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Summary. It is well known that a necessary condition for the Lax-stability 
of the method of lines is that the eigenvalues of the spatial discretization opera- 
tor, scaled by the time step k, lie within a distance O(k) of the stability region 
of the time integration formula as k ~ O. In this paper we show that a necessary 
and sufficient condition for stability, except for an algebraic factor, is that the 
e-pseudo-eigenvalues of the same operator lie within a distance O(e)+O(k)  of 
the stability region as k, e ~ O. Our results generalize those of an earlier paper 
by considering: (a) Runge-Kutta and other one-step formulas, (b) implicit as 
well as explicit linear multistep formulas, (c) weighted norms, (d) algebraic stabili- 
ty, (e) finite and infinite time intervals, and (f) stability regions with cusps. 

In summary, the theory presented in this paper amounts to a transplantation 
of the Kreiss matrix theorem from the unit disk (for simple power iterations) 
to an arbitrary stability region (for method of lines calculations). 

Mathematics Subject Classification ( I  991):  65 M20, 15A 18 

1 Introduction 

Since the early work of von Neumann, Lax, and Richtmyer, it has been recog- 
nized that analysis of eigenvalues gives necessary but not sufficient conditions 
for the (Lax-) stability of discretizations of linear initial-value problems [30]. 
Eigenvalue analysis is so convenient, however, that the tendency among engi- 
neers has been to ignore this pitfall and assume that a discretization is stable 
if it passes an eigenvalue test, with results usually more or less correct but 
sometimes considerably in error [3, 11, 24, 25, 36]. Theoretical numerical ana- 
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lysts, on the other hand, too mathematically conscientious to gloss over a gap 
in the theory, have tended to dismiss eigenvalue analysis as of merely heuristic 
value except in the well-known special case where the operators involved are 
normal. 

The purpose of this paper is to show that this gap between necessary and 
sufficient - or between theory and practice - can be eliminated if one restates 
the usual arguments in terms of e-pseudo-eigenvalues instead of eigenvalues. 
For  each e>0 ,  the e-pseudospectrum of a matrix A is the set of all numbers 
z ~  that are eigenvalues of A + E for some perturbation matrix E with IjEt] < e. 
Such numbers z are called e-pseudo-eigenvalues. Our main result gives necessary 
and sufficient conditions for stability in terms of pseudospectra, and can be 
roughly stated as follows: a linear method of lines calculation with time step 
k, spatial discretization operators {Lk}, and stability region S is Lax-stable, 
except for an algebraic factor, if and only if all the e-pseudo-eigenvalues of 
the operators {kLk} lie within a distance O(e) + O(k) of S as ~, k ~ 0. 

Any statement about the pseudospectra of a matrix A is equivalent to a 
statement about the norm of its resolvent (zI-A) 1, for as is readily shown, 
a number z ~C is an e,-pseudo-eigenvalue if and only if If(z I - A ) - I I ]  > e-1 [38]. 
The use of resolvents has a long history in stability theory. Mathematically, 
what is at issue here is the transplantation of the Kreiss matrix theorem, in 
a sharpened form established in [21] and [33], from the unit disk to an arbitrary 
stability region. 

In an earlier paper [28], our pseudo-eigenvalue stability criterion was proved 
for the special case of method of lines calculations on an infinite time interval 
based on explicit linear multistep formulas with cusp-free stability regions, in 
the L 2 norm. This paper amounts to an extension of that result to: 

(a) Runge-Kutta and other one-step time integration formulas, 
(b) implicit as well as explicit linear multistep formulas, 
(c) weighted norms, 
(d) algebraic stability, 
(e) finite and infinite time intervals, 
(f) stability regions with cusps. 

The paper is organized as follows. Section 2 formulates the problem and defines 
the notation. Section 3 presents the definition of pseudospectra. Section 4 pres- 
ents an example which illustrates our main results. Section 5 states a theorem 
for stability of semidiscrete evolution equations. Section 6 reviews the Kreiss 
matrix theorem, which gives conditions for power-boundedness of families of 
matrices, and presents generalizations for algebraic stability and for stability 
on finite time intervals. Section 7 proves our main stability result for one-step 
methods. This result is generalized in Sect. 8. Section 9 states our main results 
for linear multistep methods. The proofs are just sketched, since most of the 
details are presented already in Sect. 7 and [28]. It is also shown that a modified 
criterion based on pseudospectra applies to linear multistep methods whose 
stability regions have cusps. In Sect. 10, the theory is applied to two finite differ- 
ence discretizations. Section 11 reviews previous and current related work. Our 
results are reasonably complete for time integration formulas with bounded 
stability regions and we present partial results for unbounded stability regions. 

As the above summary suggests, this paper is rather long. However, we 
would like to emphasize that the main points of our stability theory are not 
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difficult to follow. The main ideas and results can be understood by first looking 
at Sects. 2, 3, and 4, which define the notation and illustrate the theory with 
an example, and then proceeding to the Kreiss matrix theorem in Sect. 6 and 
to our main results, Theorems 7.1 and 9.1. 

The availability of a new stability criterion based on pseudospectra does 
not imply that analyzing stability will necessarily be easy in particular cases. 
Like spectra, pseudospectra must often be estimated numerically. Indeed, our 
theorems suggest that for practical work, a reasonable way to test for stability 
is to calculate eigenvalues in the usual way after modifying the matrix by one 
or two random perturbations of size, say, 10 -3 o r  10 - 6  

The application of the results of this paper to questions of stability and 
stiffness of numerical methods for ordinary differential equations is discussed 
in [12]. 

