(.03). Below: the solution y of the problem Ly = f with \varepsilon = 0.02. Despite the
complicated forcing function, we see that y closely approximates a large multiple of the
eigenfunction y0 of L.

\lambda \not \in \sigma (L), then \| (\lambda I - L) - 1\| is a positive number that diverges to \infty as \lambda approaches
\sigma (L). For any \delta > 0, we define the \delta -pseudospectrum of L to be the complex set

(7.3) \sigma \delta (L) = \{ \lambda \in C : \| (\lambda I  - L) - 1\| > \delta  - 1\} ,

with the convention \| (\lambda I  - L) - 1\| = \infty if \lambda \in \sigma (L). Full details and many examples
are presented in [60].

For a normal operator, \sigma \delta (L) is the union of the open \delta -balls around the points
of the spectrum. For a nonnormal operator, however, it may be much bigger. The
norm \| (\lambda I  - L) - 1\| may be much greater than the reciprocal of the distance of \lambda to
\sigma (L), and indeed, \| (\lambda I  - L) - 1\| may take huge values at points \lambda that are nowhere
near \sigma (L). Figure 7.3 shows pseudospectra of L for \varepsilon = 0.1 and 0.01, confirming that
for small \varepsilon , the operator is highly nonnormal.
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Fig. 7.3 Spectra and \delta -pseudospectra in the complex plane of the operator L as computed by
EigTool [67]; the level curves correspond to \delta = 10a for the values of a indicated by the
colorbars. On the left, for large \varepsilon , L is close to normal and the pseudospectra approximate
balls around the eigenvalues. On the right, for small \varepsilon , L is highly nonnormal and the
pseudospectra have little to do with the eigenvalues. These curves tell us that although the
rightmost eigenvalues of L may have some physical significance, the eigenvalues further left
have little. Instead, L will behave as if its spectrum included large continuous regions of
the left half-plane. The corresponding pseudoeigenfunctions have the shape of wave packets
localized at the boundaries.

To see the implications, for concreteness, consider the 10 - 6-pseudospectrum of L
for \varepsilon = 0.01, shown in Figure 7.3. This is the region in the left half \lambda -plane bounded
by the purple-blue line, an infinite triangular sector extending along the negative real
axis to about \lambda =  - 8. Each point \lambda in this sector is a 10 - 6-pseudoeigenvalue of L,
which means that for each such point, there is a pseudoeigenfunction y that satisfies
(6.5) with a 2-norm error of less than 10 - 6. In a physical experiment, unless it is
accurate to six digits of precision, such a value would likely be indistinguishable from
a mathematically true eigenvalue. This is the theme of the study of nonnormality:
if an operator is far from normal, this doesn't just mean that its eigenvalues are
highly sensitive to perturbations, it means its eigenvalues and eigenfunctions lose
their significance.

The pseudoeigenfunctions of L are shaped like wave packets localized at the
boundary, like the eigenfunctions themselves as seen, for example, in the second
panel of Figure 6.2. Similarly, the adjoint operator L\ast we are about to consider
has pseudoeigenfunctions in the form of wave packets localized at x = 0. A theory
that explains such structures is presented in [58] and [60, Chapter 11], where a key
role is played by the so-called twist condition (for L\ast ) and antitwist condition (for
L); the twist condition is a special case of the commutator condition introduced by
H\"ormander in connection with the subject of section 10 [30, 68]. These conditions
are stated in terms of a variable coefficient symbol function \varphi (x, k) describing the
local behavior of the operators when applied to a wave exp(iks/\varepsilon ) for small \varepsilon and
s \approx x, all part of the circle of ideas known in different communities as WKBJ theory,
semiclassical analysis, and microlocal analysis [69].

8. Sensitivity Analysis: Adjoints and SVD. We have seen that for small \varepsilon , the
problem (1.1)--(1.2) is highly sensitive to perturbations. The study of how outputs of
models depend on perturbations of the inputs is called sensitivity analysis, and when
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differential equations are involved, one of the important tools is the use of adjoints.
Two stimulating publications in this area are [17] and [22].

For our problem the linear operator is

(8.1) L : y \mapsto \rightarrow \varepsilon y\prime \prime  - xy\prime + y,

which in this section we take to act on smooth functions with y(\pm 1) = 0. The adjoint
of L is the operator

(8.2) L\ast : v \mapsto \rightarrow \varepsilon v\prime \prime + xv\prime + 2v

acting on the same functions. The standard characterization of L\ast is the property

(v, Ly) = (L\ast v, y), where (u, v) =
\int 1

 - 1
u(x)v(x)dx, but to understand why adjoints

are important, it may be more enlightening to write an equivalent condition in terms
of the inverse operators L - 1 and L - \ast acting on smooth functions f and g (with no
boundary conditions). Setting Ly = f and L\ast v = g converts the characterization to

(8.3) (L - \ast g, f) = (g, L - 1f),

and we can interpret this equation as follows. The number (g, L - 1f) can be thought
of as a scalar measurement, via the inner product with a given function g, of the
solution y of the differential equation Ly = f . Equation (8.3) asserts that if we know
the function v = L - \ast g, we can obtain the same number simply as the inner product
of v and f , without solving Ly = f . If there are a thousand right-hand sides fj of
interest, then all we need is a thousand inner products (v, fj), not a thousand solutions
Lyj = fj . This is the starting point of adjoint-based sensitivity analysis. For linear
problems, small perturbations behave in the same way as large ones, but for nonlinear
problems, the adjoint is defined via linearization and captures the relationship between
infinitesimal perturbations of f and their effects on the measured output.

