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REAL VS. COMPLEX RATIONAL CHEBYSHEV APPROXIMATION 

ON AN INTERVAL 


BY 


LLOYD N. TREFETHEN' AND MARTIN H. GUTKNECHT 


ABSTRACT.I f f  E C[-I, I] is real-valued, let Er( f )  and E'( f )  be the errors in best 
approximation to f in the supremum norm by rational functions of type ( m ,  n )  with 
real and complex coefficients, respectively. It has recently been observed that 
E'( f )  < Er( f )  can occur for any n > 1, but for no n 1 is it known whether 
y,,,, = inf, E'( f ) / E r (  f )  is zero or strictly positive. Here we show that both are 
possible: yo, > 0, but y,,,, = 0 for n m + 3. Related results are obtained for 
approximation on regions in the plane. 

1. Introduction. Let I be the unit interval [ - I ,  11, C r  the set of continuous real 
functions on I ,  and 1 1  1 1  the supremum norm J lf 11  = sup,,,l f ( x ) l .  For nonnegative 
integers m and n ,  let R,, and R',, C R,, be the spaces of rational functions of type 
( m ,  n )  with coefficients in C and R, respectively. For f E Cr,let Ec( f )  and Er( f )  
denote the infima 

E C ( f ) =  inf Ilf-rll, E r ( f ) =  in! Ilf-rll. 
r E R m n  r E R m n  

It is known that both limits are attained, and a function that does so is called a best 
approximation ( B A ) to f. In the real case the BA is unique [$I, and in the complex 
case for n 1 in general it is not [7,10,11,14,15]. 

Obviously E c  G E r  for any f ,  but since f is real, it is not at first obvious whether a 
strict inequality can occur. However in 1971 Lungu [7], following a proposal of 
GonEar [16], published a class of examples showing that Ec( f )  < Er( f )  is indeed 
possible if n 1. Independently, Saff and Varga [lo, 111 made the same discovery in 
1977, and obtained more general sufficient conditions for Ec( f )  < Er( f )  and also a 
sufficient condition for Ec( f )  = Er( f  ). The former was later sharpened by Ruttan 
[I$] to the following statement: Ec( f )  < Er( f )  must hold if the best real approxi- 
mation to f attains its maximum error on no alternation set of length greater than 
m + n + 1 points. For a survey of such results, see [14]. 

But is E c ever much less than Er? If y,, denotes the infimum 

then one would like to know whether y,, can be zero or is always positive, and if the 
latter. how small it is. In all of the examples devised to date, Ec( f  ) /Er(  f  ) has fallen 
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in the range (4,I], suggesting that ym,, = 4 might be the minimum value. Saff and 
Varga posed in particular the question, is ynn positive or zero 110, I l l?  Ellacott has 
suggested that ym,, = may hold for m 2 n [3]. (For more on his argument see 52.)  
Some partial results for (m, n) = (I, 1) have been obtained by Bennet, et al. [1,2] 
and by Ruttan [9]. 

In this paper we resolve some of these questions, as follows. First, not only can 
ynlIl< 5 occur, but ymn= 0 for all m 2 0, n B m + 3 (Theorem 1). Second, yo, > 0 
(Theorem 2). We conjecture that y,,, > 0 holds whenever n < m + 3. Finally, at 
least some of our arguments extend to approximation on complex regions, and we 
show: yk ,  = 0 for n Z= 4 in approximation on the unit disk A (Theorem 3) .  A similar 
result is obtained for approximation on a symmetric Jordan region. 

2. y,,, = 0 for n B m + 3. 

THEOREM1. y,,,, = 0 for all m > 0, n 2 m + 3.  

