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Notes of a Numerical Analyst

Prime Gaps and Numerical Eigenvalues

NICK TREFETHEN FRS

Despite their similar names, number theory and nu-
merical analysis are about as far apart as you can get
in mathematics. To oversimplify outrageously, all that
number theorists care about is integers, and all that
numerical analysts care about is real numbers. It’s
chalk and cheese, discrete and continuous, algebra
and analysis.

So my interest was just that of an onlooker when I
heard a few years ago about big results concerning
prime gaps. First, Yitang Zhang proved that there
are infinitely many pairs of primes separated by less
than 70,000,000. Then James Maynard showed that
70,000,000 could be improved to 600 [1]. (Nine years
later he was awarded a Fields Medal.) The current
best result is that there are infinitely many primes
separated by gaps no greater than 246 [2].

Figure 1. It is not known if there are infinitely many
pairs of primes like these that differ by just 2, but it
has been proved that there are infinitely many that
differ by no more than 246

But who knew that all these theorems depend on
calculating eigenvalues of matrices? I learned this
during a lunch with Maynard (whom I thank for con-
tributing to this column). “This number 246”, I asked
him, “it must come from some kind of calculation,
right? What is the calculation?”

Maynard surprised me by explaining that it’s the
numerical calculation of an eigenvalue of a matrix.
It turns out that if you can prove that a certain
1,780 × 1,780 matrix has an eigenvalue >4, you have
proved that there are infinitely many prime gaps
≤246. The number 246 is the smallest gap size for
which the relevant matrix has this property.

The number theory details can be found in the pa-
pers just cited. I’d like to say a word about this other
aspect, the method of proving something rigorously
by a real number computation, even though real
numbers can only be approximated on our comput-
ers.

A famous tool is interval arithmetic, and you might
imagine this is what Maynard and his collaborators
must have used. In interval arithmetic, when two
numbers are combined by (say) division, although
the exact result is not be stored, upper and lower
bounds are retained. As a calculation proceeds, the
gap between the upper and lower bounds widens,
but the bounds are rigorous.

The trouble is that this can be terribly pessimistic
in practice. So for years I had a low opinion of in-
terval arithmetic, until I learned that many results in
this area are attained in a cleverer, a posteriori fash-
ion. You compute your result by ordinary numerical
means, and then you validate it [3] !

Suppose, say, you’ve computed a numerical eigen-
vector x and eigenvalue 𝜆 of a symmetric matrix A.
The computations are not rigorous. But now, you
validate your result by rigorously computing a bound
∥Ax − 𝜆x ∥2 ≤ 𝜀 on the residual by interval arith-
metic or other means. This implies that A has an
eigenvalue within a distance 𝜀 of 𝜆 . Maynard and
his collaborators used a one-sided bound, not in-
tervals, but the a posteriori nature of their rigorous
calculation was exactly this.
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