Now let us look at the behavior of the adjoint (8.2). The crucial difference from
(8.1) is the change of sign from  - xy\prime to xy\prime , and the result is that instead of boundary
layers at each end of the interval, we get wave packets in the middle. To explore this
effect, Figure 8.1 recapitulates many of the figures of this paper, but based on (8.2)
instead of (8.1). We will not repeat the analyses of the past sections, but in each case
the same themes reappear with interesting variations. For example, the outer equation
(4.1) now becomes y\prime /y =  - 2/x, with solution y = C/x2. Obviously this solution
cannot be valid near x = 0, where an interior layer analysis is required; nor is it
exactly valid anywhere when \varepsilon is nonzero. On the other hand, the signs are such that
boundary layers are precluded at both x =  - 1 and x = 1. Whereas before, boundary
layer analysis gave us an approximate solution (4.6) with too much freedom, an extra
undetermined parameter, now it gives too little freedom, not enough parameters, and
again a deeper analysis would be required to match the true solution.

To see the implications of Figure 8.1 for sensitivity analysis, perhaps the best
image to focus on is the curve in the middle on the right, corresponding to the solution
of a problem L\ast v = g with a smooth random function g. We can think of g as defining
an arbitrary linear functional one might choose to measure solutions of problems
Ly = f . The amplitude O(109) of this curve for x \approx 0 shows that the influence of
function values of f for x \approx 0 will be amplified by O(109) in their effects on L - 1f as
measured by g. By contrast, the values of f for x \approx \pm 1 have much smaller effect.

Figure 8.1 does not include an image corresponding to Figure 7.3, because the
eigenvalues and pseudospectra of any operator are the same as those of its adjoint. It
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Fig. 8.1 Repetition of earlier figures with (8.1) replaced by its adjoint (8.2). The top double row
repeats Figures 2.1 (true solutions), 3.1 (erroneous solutions with \varepsilon = 0.09), and 3.2 (per-
turbed problems). Instead of boundary layers at \pm 1, we see waves at x = 0. Note the huge
amplitudes in these and other images. (The ``WRONG!"" solutions have the right shape but
the wrong amplitudes.) The second row repeats Figures 5.1 ( (y, y\prime ) plane) and 7.2 (solution
to L\ast v = g for a smooth random function g). The third row repeats Figures 6.1 and 6.2,
showing eigenfunctions as wave packets near x = 0. The final row repeats Figure 7.1 (null
functions).

is the eigenfunctions and pseudoeigenfunctions that differ, changing from structures
localized near \pm 1 for L to structures localized near x = 0 for L\ast . In numerical
linear algebra such effects are familiar as the difference between the left and the
right eigenvectors of a matrix. On the other hand, an analogue of Figure 5.2 can be
found in Figure 8.2. Note that the scale is on the order of 1010. The geometry is
more complicated than before, because the critical manifold is no longer an invariant
manifold for \varepsilon > 0.

Along with adjoints, the title of this section mentions the SVD, i.e., the singular
value decomposition. This is the appropriate tool if one seeks the function f with
\| f\| = 1 (2-norm) that maximizes \| L - 1f\| . Such a function f is the minimal left
singular function of L, and we can write L - 1f = g/\sigma min, where g is the corresponding
right singular function and \sigma min the associated minimal singular value. With the
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Fig. 8.2 Analogue of Figure 5.2 for the adjoint operator L\ast . In this case the outer solutions y(x) =
C/x2 for \varepsilon = 0 are not exact solutions of the differential equation with \varepsilon > 0, so the critical
manifold y =  - px/2 plotted is not exactly a slow manifold. The region x < 0 is unstable,
and the solution zooms away from this sheet to amplitude O(1010) near x \approx 0, then returns
in the stable part of the manifold, x > 0, to match the boundary condition at x = 1. Note
the huge scales of the p and y axes needed to capture this trajectory.

-1 -0.5 0 0.5 1

 

0

 

-1 -0.5 0 0.5 1

 

0

 

Fig. 8.3 Left and right minimal singular functions of L for \varepsilon = 0.02, with corresponding singular
value \sigma min \approx 7\times 10 - 10.

SVD, the inequality (7.2) improves to an equality,

(8.4) \| L - 1\| = \sigma  - 1
min.

Figure 8.3 shows minimal singular functions for \varepsilon = 0.02. Because \sigma min is so close
to 0, they are indistinguishable in a plot from the pseudonull functions of Figures 7.1
and 8.1.