2 Notation 

Here is the formulation of the problem [30]. We consider the method of lines 
approximation of an autonomous linear evolution equation 

(2.1) u t = ~ u ,  u(x, 0) =f(x) ,  t6[0, T] ,  

where Av is a time-independent linear differential operator, which may incorpor- 
ate boundary conditions, and u is a scalar or vector function of t and of one 
or more space variables x. Equation (2.1) is first approximated with respect 
to the space variables by finite differences, finite elements or spectral methods 
on a discrete grid, transforming the p.d.e, into the system of o.d.e.'s 

(2.2) vt = Lk v, v (0) =fk, 

where v(t) is a vector of dimension Nk < ~ and Lk is a matrix or bounded 
linear operator. At this stage the subscript k is an arbitrary positive real parame- 
ter that determines the spatial grid in an unspecified manner. The semidiscretiza- 
tion (2.2) is then approximated with respect to t by a linear multistep, Runge- 
Kutta, or more general one-step formula with time step k. If we write v",~ v(n k), 
then the resulting full discretization becomes 

(2.3) v" + 1 = Ak V" = G (k Lk) v", 

with appropriate initial conditions. For a one-step time integration formula, 
v"= v", while for an s-step formula we define 

(2.4) 
If, ] j. 

The function G(w) characterizes the time integration formula. For  a linear mult- 
istep method, G(w) is a companion matrix. Its entries are affine and rational 
functions of w for explicit and implicit multistep methods, respectively. For  
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Runge-Kut ta  or one-step methods, G(w) is a polynomial or rational function 
that approximates e w for w ~ 0. 

The full discretization (2.3) is defined to be Lax-stable if 

(2.5) IIZ~ll~C for all n and k with O<nk<T, 

for some constant C and all sufficiently small k. The Lax Equivalence Theorem 
states that (2.5) is a necessary and sufficient condition for convergence of the 
discrete approximation as k-~0,  assuming that the initial-value problem (2.1) 
is well-posed and that the discretization (2.3) is consistent [30]. 

Throughout  this paper, dl" II denotes the weighted 2-norm defined by a non- 
singular weight matrix W. 1 The matrix W depends on the grid, and hence on 
k, in a fashion that in principle is arbitrary. In applications, if W is not the 
identity, it will typically be a discrete diagonal approximation to a smooth 
weight function such as a Jacobi or Laguerre weight. 

3 Pseudospectra 

Let A be a real or complex square matrix of dimension N. Here is the definition 
of pseudospectra. 

Definition. Given e>0 ,  a number  ze~E is an e-pseudo-eigenvalue of A if any 
of the following equivalent conditions is satisfied: 
(i) z is an eigenvalue of A + E  for some E with IIEIP <e;  
(ii) 3 u ~ C  u with HuH =1 such that [](A-zI)uH <e; 
(iii) I](zl- A)-lt[ >e -~. 
The e-pseudospectrum of A, denoted by A~(A), is the set of all e-pseudo-eigen- 
values of A. 

The vector u in (ii) is called a normalized e-pseudo-eigenvector. The function 
( z I - A ) -  ~ is the resolvent. The proof  of the equivalence of the three conditions 
is given in [38]. 

If  3r is a Hilbert space and A: 9V ~ J f  is a bounded linear operator, then 
conditions (i)-(iii) are not quite equivalent. Let A(A) denote the spectrum of 
A. In this case, z is defined to be a e-pseudo-eigenvalue if z ~ A (A) or if z ~ ~ \ A  (A) 
and H(z I -  A)- I [] > e -1. 

For  a normal2 matrix or operator  A, A~(A) is simply the union of the 
closed e-balls around the spectrum of A. On the other hand, if A is non-normal,  
then A,(A) may be much larger than the spectrum, even if e <  1. It is in these 
cases that considering the spectrum alone may be misleading. Highly non-normal  
matrices arise in many  areas in numerical analysis. In previous work we have 
examined the pseudospectra of non-normal  matrices arising in spectral discreti- 
zations of partial differential equations [28] and have also obtained results 
on pseudospectra of Toeplitz matrices [29]. An introduction to the idea of 
pseudospectra can be found in [37], and a longer survey is in preparat ion 
[38]. 

I This norm is defined by ][x[t- [Ixllw= HWxll2 and HEll- LIEllw = IIWEW-1I[2 for vectors x 
and matrices E, respectively 
2 An operator A is normal if A+A=AA § where A § is the adjoint of A. If I1" II is the usual 
2-norm, then A § is simply the Hermitian conjugate A*. For our weighted 2-norm the adjoint 
is given by the more complicated expression A § = W- 1 (W- ~)* A* W* W 
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Fig. 1. Powers of Ak = G(k Lk) for the problem (4.1) with k = 0.25/(N- 1) 

Our stability theorems are based on resolvents and make frequent use of 
the following result. Let V_~r be an open set with boundary c~V and closure 
V.. If A~(A)~_ ~'for some e>0,  then 

(3.1) II(zI-A)-lH<=e. -1 V z ~ V .  

For zell2\V,, the same estimate holds with a strict inequality. In general the 
set V will depend on e. 

Our stability analysis via pseudospectra and resolvents is related to previous 
work by Bakhvalov, Godunov and Ryabenkii, Di Lena and Trigiante, Lenferink 
and Spijker, Lubich and Nevanlinna, Kreiss and Wu, and others (see Sect. 11). 

4 An example 

Our analysis of stability via pseudospectra was originally motivated by investiga- 
tions of spectral methods on bounded domains [36, 39]. Before proceeding 
to our results we present an example of this type which illustrates the main 
points of our theory. 

We consider a discretization of the initial boundary value problem 

(4.1) ut = - x u x ,  - 1  <x_<l,  u(x ,O)=f (x ) .  

The method combines collocation at the Chebyshev points for the spatial discre- 
tization with the third-order Adams-Bashforth formula (AB 3) for time integra- 
tion (see [28, 36, 39] for the details). 

The standard eigenvalue criterion for stability requires the eigenvalues of 
the operators {k Lk} to lie in the stability region of the time integration formula. 
It is straightforward to show that the eigenvalues of Lk are the integers - ( N  
-1) ,  - ( N - 2 )  . . . . .  0, where N - N k .  Hence, a necessary condition for stability 
is that k < C / ( N -  1), where C ~ 0.6 for AB 3. 