PROOF. The idea of the construction is indicated in Figure 1, where crosses 
represent poles and circles represent zeros. 

m+1 pole  
po les-m zeros x 

6 
pole 

X ~toSSa . . . 0 I ! x 

FIGURE1 

Given m B 0, let c) E R,,,,,,,be defined by 


and as the function in C r  to be approximated take f (x)  = Re +(x) We will show 
that f has the following two properties: 

(a) 1 1  f - $ 1 1  = llImc)II = O(G) as E + 0. 
(b) There exists a constant C > 0 such that for all sufficiently small E, 

(4) - I - + 2 c O G j G r n ,  
and 

Condition (b) states that the error function for the zero approximation to f 
approximately equioscillates at m + 2 points, and by the de la Vallee Poussin 
theorem for real rational approximation 18, Theorem 981, this implies E r  C. (For 
the purposes of this theorem r 0 has rational type (p, v)  = (-oo,O), so the 
"defect" d = min{m - p, n - v )  is n, whlch means one needs approximate 
equioscillation at m + n + 2 - d = m + 2 points.) On the other hand if n 2 m + 3, 
then c) E R m n .so (a) implies E' = O(6) .  Thus since E can be arbitrarily small, the 
theorem will be proved once (a) and (b) are established. 
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PROOFOF (a). Let us write + as a product of three functions +,, +,, +, correspond-
ing to the poles and zeros near -1,0,and 1, respectively. Of these functions only @, 

has a nonzero imaginary part on I, and we bring this into the numerator. The factor 
+, gets the constant E from ( 3 ) :  

Since ( f - @ ) ( x )= -i Im + ( x ) ,we compute 

It is not hard to see that on [-I, - i]these factors have magnitude 0(1),0(&),and 
0(1),so their product is O(&). Similarly in [- f ,  i]one has O(&)O( l /&)0(1)= 
O(&),  and in [;. 11. 0(~)0(&)0(1 /~ )= O(&). Together these estimates give 
( f - @ ) ( x )= O ( 6 )for all x E I, as claimed. 

PROOFOF (b). Again we use the factorization + = of (6).Let { x , ) ~ ! , ,be the 
set of points xj = - 1  + 2j~ that appear in condition (4). At each x,, +, evidently 
takes the form for some constants a, and Pj,  and thus + , ( x , )  is 
independent of E .  Moreover these quantities obviously alternate in sign, i.e. 

with 7, independent of E.  In addition since all of the points x, are contained in 
[- 1 .  - 1  + 2me],we have C$~(X,)= 1 + O(&), G3(xI)= f + O(e) on {x , ) .Together 
these facts establish (4 )for some C = C,  > 0. 

For condition ( 5 )  we compute 

which implies that ( 5 )  holds for C = C, with any C2 < $. Taking C = min{C,, C,) 
now yields (b). 

REMARKON A N  ARGUMENT OF ELLACOTT.AS alluded to in the Introduction, 
Ellacott has observed that one can conclude from the C F  method [13,4] that if p is a 
polynomial of degree m + 1 ,  then 

for n G m [3]. This is one of hls arguments for suggesting that y,, = f or at least 
y,,,, > 0 may hold for n G m. However we claim that (7) is valid in fact for all 
n < 2m + 1 ,  which by Theorem 1 means that it holds even in many cases with 
y,, = 0. Therefore although Ellacott's conjecture is plausible, it appears that (7) 
does not provide very strong support for it. 
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To demonstrate that (7) holds for n G 2m + 1, let p be transplanted to the unit 
circle by defining a function@ for z E C as follows: 

For n G 2m + 1, the BA t o p  in R',, on I was obtained explicitly by Talbot [12,5], 
and its deviation fromp is 

(8) E r ( p )  = 2an, 

where a, is the smallest singular value of the (n + 1) X (n + 1) Hankel matrix 
(a,-,+ I +,+J);J=o. On the other hand if r E R,, is any complex approximation t o p  
on I ,  consider the transplanted function i defined by i (z )  = r(x). It is readily 
verified that i has v G n poles in 1 < J z l <  co and is of order O(zm-") at co. 
Therefore i lies in the space R,, defined in [13,4], and by the theory given there this 
implies 

Thus 

(9) Ec(P )  2 an, 

which together with (8), establishes (7). 
By applying '[4, Lemma 5.1 in Part 11] (7) can be seen to hold even for some 

rational functions f,  namely for those of exact type (M, N )  where either M G m + 1, 
N = n + 1, n G m  or M = m  + 1, N G n  + 1, n G 2 m  + 1 - N; details will be 
given in [5]. 