9. Physics: Ghost Solutions. Domokos and Holmes published a fascinating pa-
per in 2003, ``On Nonlinear Boundary-Value Problems: Ghosts, Parasites and Dis-
cretizations"" [10]. They pointed out that sometimes a physical experiment may gener-
ate results that are far from the exact solution of the associated mathematical model
for reasons of just the kind we have been examining: though far from the true solution,
the observed results nearly satisfy the ODE BVP.5

5Shadowing in dynamical systems is a related idea [23].
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Fig. 9.1 A loop in an elastica with loads at both ends as sketched in Figure 1 of Domokos and
Holmes [10]. This corresponds to a locally unique solution of an ODE BVP. In the lab-
oratory, however, the loop is observed to be equally stable if it is translated a certain dis-
tance right or left of center. Such shapes are pseudosolutions of the equation, or ``ghosts.""
A mathematically equivalent example involves a rigid pendulum starting nearly vertically
above its pivot, waiting nearly motionless for a while, then suddenly swinging around to
nearly vertical again. (Image courtesy of the Royal Society of London.)

This possibility is implicit in the curves of Figure 8.1 corresponding to the adjoint
equation (1.3). Suppose, for example, our problem is \varepsilon y\prime \prime + xy\prime + 2y = 0 with y(0) =
y(1) = 0. The mathematically correct unique solution is the function y = 0, but
if \varepsilon is small, the pseudonull function of the last row of Figure 8.1 will satisfy the
boundary conditions exactly and the ODE nearly exactly, with error of order 10 - 9

for \varepsilon = 0.02. Other similar curves would satisfy the ODE exactly and the boundary
conditions nearly (this is the combination Domokos and Holmes focus on). All these
nearly-solutions can be called ``ghosts."" In an experiment conducted in a laboratory
with its inevitable imperfections, it is hard to see why the exact solution should be
more likely to be observed than the pseudosolutions.

Domokos and Holmes illustrate their idea with a compelling example (see Fig-
ure 9.1). Suppose a long flexible rod, known as an elastica, is loaded at both
ends. Equations of elasticity going back to Euler model this by the nonlinear ODE
\varepsilon y\prime \prime = sin(y) with y\prime (\pm 1) = 0, which, for small enough \varepsilon , has a locally unique solution
in the form of a loop in the center of the domain. As \varepsilon decreases, however (think
of the elastica getting longer), the boundary coupling that constrains the loop to lie
exactly in the middle grows exponentially weaker. In practice, one can move the loop
some distance to either side and the elastica will be observed to remain stable. These
off-center pseudo-solutions---ghosts---are as valid experimentally as the true solutions.
An alternative interpretation of the same equation is that we have a rigid pendulum
on a long time interval, beginning nearly vertical above its pivot point with speed zero.
For a long time the weight may move imperceptibly until finally it gathers speed and
swings over once up to the equal and opposite nearly vertical position. Although in
exact mathematics the swing must occur in the middle of the time interval, an earlier
or later swing fails the boundary conditions by only an exponentially small amount.

As discussed in [58], ghosts can appear with both linear and nonlinear equations,
and are a special case of the phenomenon of pseudoeigenfunctions. Our equation (1.3)
is linear, which means that no particular amplitude for an observed ghost is selected.
Nonlinearity gives extra interest to the Domokos--Holmes example, because it fixes
the size of the ghosts as well as their shape.

Notions of ghosts in dynamical systems have appeared in other contexts too.
Another fascinating one concerns the snap-through instability exhibited by (among
other mechanisms) the Venus flytrap and the ``hopper popper"" toy [18, 55].

10. PDE Theory: Lewy Nonexistence. Like any ODE BVP, (1.1)--(1.2) can be
interpreted as the steady-state equation for a time-dependent PDE. If u(x, t) evolves
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according to the PDE BVP

(10.1) ut = \varepsilon uxx  - xux + u, u( - 1, t) = 2, u(1, t) = 1,

and approaches a steady solution y(x) as t \rightarrow \infty , then y will satisfy (1.1)--(1.2). This
PDE is an advection-diffusion equation with a variable coefficient, and the exponen-
tially weak coupling between the boundaries at x = \pm 1 can be interpreted as resulting
from the fact that the advection is leftward in [ - 1, 0] and rightward in [0, 1], so that
information can travel between the boundaries only by diffusing against the flow.
Indeed, this sweeping of information toward the boundaries is the physical explana-
tion of why solutions to most equations close to (1.1) are nearly zero in the interior;
Ackerberg--O'Malley resonance alludes to the exceptional circumstances needed for
the interior values to be significantly nonzero. Further examples of ODEs as steady-
state equations of time-dependent PDEs are presented in [59, Chapter 22]; see also [60,
Chapter 12]. Sometimes a steady solution is unstable with respect to perturbations
and thus hardly likely to appear as t \rightarrow \infty , and that is the case here because of the y
term in (1.1). Time-dependent simulations actually show not convergence to a steady
state, but rapid formation of boundary layers at both ends combined with overall
exponential growth.