In actuality, the above stability condition leads to an exponential instability. 
To show this numerically, we set k = 0.25/(N- 1) and attempt to verify the defini- 
tion of stability (2.5). Figure I plots the powers IIA~It for the unweighted 2-norm 
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Fig. 2. Pseudospectra of the Chebyshev spectral discretization matrix for problem (4.1). The 
striped region is the stability region. The solid line on the negative real axis marks the spectrum 
A(kLk). The shaded region is the ~-pseudospectrum for e =  10 - 3  and the curves (from outer 

to inner) are boundaries of the e-pseudospectra for ~ = 10 - z, 10- 3, 10- 4, 10 - s, l 0 - 6, 10- 7 

for several values of N. For  fixed dimension N, and therefore fixed k, IJA~,JJ 
is bounded as a function of n. Thus, the discretization is time-stable. However, 
as the plot indicates, sup []A~,H grows exponentially with the dimension N; 

O<_nk<_ T 

the discretization is not Lax-stable, This exponential instability exists for any 
choice of time step of the form k = C/N. In practical calculations, it can lead 
to large errors in the computed values of u(x, t). 

The reason for the instability becomes apparent  upon examining the pseu- 
dospectra for this problem. Figure 2 compare the pseudospectra of the operators 
k Lk for N = 32 and N = 64. The thick solid line on the negative real axis marks 
the spectrum. The shaded region is the e-pseudospectrum for e = 10-3, and the 
curves are the boundaries of the pseudospectra for this and various other values 
of e. The plots show that the spectrum lies comfortably within the stability 
region, regardless of N. However, for each fixed e>0 ,  A~(kLR) grows as k ~ 0  
and N ~ oo; it has radius approximately O(N), violating our stability criterion 
(Theorem 9.1). A quantitative investigation of the resolvent shows that for every 
fixed uell~, the resolvent norm I[(ltI-kLk)-~l[ grows exponentially with N. This 
accounts for the exponential growth seen in Fig. 1. 

In [28] we showed that a sufficient condition for algebraic stability for this 
spectral discretization is k = O(N-2). For  any choice of time step satisfying this 
condition, the e-pseudospectra of the operators {k Lk} remain bounded as k ~ 0, 
ensuring stability. 

5 Stability of semidiscretizations 

Before examining the stability of the full discretization (2.3), we first present 
a stability (or well-posedhess) result for the semidiscretization (2.2). 
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The solution of (2.2) is 

(5.1) v(t)=eL~tfk , 

where e Lkt can be defined by a Taylor series. The family of semidiscretizations 
{e Lkt} is defined to be stable if 

(5.2) I[eL"~ll <C(t) Vt>0,  

where C(t) is some function independent of k [10, Chapter 5]. The fundamental 
result for stability of the family of semidiscretizations is the continuous version 
of the Kreiss matrix theorem [35, Lemma 4.1]. The following result is a restate- 
ment of a sharpened version of one part of this theorem [21, 33]. 

Theorem 5.1. Let {Lk} be a family of matrices or bounded linear operators of 
dimensions N k < ~ .  I f  

(5.3) [leL~'l[ < C e  ~' Vt=>0 

jor some constants C and o9, then the e-pseudo-eigenvalues {#~} of the operators 
{Lk} satisfy 

(5.4) Rep~<co+Ce Ve>0. 

Conversely, (5.4) implies 

(5.5) ]leL"'ll<efNke'~ Vt>0. 

Proof The relationship between pseudospectra and resolvents presented in 
Sect. 3 implies that (5.4) is equivalent to the condition 

C 
( 5 . 6 )  I](#I-gk)-~N<=Re#_o9 , Re#>~o. 

If (5.3) holds, then (5.6) follows readily from the Laplace transform formula 

(5.7) (#I--Lk)-I  = ~e-UteLktdt Re#>~o.  
0 

Conversely, a more complicated argument based on a resolvent integral shows 
that (5.6) implies (5.5) [21, 33]. [] 

If C = I  in (5.4), then IleLk'll <e  '~ for all t > 0  by the Hille-Yosida theorem 
[13]. 

6 The Kreiss matrix theorem 

Now we turn to fully discrete problems. Our Lax-stability results for method 
of lines discretizations are based on a sharpened version of the resolvent condi- 
tion of the Kreiss matrix theorem [21, 33]. This theorem gives necessary and 
sufficient conditions for the power-boundedness of a family of matrices in terms 
of the pseudospectra of these matrices. In the present section we review this 
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result and give three generalizations which give conditions for algebraic stability 
and for stability on finite time intervals. 

Let {Av} denote a family of matrices or bounded linear operators of dimen- 
sions N~ < ~ .  Let D denote the open unit disk a n d / )  its closure. The following 
result is the same as Theorem 1 in [28], except that since the publication of 
that paper, Spijker has sharpened the result by eliminating a troublesome factor 
of 2 1,33]. For a simple derivation of Spijker's result see 1-41]. 

Theorem 6.1. I f  the operators {Av} satisfy 

(6.1) I[a"~lf < C  u 

for some constant C, then the e-pseudo-eigenvalues {At} of these operators satisfy 

(6.2) dist (2~, D)<Ce Ve>O. 

Conversely, (6.2) implies 

(6.3) I[A~H < e  C min {N~, n +  1} Vn>0.  

Proof The relationship between pseudospectra and resolvents implies that (6.2) 
is equivalent to 

C 
(6.4) I[ (2 I -  A ~) - ' [1 < u 2 ~ r  

= dist(2, D) 

With (6.2) replaced by (6.4), the theorem becomes the sharp form of the Kreiss 
matrix theorem proved in [33]. []  

It is well known that the resolvent condition (6.4) is necessary for power- 
boundedness. The sufficiency of this condition for power-boundedness with an 
additional factor of only O(N~) was first proved by Tadmor 1-34] and appears 
to be less well known. The question of to what extent the factors Nv and n 
in (6.3) are sharp has not yet been fully settled. McCarthy and Schwartz 1,23] 
showed that (6.4) does not imply power-boundedness by constructing a family 

, of operators {A~} satisfying (6.4) for a fixed C with sup I[A~"I[z>C log N~, for 
n>O 

some constant C' and /~< 1/4. On the other hand the results of LeVeque and 
Trefethen 1-21] and Spijker 1-33] show that the factor eN~ is sharp if one requires 
uniformity over all constants C > 0. 