PROOF. Let f E Cr be arbitrary, and let c* be a BA to f i n  R,,. Then for any 
r E R',, one has IJImc*IJ G J J  f - c*lJ= Ec( f )  and Er( f )  G Ec( f )  + IJc*- rll, and 
therefore 

Now suppose that for any c E R,,\R',, with no poles on I, one can find 
r(C'E R',, such that 

for some fixed M. Then r(") can be inserted in (lo), independent of f,  and one 
obtains y,, 2 1/(1 + M). Our proof of yo, > 0 consists of exlubiting a mapping 
c H r(') for the case (m, n) = (0, 1) that satisfies (1 1). 

Thus let c(z) = a/(l - z/zo) be given, where zo lies in the region C0 = 
C U {co}\I. Let 9 E (0, n/2) and p E (1, co) be arbitrary fixed constants (say, 
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19 = 77/4, p = 2). Our choice of r ( " )depends on which of four domains A+ ,A-, B ,  C 
the pole lies in: 

The configuration is indicated in Figure 2. 

FIGURE2 

We define r")  as follows: 

For zo E A* : r ( " ) ( z )= - l"zO' Re c( *  1 ) .  
1 z/Iz01 

The proof can now be completed by showing that there exist constants MA,M,, Mc 
such that (1 1 )  holds for zo restricted to each domain A+ UA- ,  B, C. The global 
constant M can then be taken as M = max{MA,M,, M,). The algebra involved is 
unfortunately quite tedious, so we will omit these verifications. However, details of a 
similar argument for the case of approximation on certain Jordan regions in C are 
given in [17]. 

4. y& = 0 for n 3 4. 
Let A be the closed unit disk { z  E C: lzl-G 11, and let f be continuous in A and 

analytic in the interior and satisfy f ( 2 )  = f ( z ) .  Let 1 1  f I I A  denote sup,,,l f ( z ) l ,  and 
define Ec( f ;  A ) ,  Er (  f ;  A ) ,  and y i n  as in ( 1 )  and (2). Until recently it was not even 
known whether y i n  < 1 is possible, but in a separate paper we show that this 
inequality holds at least for all pairs ( m ,  n )  with m = 0, n 1 or m 0,  n = 1 [6]. 

By a variation of the argument of 52, we will now prove 

THEOREM3.  y tn  = 0 for n B 4. 
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PROOF.Let 5 = ele for some fixed 8 E (0, n),and for any E > 0, define 

and 

In analogy to the proof of Theorem 1, y;, = 0 for n > 4 will follow from the 
properties 

(a) I l f  - +IIa = o(E ' /~) ;  
(b) there exists a constant C > 0 such that for all sufficiently small E,f(-1) < -C, 

f(1) 2 c. 
Both (a) and (b) can be readily derived by observing that the term 

behaves like 1 + 0(&'13)near z = 1 and like -1(1 - {)/ (1 + {)I2 + O(&'l3)near 
z = -1. We omit the details. 

This argument can be extended to show y;, = 0 for n 2 4 for approximation on 
any Jordan region D with D = a, provided a0 is differentiable at its two points of 
intersection with R, say z,  and z,, hence forms a right angle to R at these points. 
Again one introduces a complex double pole, slightly above the point z, (analogous 
to taking 5 = ele with 8 small above), and this generates an approximate sign change 
between +(z,)  and +(z2). 

One can also prove y; > 0 for the same class of regions D. See [17]. 

Note added in proof. After studying the present paper, E. Saff has pointed out to 
us that the existence of arbitrarily small numbers yn,,,is implied by a result of Walsh 
in 1934 [19, Theorem IV],  although this consequence was never recognized. Walsh 
showed that for any m 2 0, the family U;=:=,R,,,, is dense in C [ I ](or indeed in the 
space of continuous functions on any Jordon arc in C), so that lim,-, En,,,(f )= 0 
for f E C [ I ] .On the other hand, as we have seen, if f has m + 1 zeros, then it 
cannot be approximated arbitrarily closely in U;=:=,R',,,,, i.e. lim,,-, EL,,,(f ) > 0. It 
follows that for any m 2 0, lim ,,-, yn,,,= 0. 
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