Here in this final section, however, we want to mention a different connection of
(1.1)--(1.2) with PDE theory that has more of a functional analysis flavor. In 1957
Hans Lewy caused a stir among mathematicians by showing that a linear PDE with
smooth coefficients and right-hand side (C\infty , though not analytic) may fail to have
a solution, even locally [38]. His discovery has been extended in many ways in the
years since then by a Who's Who of eminent mathematicians including H\"ormander,
C. Fefferman, Nirenberg, Treves, Sj\"ostrand, and Dencker [30, 68]. It turns out that
we can interpret this phenomenon in terms of the pseudospectra of exponentially
nonnormal operators related to (1.3). This discussion follows Chapter 13 of [60],
which was sparked by Zworski's paper [68].

First let us make an observation about the dual BVPs (1.1) and (1.3), both with
boundary conditions y( - 1) = a and y(1) = b. For small \varepsilon , each problem is well-posed
in the sense that there exists a unique solution that depends continuously on the
data a and b. However, the condition numbers are exponentially large, and the two
problems come close to being ill-posed in interesting dual ways. With (1.1), we have
a phenomenon of ``near-nonuniqueness,"" since as we have seen in (4.6), there is a one-
dimensional space of functions that come exponentially close to satisfying the ODE
and the boundary conditions. With (1.3), on the other hand, there is a phenomenon
of ``near-nonexistence."" The issue here is that unless a = b, the solution y will be
huge, diverging rapidly to infinity as \varepsilon \rightarrow 0. For example, with \varepsilon = 0.02 we get
max | y(x)| \approx 46.9 if a = b = 1, but max | y(x)| = 3.1 \times 106 if a = 1 and b = 0.999.
With \varepsilon = 0.01, the solution with these boundary data is bigger than 1017. These BVPs
involving L and L\ast for small \varepsilon accordingly have the flavor of Fredholm operators of
index +1 and  - 1, respectively [4, 31].

Without giving details, we now outline how related phenomena are connected
with Lewy nonexistence. As the simplest possible example, consider the Mizohata
equation [43]

(10.2)
\partial u

\partial x
+ ix

\partial u

\partial y
= f(x, y),

which we regard as a PDE in two complex variables x and y. The coefficient ix is
analytic, but we shall suppose that f is C\infty but not analytic. We now take the Fourier
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transform of the adjoint of (10.2) with respect to y to obtain the equation

(10.3)
d\^u

dx
+ kx\^u = \^f(x, k),

or equivalently, setting \varepsilon = k - 1 and \^g(x, \varepsilon ) = \varepsilon \^f(x, k),

(10.4) \varepsilon 
d\^u

dx
+ x\^u = \^g(x, \varepsilon ).

Instead of a PDE, we now have a family of ODEs with the parameter \varepsilon , and each one
has a turning point at x = 0 of the same type as (1.3). Solutions to such equations
will be problematic when \varepsilon is small. For any individual choice of \varepsilon , there is a unique
solution, but by constructing a function \^g with a suitable dependence on \varepsilon , we can
contrive things so that g is C\infty yet the adjoint of (10.4) has a nonunique solution.
By the Fredholm alternative, this implies nonexistence for the problem (10.2) itself.
Clearly we are omitting details of this argument!---see [60, Chapter 13].

In a word, thanks to the Fourier transform, a linear PDE can be thought of as
a parametrized linear ODE with all parameter values present at once. That is why
unbounded ill-conditioning for the ODEs translates into ill-posedness of the PDE.

11. Conclusion. Mathematics comprises so many lands; none of us knows them
all. I hope the reader has enjoyed the adventure of taking \varepsilon y\prime \prime  - xy\prime + y = 0 as a
calling card on a mathematical world tour.

``Eight perspectives"" may sound a bit inflated, but in fact, in the course of my
working out these connections, quite a few more perspectives also turned up and
made claims to attention. We have not discussed Green's functions [54], which take
on surprising shapes in cases of extreme non-self-adjointness [60, Chapter 12]. We have
not discussed the theory of exponential dichotomy, an established tool for quantifying
exponential effects in ODEs [3, 6, 24, 50]. We have not discussed stochastic effects,
an area of ever-growing importance in mathematics and science [28, 42], nor the
mechanism of resonance in turning point problems [53], nor (hardly) any physical
applications; on all these matters, see the recent paper by Matkowsky [42]. Numerical
linear algebra analogues have been around every corner but only hinted at here. As for
the theory of dynamical systems, the brief presentation of section 5 barely begins to
do justice to this flourishing field. Readers of this article may notice further relevant
areas of mathematics that seem to have been inexplicably omitted.

Equation (1.1) has remarkable properties, but it is not unique in this respect.
Slight changes in the equation lead to qualitative changes in the solutions (jumps,
oscillations, corners, near-zero regions, . . . [26, 51, 64]), and lessons could have been
drawn from variants like these too. But I have resisted all temptation to generality,
resolutely keeping the focus on just one beautiful equation and its adjoint.

Appendix. Notes on Numerical Computations. The numbers and figures pre-
sented in this paper were computed with MATLAB and Chebfun [11, 59]. Here are a
few details for readers who may wish to try their own experiments.