If C =  1 in (6.2), then the algebraic factors in (6.3) can be deleted. In this 
case, the pseudo-eigenvalue condition implies that the field of values ~ ( A 0  
lies in the closed unit disk [38], which in turn implies that IIA~I[<2 for all 
n > 0 1,26, 30]. This result is analogous to the Hille-Yosida theorem in the semi- 
discrete case. 

The simple relationships between the conditions (6.1), (6.2) and (6.3) immedi- 
ately yield the following corollary, which gives conditions for algebraic stability 
with respect to the dimension N~. 

Corollary 6.2. I f  the operators {A~} satisfy 

(6.5) Ila"~ll<CNfl u  
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for some constants C and fl > O, then the e-pseudo-eigenvalues {2~} of these opera- 
tors satisfy 

(6.6) dist (2~, D ) < C N ~  Ve>O. 

Conversely, (6.6) implies 

(6.7) IIA~"II <eCN~min{N,, n + l }  Vn>0. 

Results for algebraic stability with respect to the power n can be derived 
by modifying the pseudo-eigenvalue condition (6.2). The following theorem is 
a restatement, in the language of pseudospectr~, of results in [-8] and [-34]. 

Theorem 6.3. I f  the operators {A~} satisfy 

(6.8) IlA~Ji~Cln ~ Vn>0  

for some constants C1 and ~ > 0, then the ~-pseudo-eigenvalues {2~} of these opera- 
tors satisfy 

1 

(6.9) dist (2~, D)<Cz(e~+t+~) Ve>0. 

Conversely, (6.9) implies 

(6.10) IIA~II =<C3 n" min {Nv, n} Vn>0.  

The relationships between the constants Ci depend only on ~. 

Proof It can readily be shown that (6.9) is equivalent to the condition 

(6.11) 
II < (~2(1 +dist(2, D))" 

for some constant C2. The proof that (6.8) implies (6.11) is given in [8]. Converse- 
ly, it can be shown that (6.11) implies (6.10) by using a resolvent integral as 
in [21] or [-34]. [] 

The crucial feature of the estimate (6.9) is the behavior of the e-pseudospectra 
as e --* 0. Theorem 6.3 is still true if (6.9) is replaced by the condition that the 
e-pseudo-eigenvalues satisfy 

(6.12) dist (2~, O)<C'2e ~+~ O<e<eo 

for some eo < ~ .  The O(e) behavior of the e-pseudospectra for large e implied 
in (6.9) follows as a corollary of (6.12), as is shown below in Lemma 7.2. 

We now establish conditions for power-boundedness of the operators {Av} 
when the powers satisfy 0 <  n v < T for some T>0 .  The following result is an 
extension of Theorem 6.1. The mathematics of such an extension is straightfor- 
ward [30, Sect. 4.9]. For this result we assume that 0 < v < Vo for some Vo < oo. 

Theorem 6.4. I f  the operators {Av} satisfy 

(6.13) IIA~[I ~C1 O<nv< T 



244 S.C. Reddy  and  L.N. Trefethen 

for some constant C1, then the e-pseudo-eigenvalues {2~} of these operators satisfy 

(6.14) dist(2,,D)<C2e+C3v Ve>0.  

Conversely, (6.14) implies 

(6.15) JJA~IJ <C4(T)min{Nv, n} O<nv< T. 

The relationships between the constants Ci depend only on Vo and T. 

Proof. It is convenient to rewrite (6.14) in the equivalent form 

(6.16) A~(AO~_Dc2~+c~v r e > 0 ,  

where D~ denotes the closed disk of radius 1 + 6  centered at the origin. First 
assume that (6.16) holds. Scaling both sets by e -c3~, we obtain 

(6.17) -c~v -c3, e A~(AO~_e Dc2~+c3~_Dc . . . . . .  V~>0, 

since e -c~(1  + C2 e + C3 v) __< 1 + C2 e e-C~. It is easily shown that the e-pseudosp- 
ectra of an operator L satisfy the scaling identity [38] 

(6.18) AI,I~(aL)=aA,(L ) V a e r  

Applying this result to (6.17) with a = e  -c3v, we obtain 

(6.19) A . . . . .  (e-C3~Av)~_D c . . . . . .  re__>0. 

Condition (6.19) is equivalent to the power-boundedness condition (6.2) for the 
family of operators {e-C~'A~}. Hence, by Theorem 6.1, (6.15) holds with C4 
= e C 2 e c3 T. 

Conversely, suppose that (6.13) holds. It is easily shown that the family 
{e-ClvAv}, with C; =tog(C~)/T, is power-bounded by C~ 1-30, Sect. 4.9]. Hence, 
Theorem 6.1 implies 

(6.20) A~(e-C'~ A~)~_Dc~ g e>O. 

We now proceed by reversing the steps in the first part of the proof. Applying 
the scaling identity with a = e-c~ ~ to (6.20) we obtain 

(6.21) e - C ' ~ A ~ ( A ~ ) ~ D c ~  V~__>0. 

Multiplying both sets in (6.21) by e c~ and applying the inequality eC;~< 1 + C3 v 
with C3 =(e c ~ ~  1)/Vo yields (6.16) with C2 = C~. []  

7 Stability of one-step time integration formulas 

We now prove our main stability result for method of lines discretizations based 
upon one-step time integration formulas. 

It is convenient to rewrite the full discretization (2.3) in the standard form 

(7.1) v "+l =(b(kLk)v"=AkV", v~ 
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where 4)(w)=p(w)/q(w) is a rational function of type (r, s). (We will assume that 
the polynomial q(w) is monic.) Following the spectral theory for bounded linear 
operators described, for example, in [7] and [14], we assume that 4)(w) is analytic 
in some neighborhood of the spectrum of kLk. This condition ensures that 
4)(kLk) is well defined. The spectral mapping theorem states that the spectra 
of Ak and kLk, which we denote by A(Ak) and A(kLk), are related by A(Ak) 
= 4) (A (k Lk) ). 

The stability region S of the time integration formula is defined by 

s= {w~r 4)(w)eO}. 

If A (k Lk)~--S, and k Lk has no defective eigenvalues on (?S, then A (Ak)~--0 and 
Ak has no defective eigenvalues of unit modulus. This condition implies that 
Ak is power-bounded and is the well-known eigenvalue condition for stability. 
We make the following assumption about the stability region: 

(A.1) S is bounded and 4)'(w)0e0 for weOS. 

This condition excludes A-stable and other common implicit formulas with 
unbounded stability regions. Note that the boundedness of S implies that r >s. 
The derivative condition is equivalent to the statement that 14) (w)[ has no saddle 
points on 3 S. 

Our main result for stability of one-step formulas on the infinite time interval 
is analogous to our earlier stability result for multistep formulas [28, Theo- 
rem 2]. The family of operators {Ak} is stable, except for an algebraic factor, 
if the e-pseudo-eigenvalues of the operators {kLk} lie within a distance O(~.) 
of S as e ~ 0. For one-step methods, however, the converse need not hold unless 
the operators {kLk} satisfy an additional hypothesis, as demonstrated by an 
example below. The hypothesis we shall make is the following: 

(A.2) There exists a non-empty domain V___II~ and a constant M <  oc such that 
]b(/tI- k Lk)-1 II ~ M for all #e V and all k. 

For their necessary condition for stability of the method of lines, Di Lena and 
Trigiante l-6] assume that the family {kLk} satisfies a uniform boundedness 
condition Ilk LkH _-< C. This uniform boundedness assumption implies (A.2) (take 
V to be a set sufficiently far from the origin). 

Here is our main result for stability on the infinite time interval. 

Theorem 7.1. Let (7.1) be the method of lines discretization of (2.1) based upon 
a one-step time integration formula satisfying Assumptions (A. l) and (A.2). If  

(7.2) H AT, J[ < C ,  Vn>0,  

then the e-pseudo-eigenvalues {#~} of the operators {k Lk} satisfy 

(7.3) 

Conversely, (7.3) implies 

(7.4) 

dist (/~, S)~_~C2E Ve~>O. 

I[A~,nI<Camin{Nk, nl Vn>O. 

The relationship between the constants Ci can be chosen to depend only on the 
one-step formula and on the constant M and the set V of Assumption (A.2). 
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Before proving this theorem we give the contrived example mentioned above 
to show that if Assumption (A.2) is omitted, then (7.2) does not imply (7.3). 
Suppose that the second-order Runge-Kutta formula, defined by the polynomial 
4) (w) = �89 w 2 + w + 1, is applied to the family of matrices {k Lk} defined by 

(7.5) kLk=[- l+c(k)  1/c(k) ] 
o - l+c(k)J '  

for 0 < k <  1. Here c(k) is any function satisfying 0<lc(k) l<�89 and lim c(k)=0. 
A simple calculation shows that k~0 

(7.6) Ak = [ l ( l o C2) �89 ]. 

The family {Ak} satisfies (7.2) but not (7.3), and it can be shown that for any 
fixed #r I[(laI-kLk)-tll ~ ~ as k ~ 0 .  

Theorem 7.1 can be proved by the same arguments used in the proof of 
Theorem 2 in [28]. Here we take a more general approach and introduce three 
lemmas which can also be applied to our subsequent results for algebraic stability 
and for stability on finite time intervals. First, however, we simplify the statement 
of the theorem by an application of the Kreiss matrix theorem. Theorem 6.1 
implies that Theorem 7.1 holds if (7.3) is replaced by the condition that the 
e-pseudo-eigenvalues {2~} of the operators {Ak} satisfy 

(7.7) dist (2,, D)<C'2e Ve>O 

for some constant C~. Hence, it is enough to show the equivalence of (7.3) 
and (7.7). That is to say, it is enough to show the equivalence of 

(7.8) 

and 

(7.9) 

C2 
II (~ 1 -  k Lk)- ' II 5 dist (#, S) 

11(2i_Ak)_ 111 < C~ 
= dist (2, D) 

This will be our goal for the next few pages. 
The first lemma encapsulates the following observation. Suppose, say, that 

A(Ak)~_D and that (7.9) is known to hold for 2 satisfying 0<dist(2, D)<z for 
some z>0.  Then (7.9) must hold for all 2 e ~ \ b .  The reason is that for 2 with 
dist(2, D)> z, the resolvent (21-Ak)-1 can be expressed by the integral 

(7.10) (2l_Ak)_l= 1 ~ (2--z)-l(zI--Ak) -l dz, 
2~i  r 
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where F is any closed contour enclosing the spectrum of Ak I-7]. To be precise, 
let us define F = { z ~ C :  dist(2, D)=�89 On this contour II(zI--Zk)-~[I <2C2/~ 
by (7.9) and 12-z[ - t <  2/dist(2, D). These last two estimates and (7.10) imply 

(7.11) 
< 4C2(1 +�89 

11(2I-&)-'[I = ~ ( f , ,  b )  

since the length o f F  is 2n(1 +�89 This bound in fact holds for all 2r 
Analogously, it is enough to consider the estimate (7.8) for # near S. These 

observations can be generalized by the following lemma, which is similar to 
[7, Lemma VII.6.11]. Let A be a matrix or bounded linear operator and let 
the set U ~_~ be the union of a finite number of bounded connected domains. 
Define F to be the contour F = {z ~ II2: dist (z, U)= �89 z}. The proof of the following 
lemma follows from the resolvent integral (7.10). 

Lemma 7.2. I f  F encloses A (A) and I] (z I -  A)-ll[ < B uniformly for all z e F, then 

CB 
(7.12) H(2I-A)-~H < dist(2, U) V 2 satisfying dist (2, U) > z. 

The constant C depends only on the set U and on z. 