2. Existence, uniqueness, and exact solution. Chebfun users can explore numeri-
cal solutions of (1.1)--(1.2) and its variants with code like this:

L = chebop(@(x,y) ep*diff(y,2)-x*diff(y)+y);

L.lbc = 2; L.rbc = 1; y = L``0; plot(y)
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Experiments indicate that results for values of ep as low as \varepsilon = 0.02 are trustworthy.
The structure L is called a chebop, and the solution y is a chebfun---a finite Chebyshev
series, that is, a polynomial represented in the Chebyshev basis. The polynomials of
Figure 2.1 have degrees 36 and 64, respectively.

Another Chebfun method for exploring ODEs (BVPs, initial-value problems, and
eigenvalue problems) is the graphical user interface chebgui, which executes the ap-
propriate Chebfun code segments automatically. I relied on chebgui at every step to
make sure I was getting things right.

The following code segment generates a chebfun for yeven on [0, 1]:

x = chebfun(flxfl,[0 1]); ex = exp(x\^2/(2*ep));

yeven = -ex + (x/ep)*cumsum(ex);

3. Backward error analysis and ill-conditioning. Concerning nonzero right-hand
sides in Lu = f , it is interesting to try smooth random functions [13], like this:

f = randnfun(0.1); y = L``f;

For \varepsilon = 0.02, the resulting solutions have slopes on the scale of 108; see Figure 7.2.
It is also interesting to break the symmetry of (1.1)--(1.2), e.g., by changing [ - 1, 1] to
[ - 1, 0.9], in which case a boundary layer (assuming \varepsilon \ll 0.1) appears at just one end.

5. Slow manifolds. To draw a phase plane image like Figure 5.1, one can compute
the solution in the form of a chebfun y and then execute plot(y,diff(y)). An
arrow can be put at the end with the command arrowplot(y,diff(y)), using the
flystretchfl parameter to adjust the orientation. Figure 5.2 was plotted with the
Chebfun2 surf command [11, Chapter 14]), setting alpha 0.7 in MATLAB to give
the surface some transparency. More dramatic and detailed images, computed with
the BVP solver of AUTO, can be found in the works of Krauskopf and Osinga and
their collaborators [8, 21, 25, 44].

6. Sturm--Liouville operators. To compute the first k eigenvalues and eigenfunc-
tions of an operator L in Chebfun, one can represent it in the usual manner as a
chebop L and then execute [V,D] = eigs(L,k). The object V is an ``\infty \times k "" Cheb-
fun quasi-matrix, i.e., an object with k columns each of which is a function defined
on [ - 1, 1]. Details of such ``continuous linear algebra"" can be found in [5]. The con-
dition number of the set \{ 1, x, . . . , x30\} on [ - 1, 1] can also be computed by construct-
ing a quasi-matrix, now with 31 columns: x = chebfun(flxfl); A = vander(x,31);

cond(A). The cond command computes the SVD of the quasi-matrix and returns the
ratio of its first and final singular values.

7. Eigenvalues and pseudospectra. Figure 7.3 was produced by EigTool, the stan-
dard tool for computing pseudospectra, due to Wright [67, 60]. As input, EigTool re-
quires a matrix approximating the differential operator L with zero Dirichlet boundary
conditions, for which we used the 100\times 100 Chebyshev spectral discretization matrix
generated by the Chebfun commands

n = 100; D = diffmat(n); D2 = diffmat(n,2);

x = chebpts(n); X = diag(x); I = eye(n);

ep = .1; L = ep*D2 - X*D + I; L = L(2:n-1,2:n-1);

W = diag((1-x(2:n-1)).\^(1/4)); L = W*L/W;

The need for the weighting matrix W is explained on p. 411 of [60].
8. Adjoints and SVD. If L is a chebop, then adjoint(L) or Lfl is the chebop

corresponding to its adjoint. The first k singular values and functions can be computed
with [U,S,V] = svds(L,k).
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10. Lewy nonexistence. Movies of solutions of one-dimensional time-dependent
PDEs such as (10.1) can be computed by chebgui, which calls the Chebfun code
pde15s.

Acknowledgments. The impulse to write this paper came from a visit to New
Zealand as Michael Erceg Senior Visiting Fellow in November--December 2017, made
possible by generous support from the Margaret and John Kalman Charitable Trust.
My hosts Bernd Krauskopf and Hinke Osinga and their dynamical systems group
provided an extraordinarily stimulating environment. In addition I am grateful for
comments on drafts of this article to Uri Ascher, Andrei Bogatyrev, Folkmar Borne-
mann, Jon Chapman, Gabor Domokos, Toby Driscoll, Abinand Gopal, Alain Goriely,
Matthew Juniper, Nancy Kopell, Derek Moulton, Sheehan Olver, Bob O'Malley, John
Pryce, Brennan Sprinkle, Alex Townsend, and Maciej Zworski---and to an anonymous
referee.