As a consequence of Lemma 7.2, we need only show that (7.8) implies (7.9) 
for 2 E C \ / )  satisfying 0 < dist (2, D)< z~ for some zz > 0 and conversely, that (7.9) 
implies (7.8) for #~ IE \g  satisfying 0<dist(~t, S ) < %  for some % > 0 .  We can 
define appropriate constants zw and z~ depending only on the one-step formula. 
Let {kt/} be the roots of q5 (w) = 2 and define the annulus 

(7.13) f2z= {ze•: 0 <dist(z, D)<zz}, 

where Zz<m is chosen so that if 2eOz, then [p~[ is bounded and ~b'(#~)#0. 
This is possible by Assumption (A.1). Define a corresponding set 

(7.14) t2w= {wee:  0 < dist(w, S) < %}, 

where Zw > 0 is chosen so that if #tOw, then qS(#)ef2z. 
The next two lemmas are the key results which relate the resolvents (21 

-- Ak) -1 and (p I - k Lk) -1 

Lemma 7.3. Suppose that A(Ak)C_D. Choose 2ef2z and let {#i} denote the roots 
of qb (w) = 2. Then 

(7.15) II(A I -  hk)- ~ n < M1 ~ II(#iI-k Lk)- l ll +M2, 
i = 1  

where the constants M1 and M 2 depend only on the one-step formula. 

Proof. If A (Ak)~/ ) ,  then A (k Lk)_~ S by the spectral mapping theorem. Therefore 
any number 2eg2~ lies in the resolvent set of Ak, and thus (2I--Ak) -~ is well 
defined. The roots {/~i} lie outside of S and hence in the resolvent set of k Lk, 
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~(w) 

m 

Fig. 3. Lemma 7.3 relates the resolvent (2  f - A k ) -  ~ to the resolve~ts (#i I -- k Lg) ~ (case r = 3) 

so (pi l -kLk)-1 is well defined also (see Fig. 3). We start with the relation (21 
- A k ) - l =  ( 2 1 -  (~ (k Lk) )-1. The resolvent (21 -  Ak)-1 can be related to the resol- 
vent (# I - k  Lk)- 1 by using the partial fraction decomposition 

(7.16) (,~- O(w))- ' = ~ (# (ui))- '(u~- w)-' + (,~-p)- ' ,  
i=1 

where p = lim q~(w) [22]. The last term in (7.16) is 0 if p = ~ .  Equation (7.16) 
w ~ o ~  

can be derived by an appropriate contour integral. The relation (7.16) still holds 
if the scalar w is replaced by the operator k Lk. We then obtain 

(7.17) ()oI--Ak)-'= ~ (P ' I -kLk) - I  I 
i=1 ck' (~i) + 2-- p " 

(This last result can also be derived by expressing (2I--Ak) -1 in terms of a 
resolvent integral of (wI -kLk)  -1 as in [28].) Taking the norm of (7.17) yields 
(7.15) with M1 and M 2 defined by 

(7.18) 

and 

(7.19) 

M ~ = [  inf [r 

M 2 = [  inf [2 -p [ ]  -~ 
Ze~.- 

The definitions of f2w and f2= guarantee that M1 and M 2 a r e  finite. [] 

The converse result is similar to Lemma 7.3 but is more difficult to derive. 
To show that (igI-kLk) -1 can be bounded in terms of (),I--AR) -1, we rely 
on the additional Assumption (A.2). (If 4)(w) is affine or rational of type (1, 1), 
then Assumption (A.2) is not required.) The proof of the following lemma makes 
use of several lemmas proved in Appendix A and can possibly be simplified. 
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Lemma 7.4. Suppose that A(k  Lk)~_S. Choose ItEf2 w and let 2 =  qS(it). Then 

(7.20) II(It l - k Lk)- ' l[ < M 3 II(,~ I - -  Ak)- ' H , 

where the constant M 3 depends on the one-step formula, on IIAkll, and on the 
constant M and the set V in Assumption (A.2). 

Proof  If A(kLk)~_S, then A(Ak)~D.  Therefore if It~f2w lies in the resolvent 
set of kLk, 2=~b(It) lies in the resolvent set of Ak. For the proof of the lemma 
we start with the expression 2I - -Ak=21- -dp(kLk) .  The function 2-qS(w) has 
the factorization 

(7.21) 2-~b(w)= (i t-  w)/5 (w) 
q(w) 

where/~ and q are relatively prime polynomials of degrees r -  1 and s, respective- 
ly. The polynomial/5 depends on the choice of/~, and the family of these polyno- 
mials for /~f2w is bounded in the sense that i f / (~_C is a compact set, then 
I/5(w)l<C for all we / (  for some constant C independent of It. Now Eq. (7.21) 
is valid if w is replaced by kLk. The operators (2I - -Ak)  and (It I - - kL~)  are 
both invertible, so we obtain 

(7.22) (It I -- k Lk)- 1 =/5 (k Lk) q -  1 (k Lk) (21 -- Ak)- t 

Taking the norm of this last expression gives 

(7.23) ]](l~I-k Lk)- l ]l <= IIp(k Lk) q -  l (k Lk)]111(21- Ak)-1H . 

First, suppose that r>s.  LemmaA.1 shows that Assumption (A.2) implies 
I[kLk[I ~ M 4 ,  where the constant M 4 depends on the one-step formula, on IIAklr, 
on M, and on the set V. Since [/5(w)l is bounded, it follows that 11/5(kLk)ll is 
also bounded by a constant which depends on the same factors. Lemma A.2 
shows that ifw~ is a root of q(w), then II(w~I-kLk) -111 is bounded by a constant 
which again depends on the same factors. Combining these last results yields 
(7.20) with 

(7.24) M 3 = IIp(k L,) q -  l(k Lk)]l. 

Now suppose that r = s. In this case, the function/5/q can be written as a product 
of terms of the form ( w i I - k L k )  -1 and ( f i i I - -kLk) (Wf l - -kLk)  - l ,  where fii is 
a root of/5. Using Lemmas A.1 and A.2, it can be shown that I I ( f i f l -kLk)(wiI  
-kLk)-111 < M s ,  where the constant M 5 depends on the same factors as the 
constant M 4. This last result and Lemma A.2 imply (7.20) with M3 defined 
in (7.24). []  

We now complete the proof of Theorem 7.1, making use of the Lemmas 7.2, 
7.3, and 7.4. 

Proof of  Theorem 7.1. As mentioned above, we must show the equivalence of 
the resolvent conditions (7.8) and (7.9). 
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We first show that (7.8) implies (7.9). Condition (7.8) implies that A (k Lk)~ S. 
The spectral mapping theorem implies that A (Ak)~--D. Now choose ).E O~. The 
estimate (7.15) in Lemma 7.3 and (7.8) imply that 

" C2 
(7.25) H(2I--Ak)- 111 < Mli~71 dist (#~, S) q- M2. 

By Assumption (A.1), there is a constant El such that 

(7.26) dist(2, D)<E1 dist (/zl, S) V 2el2=. 

Multiplying (7.25) by dist(2, D) and applying this last bound yields (7.9) with 
C2 = r M1 El C2 + ~ Mz. Finally, Lemma 7.2 extends this conclusion from 2 e f2, 
to arbitrary 2 0 ~ \ / ) .  

The converse implication is proved in a similar manner. Condition (7.9) 
implies that A (Ak)~ D. The spectral mapping theorem implies A (k Lk)c: S. Now 
choose #e Ow and define 2 = 4~ (#). Lemma 7.4 and (7.9) yield the bound 

M 3 C~ 
(7.27) I1(~I- k Lk)- tH =< dist (2, D) " 

The constant M 3 depends on IIAkI[ and hence on C1 by (7.2). Assumption (A.1) 
implies that there is a constant E 2 such that 

(7.28) dist(/~, S)<=E2 dist(2, D) V#ef2w. 

Condition (7.27) and this last result yield (7.8) with C2 = M3 E2 C~. Again, Lem- 
ma 7.2 extends this conclusion from #ef2w to arbitrary #elI?\S. [] 

The relationship between Theorem 7.1 and the Kreiss matrix theorem is 
similar to the relationship between a method of lines stability result proved 
by Di Lena and Trigiante [5] and the Godunov-Ryabenkii criterion [9, 30]. 
The Godunov-Ryabenkii criterion states that a family of matrices {A,} can 
be stable only if the spectrum of the family 3, denoted by P({Ak}), satisfies 
P({AR})C_D. The Di Lena/Trigiante result states that a method of lines calcula- 
tion with a bounded family of scaled discretization matrices {k LR} can be stable 
only if P({kLR})C_S. This result is proved by demonstrating that P({Ak} ) 
= ~b(P({k Lk})). 

8 G e n e r a l i z a t i o n s  o f  T h e o r e m  7.1 

Theorem 7.1 can be generalized to give necessary and sufficient conditions for 
algebraic stability and for stability on finite time intervals. 

First, let us consider algebraic stability with respect to the dimension Nk. 
Suppose that the e-pseudo-eigenvalues {/~} of the operators {k Lk} satisfy 

(8.1) dist (#,, S)<C2Nk~e Ve>O 

3 Let {Av} be a family of matrices. A number zelE is in the spectrum of the family if and 
only if ll(2I-Av)-xll is unbounded with respect to v [9] (see Sect. ll) 
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for some fl>0. Then Lemmas 7.2 and 7.3 imply that the e-pseudo-eigenvalues 
{2~} of the operators {Ak} satisfy 

(8.2) dist (2~, D)<=C'zN[s re>O, 

where the ratio C'2/C2 depends only on the one-step formula. By Corollary 6.2, 
this last condition yields the stability estimate 

(8.3) HA~ll<=eC'zN~min{Nk, n+l}  Vn~O. 

A converse result cannot be deduced from the results of the previous section. 
Algebraic stability with respect to the power n follows from Theorem 6.3. 

Theorem 8.1. Let (7.1) be the method of lines discretization of (2.1) based upon 
a one-step time integration formula satisfying Assumptions (A.1) and (A.2). If  

IIA~II~C1 n~ Vn>O 

jbr some c~ >0, then the e,-pseudo-eigenvalues {/t~} of the operators {k Lk} satisfy 
t 

( 8 . 4 )  dist(Iz~,S)<=C2(e~+l+e) Ve>0. 

Conversely, (8.4) implies 

(8.5) IIAZII <=C3n~min{Nk, n} Vn>0. 

The relationships between the constants Ci depend only on the one step formula, 
on ~, and on the constant M and the set V of Assumption (A.2). 

Proof By Theorem 6.3, the result holds if (8.4) is replaced by the estimate that 
the e-pseudo-eigenvalues {2,} of the operators {Ak} satisfy 

1 

(8.6) dist (2,, D)<C'2(e~;+e) Ve>O 

for some constant C~. Hence, the theorem can be proved by showing the equiva- 
lence of (8.4) and (8.6). The relationship between pseudospectra and resolvents 
implies that it is enough to show the equivalence of the resolvent conditions 

(8.7) 

and 

(8.8) 

II(#I-kLk)- 'IE < C2(1 + dist(#, .~.))~ 
= dist(#, S) ~+ 

11(2I --Ak)- tit < C~(1 + dist(2, D)) ~ 
= dist (2, D) ~+ 1 

The proof of the equivalence of (8.7) and (8.8) is similar to the proof of Theo- 
rem 7.1. [] 

We now consider stability on finite time intervals. Theorem 8.2 differs from 
Theorem 8.1 in that A(kLk) need not lie in the stability region. However, if 
p lies in the spectrum of kLk, then we must have dist(#, S)=O(k) as k ~ 0 .  
For this result we assume that A(kLk) lies sufficiently close to the stability 
region, and this implies an upper bound on the maximum time step ko. 
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Theorem 8.2. Let (7.1) be the method of lines discretization of (2.1) based upon 
a one-step time integration formula satisfying Assumptions (A.1) and (A.2) and 
having a sufficiently small time step k. I f  

(8.9) IrAZIr <C1 O<nk<r,  

then the e-pseudo-eigenvalues {/~} of the operators {k Lk} satisfy 

(8.10) dist  (~ ,  S)~C2,~+C3k Vs 

Conversely, (8.10) implies 

(8.11) r[A~, lr<Camin{Nk,  n} 0 < n k < T .  