REFERENCES

[1] R. C. Ackerberg and R. E. O'Malley, Jr., Boundary layer problems exhibiting resonance,
Stud. Appl. Math., 49 (1970), pp. 277--295. (Cited on pp. 439, 440, 442, 445)

[2] E. L. Allgower and K. Georg, Numerical Continuation Methods: An Introduction, Springer,
2012. (Cited on p. 447)

[3] U. M. Ascher, R. M. M. Mattheij, and R. D. Russell, Numerical Solution of Boundary
Value Problems for Ordinary Differential Equations, SIAM, 1995, https://doi.org/10.1137/
1.9781611971231. (Cited on p. 458)

[4] J. L. Aurentz and L. N. Trefethen, Block operators and spectral discretizations, SIAM Rev.,
59 (2017), pp. 423--446, https://doi.org/10.1137/16M1065975. (Cited on p. 457)

[5] Z. Battles and L. N. Trefethen, An extension of MATLAB to continuous functions and
operators, SIAM J. Sci. Comput., 25 (2004), pp. 1743--1770, https://doi.org/10.1137/
S1064827503430126. (Cited on p. 459)

[6] A. Ben-Artzi and I. Gohberg, Inertia theorems for nonstationary discrete systems and di-
chotomy, Linear Algebra Appl., 120 (1989), pp. 95--138. (Cited on p. 458)

[7] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engi-
neers, Springer Science \& Business Media, 2013. (Cited on p. 443)

[8] M. Desroches, B. Krauskopf, and H. M. Osinga, Mixed-mode oscillations and slow man-
ifolds in the self-coupled FitzHugh--Nagumo system, Chaos, 18 (2008), art. 015107-1--8.
(Cited on pp. 447, 459)

[9] E. J. Doedel et al., AUTO-07P: Continuation and Bifurcation Software for Ordinary Differ-
ential Equations, Technical report, Dept. of Computer Science and Software Engineering,
Concordia University, 2007; see http://cmvl.cs.concordia.ca/auto/. (Cited on p. 447)

[10] G. Domokos and P. Holmes, On nonlinear boundary-value problems: Ghosts, parasites and
discretizations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), pp. 1535--
1561. (Cited on pp. 455, 456)

[11] T. A. Driscoll, N. Hale, and L. N. Trefethen, Chebfun Guide, Pafnuty Press, 2014; see
also www.chebfun.org. (Cited on pp. 440, 458, 459)

[12] N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J.
Differential Equations, 31 (1979), pp. 53--98. (Cited on pp. 445, 447)

[13] S. Filip, A. Javeed, and L. N. Trefethen, Smooth random functions, random ODEs,
and Gaussian processes, SIAM Rev., 61 (2019), pp. 185--205, https://doi.org/10.1137/
17M1161853 . (Cited on p. 459)

[14] A. R. Forsyth, A Treatise on Differential Equations, BoD--Books on Demand, 2013, originally
published in 1885. (Cited on p. 439)

[15] W. Gautschi, The condition of polynomials in power form, Math. Comp., 33 (1979), pp. 343--
352. (Cited on p. 449)

[16] C. W. Gear, T. J. Kaper, I. G. Kevrekidis, and A. Zagaris, Projecting to a slow manifold:
Singularly perturbed systems and legacy codes, SIAM J. Appl. Dyn. Syst., 4 (2005), pp. 711--
732, https://doi.org/10.1137/040608295. (Cited on p. 447)

[17] M. B. Giles and N. A. Pierce, An introduction to the adjoint approach to design, Flow
Turbulence Combust., 65 (2000), pp. 393--415. (Cited on p. 453)

D
ow

nl
oa

de
d 

06
/0

8/
20

 to
 1

29
.6

7.
24

6.
57

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/1.9781611971231
https://doi.org/10.1137/1.9781611971231
https://doi.org/10.1137/16M1065975
https://doi.org/10.1137/S1064827503430126
https://doi.org/10.1137/S1064827503430126
http://cmvl.cs.concordia.ca/auto/
www.chebfun.org
https://doi.org/10.1137/17M1161853
https://doi.org/10.1137/17M1161853
https://doi.org/10.1137/040608295


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXPONENTIALLY ILL-CONDITIONED EQUATION \bfitvarepsilon \bfity \prime \prime  - \bfitx \bfity \prime + \bfity = \bfzero 461

[18] M. Gomez, D. E. Moulton, and D. Vella, Critical slowing down in purely elastic ``snap-
through"" instabilities, Nature Phys., 13 (2017), pp. 142--145. (Cited on p. 456)

[19] J. Grasman and B. J. Matkowsky, A variational approach to singularly perturbed boundary
value problems for ordinary and partial differential equations with turning points, SIAM J.
Appl. Math., 32 (1977), pp. 588--597, https://doi.org/10.1137/0132047. (Cited on p. 440)

[20] P. P. N. de Groen, The nature of resonance in a singular perturbation problem of turning
point type, SIAM J. Math. Anal., 11 (1980), pp. 1--22, https://doi.org/10.1137/0511001.
(Cited on pp. 440, 445, 450)

[21] J. Guckenheimer, B. Krauskopf, H. M. Osinga, and B. Sandstede, Invariant manifolds
and global bifurcations, Chaos, 25 (2015), art. 097604.(Cited on pp. 447, 459)

[22] M. D. Gunzburger, Perspectives in Flow Control and Optimization, SIAM, 2002, https://doi.
org/10.1137/1.9780898718720. (Cited on p. 453)

[23] S. M. Hammel, J. A. Yorke, and C. Grebogi, Do numerical orbits of chaotic dynamical
processes represent true orbits?, J. Complexity, 3 (1987), pp. 136--145. (Cited on p. 455)

[24] P. Hartman, Ordinary Differential Equations, SIAM, 2002, https://doi.org/10.1137/1.
9780898719222. (Cited on p. 458)

[25] C. R. Hasan, B. Krauskopf, and H. M. Osinga, Saddle slow manifolds and canard orbits in
\bfR 4 and application to the full Hodgkin--Huxley model, J. Math. Neurosci., 8 (2018), art. 5.
(Cited on pp. 447, 459)

[26] P. W. Hemker, A Numerical Study of Stiff Two-Point Boundary Problems, Math. Centre
Tracts 80, Mathematisch Centrum, Amsterdam, 1977. (Cited on pp. 440, 458)

[27] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, 2002, https:
//doi.org/10.1137/1.9780898718027. (Cited on p. 441)

[28] D. Holcman and Z. Schuss, Asymptotics of Elliptic and Parabolic PDEs, Springer, 2018.
(Cited on p. 458)

[29] M. H. Holmes, Introduction to Perturbation Methods, 2nd ed., Springer, 2013. (Cited on
p. 443)

[30] L. H\"ormander, Differential equations without solutions, Math. Ann., 140 (1960), pp. 169--173.
(Cited on pp. 452, 457)

[31] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer, 1976. (Cited on p. 457)
[32] J. Kevorkian and J. D. Cole, Perturbation Methods in Applied Mathematics, Springer, 2010.

(Cited on p. 443)
[33] J. Kierzenka and L. F. Shampine, A BVP solver based on residual control and the MATLAB

PSE, ACM Trans. Math. Softw., 27 (2001), pp. 299--316. (Cited on p. 441)
[34] N. Kopell, A geometric approach to boundary layer problems exhibiting resonance, SIAM J.

Appl. Math., 37 (1979), pp. 436--458, https://doi.org/10.1137/0137035. (Cited on pp. 440,
445)

[35] H. O. Kreiss and S. V. Parter, Remarks on singular perturbations with turning points, SIAM
J. Math. Anal., 5 (1974), pp. 230--251, https://doi.org/10.1137/0505025. (Cited on pp. 440,
442)

[36] W. D. Lakin, Boundary value problems with a turning point, Stud. Appl. Math., 51 (1972),
pp. 261--276. (Cited on p. 440)

[37] J.-Y. Lee and L. Greengard, A fast adaptive numerical method for stiff two-point boundary
value problems, SIAM J. Sci. Comput., 18 (1997), pp. 403--429, https://doi.org/10.1137/
S1064827594272797. (Cited on p. 440)

[38] H. Lewy, An example of a smooth linear partial differential equation without solution, Ann.
Math., 66 (1957), pp. 155--158. (Cited on p. 457)

[39] A. D. MacGillivray, A method for incorporating transcendentally small terms into the method
of matched asymptotic expansions, Stud. Appl. Math., 99 (1997), pp. 285--310. (Cited on
pp. 440, 445)

[40] R. S. MacKay, Slow manifolds, in Energy Localisation and Transfer, T. Dauxois, A. Litvak-
Hinenzon, R. Mackay, and A. Spanoudaki, eds., World Scientific, 2004, pp. 149--192. (Cited
on p. 447)

[41] B. J. Matkowsky, On boundary layer problems exhibiting resonance, SIAM Rev., 17 (1975),
pp. 82--100, https://doi.org/10.1137/1017005. (Cited on p. 442)

[42] B. J. Matkowsky, Singular perturbations in noisy dynamical systems, European J. Appl.
Math., 29 (2018), pp. 570--593. (Cited on pp. 440, 445, 458)

[43] S. Mizohata, Solutions nulles et solutions non analytiques, J. Math. Kyoto Univ., 1 (1962),
pp. 271--302. (Cited on p. 457)

[44] J. Mujica, B. Krauskopf, and H. M. Osinga, Tangencies between global invariant manifolds
and slow manifolds near a singular Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 17 (2018),
pp. 1395--1431, https://doi.org/10.1137/17M1133452. (Cited on pp. 447, 459)

D
ow

nl
oa

de
d 

06
/0

8/
20

 to
 1

29
.6

7.
24

6.
57

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/0132047
https://doi.org/10.1137/0511001
https://doi.org/10.1137/1.9780898718720
https://doi.org/10.1137/1.9780898718720
https://doi.org/10.1137/1.9780898719222
https://doi.org/10.1137/1.9780898719222
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/0137035
https://doi.org/10.1137/0505025
https://doi.org/10.1137/S1064827594272797
https://doi.org/10.1137/S1064827594272797
https://doi.org/10.1137/1017005
https://doi.org/10.1137/17M1133452


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

462 LLOYD N. TREFETHEN

[45] F. W. J. Olver, Asymptotics and Special Functions, AK Peters/CRC Press, 1997. (Cited on
p. 440)

[46] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, eds., NIST Handbook
of Mathematical Functions, Cambridge University Press, 2010. (Cited on p. 439)

[47] S. Olver and A. Townsend, A fast and well-conditioned spectral method, SIAM Rev., 55
(2013), pp. 462--489, https://doi.org/10.1137/120865458. (Cited on p. 443)

[48] R. E. O'Malley, Jr., On boundary value problems for a singularly perturbed differential
equation with a turning point, SIAM J. Math. Anal., 1 (1970), pp. 479--490, https:
//doi.org/10.1137/0501041. (Not cited)

[49] R. E. O'Malley, Jr., Singularly perturbed linear two-point boundary value problems, SIAM
Rev., 50 (2008), pp. 459--482, https://doi.org/10.1137/060662058. (Cited on pp. 440, 441,
445)

[50] K. J. Palmer, Exponential dichotomies and Fredholm operators, Proc. Amer. Math. Soc., 104
(1988), pp. 149--156. (Cited on p. 458)

[51] C. E. Pearson, On a differential equation of boundary layer type, J. Math. Phys., 47 (1968),
pp. 134--154. (Cited on pp. 440, 442, 458)

[52] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1987. (Cited on p. 449)
[53] K. K. Sharma, P. Rai, and K. C. Patidar, A review on singularly perturbed differential equa-

tions with turning points and interior layers, Appl. Math. Comput., 219 (2013), pp. 10575--
10609. (Cited on pp. 440, 458)

[54] I. Stakgold and M. J. Holst, Green's Functions and Boundary Value Problems, Wiley, 2011.
(Cited on p. 458)

[55] S. H. Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chem-
istry and Engineering, Westview Press, 2015. (Cited on p. 456)

[56] A. Tikhonov, On the dependence of the solutions of differential equations on a small param-
eter, Mat. Sb., 64 (1948), pp. 193--204. (Cited on pp. 439, 446)

[57] A. Tikhonov, Systems of differential equations containing small parameters in the derivatives,
Mat. Sb., 73 (1952), pp. 575--586. (Cited on p. 439)

[58] L. N. Trefethen, Wave packet pseudomodes of variable coefficient differential operators, Proc.
R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), pp. 2099--3122. (Cited on pp. 452,
456)

[59] L. N. Trefethen, A. Birkisson, and T. A. Driscoll, Exploring ODEs, SIAM, 2018. (Cited
on pp. 440, 441, 443, 444, 457, 458)

[60] L. N. Trefethen and M. Embree, Spectra and Pseudospectra, Princeton University Press,
2005. (Cited on pp. 451, 452, 457, 458, 459)

[61] A. B. Vasil'eva, V. F. Butuzov, and L. V. Kalachev, The Boundary Function Method for
Singular Perturbation Problems, SIAM, 1995, https://doi.org/10.1137/1.9781611970784.
(Cited on pp. 439, 446)

[62] A. B. Vasilieva, On the development of singular perturbation theory at Moscow State Univer-
sity and elsewhere, SIAM Rev., 36 (1994), pp. 440--452, https://doi.org/10.1137/1036100.
(Cited on pp. 439, 443, 446)

[63] M. I. Vishik and L. A. Lyusternik, Regular degeneration and boundary layer for linear
differential equations with small parameter, Usp. Mat. Nauk, 12 (1957), pp. 3--122. (Cited
on pp. 439, 443)

[64] N. Wang and R. E. O'Malley, On the Asymptotic Solution of Singularly Perturbed Boundary
Value Problems with Turning Points, manuscript, 2018. (Cited on pp. 440, 441, 458)

[65] A. M. Watts, A singular perturbation problem with a turning point, Bull. Austr. Math. Soc.,
5 (1971), pp. 61--73. (Cited on p. 440)

[66] J. H. Wilkinson, Rounding Errors in Algebraic Processes, Prentice-Hall, 1963. (Cited on
p. 441)

[67] T. G. Wright, EigTool, https://github.com/eigtool/eigtool. (Cited on pp. 452, 459)
[68] M. Zworski, A remark on a paper of E. B. Davies, Proc. AMS, 129 (2001), pp. 2955--2957.

(Cited on pp. 452, 457)
[69] M. Zworski, Semiclassical Analysis, AMS, 2012. (Cited on p. 452)

D
ow

nl
oa

de
d 

06
/0

8/
20

 to
 1

29
.6

7.
24

6.
57

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/120865458
https://doi.org/10.1137/0501041
https://doi.org/10.1137/0501041
https://doi.org/10.1137/060662058
https://doi.org/10.1137/1.9781611970784
https://doi.org/10.1137/1036100
https://github.com/eigtool/eigtool

	Introduction
	Existence, Uniqueness, and Exact Solution
	Numerical Analysis: Backward Error Analysis and Ill-Conditioning
	Asymptotics: Boundary Layer Analysis
	Dynamical Systems: Slow Manifolds
	ODE Theory: Sturm–Liouville Operators
	Spectral Theory: Eigenvalues and Pseudospectra
	Sensitivity Analysis: Adjoints and SVD
	Physics: Ghost Solutions
	PDE Theory: Lewy Nonexistence
	Conclusion
	References