7he relationships between the constants Ci depend only on the one-step formula, 
on T,, and on the constant M and the set V of Assumption (A.2). 

Proof. First we rewrite the pseudo-eigenvalue condition (8.10) in the form 

(8.12) dist(It~/c2, S)<=g+C3k V 8 ~ 0 .  

By Theorem 6.4 the result holds if (8.12) is replaced by the statement that the 
pseudo-eigenvalues {2~/c~} of the operators {Ak} satisfy 

(8.13) dist (2~/c~, D)<e+C'ak Ve>O 

for some constants C~ and C~. Therefore it is enough to show the equivalence 
of (8.12) and (8.13). The proof of this equivalence is similar to the proof of 
Theorem 7.1. Suppose that I~A(kLD and 2~A(Ak). First, the spectral mapping 
theorem and Assumption (A.1) are used to show that 

dist (/~, S) < C3 k ..~ dist (2, D) < C~ k. 

Then, Lemma 7.2 and slightly modified versions of Lemmas 7.3 and 7.4 are 
used to relate the resolvents (l~I-kLk) -1 for # satisfying dist(kt, S)>C2 k and 
(2 I -  Ak)- ~ for 2 satisfying dist (2, D)> C~ k. We omit the details. [] 

We have been able to extend the above stability results to one-step formulas 
with unbounded stability regions in some special cases. It can be shown that 
Lemma 7.3 is also valid for the class of one-step formulas with unbounded 
S and bounded 8S. The extension of this lemma follows since f2w is bounded 
for this class of formulas. Using this result the sufficiency parts of Theorems 7.1, 
8.1, and 8.2 can be extended to this restricted class of one-step formulas. Also, 
it can be shown that Theorem 7.1 is valid for the trapezoid formula defined 

1 w by qb(w)=(l+lw)/(1-7 ), which has the left half-plane as a stability region 
[27, Sect. 5.5]. The generalization of our results to arbitrary unbounded stability 
regions, however, has not been worked out yet. 

9 Stability of linear multistep formulas 

We now turn our attention to Lax-stability for method of lines discretizations 
based upon linear multistep time integration formulas. Our previous paper [28] 
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presented a result on the infinite time interval for explicit formulas whose stabili- 
ty regions do not have cusps. In the present section we generalize that result 
to implicit formulas, to algebraic stability, to finite time intervals, and, with 
a suitable modification of the pseudo-eigenvalue condition, to stability regions 
with cusps. 

An s-step linear multistep method approximation to the semidiscretization 
(2.2) can be written in the form 

s 

(9.1) ~ ~jv"+J-k ~ fljL~v"+J=O 
j = 0  j = O  

and is characterized by the polynomials 

s 

(9.2) p(z)= ~ ajz J, a (z)= ~ fljz J, 
j = O  j = O  

with the convention ~ s = l  and l~ol+l/~ol=4=0. By introducing the vector v in 
(2.4), the full discretization (9.1) can be written in the compact form (2.3) with 

(9.3) Ak = 6(k Lk) = [as}, ... 
al ao] 

I 

I 

Here aj = ( I -  fls k Lk)- 1 (flj k Lk-- aj I) for 0 =<j_--< s--  1 and I---- INk is the identity 
operator of dimension Nk. 4 

The stability region S of the linear multistep formula is the set of numbers 
wO~ for which all roots z of the stability polynomial rCw(Z ) = p ( z ) -w  a(z) satisfy 
[zil=<l, with only simple roots for [ z [= l .  If p~A(kLk), then each root ). of 
zr u lies in the spectrum of Ak. Conversely, Ix6A(kLk) only if there is a 2EA(A,) 
such that ~u(2)=0. This result follows trivially for matrices. See [27, Sect. 5.10] 
for a proof of this result for bounded linear operators. If A (k Lk) c S and there 
are no defective eigenvalues on ~3 S, then A (Ak)c ~ with no defective eigenvalues 
of unit modulus. This is the familiar eigenvalue criterion for power-boundedness. 
As described in [28], the stability region can be characterized in terms of the 
image of the unit circle under the rational function 

(9.4) r(z)= p(z) 
a (z )  " 

We restrict our attention to multistep formulas satisfying: 

(B.1) S is bounded, with r(z):~ ~ for zeOD; 

(B.2) r'(z)4:0 for zeOD. 

4 The weighted norm for vectors of length sN~ is defined in terms of the block diagonal matrix 
W~ = 12 | W, where W is the weight matrix for vectors of length Nk. If B and L are s x s and 
N k • N~ matrices, respectively, and A = B | L, then it can be shown that tl AI[ w~ < l] B 1[ 2 II L ll w 
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For explicit formulas the condition r(z)+ ~ for z~?D implies that S is bounded, 
but this does not hold for implicit methods. Condition (B.2) implies that the 
stability region does not have cusps 5 and is necessary for Theorems 9.1, 9.5 
and 9.6 below. A stability theorem for multistep formulas with cusps is given 
at the end of this section. 

Here is our fundamental result for stability on infinite time intervals. The 
statement of this theorem is precisely the same as Theorem 2 in [28], but applies 
here to implicit as well as explicit methods. 

Theorem 9.1. Let (9.1) be the method of lines discretization of (2.1) based upon 
a multistep formula satisfying (B.1) and (B.2). I f  

(9.5) ]la~ll <C1 Vn>0,  

then the e-pseudo-eigenvalues {p~) of the operators {k Lk} satisfy 

(9.6) 

Conversely, (9.6) implies 

(9.7) 

dist (p~, S)~_~C2 ~ Ve~-~O. 

tlA~]r<=C3min{Nk, n} Vn>0. 

The constants Ci are independent of k and the ratios C2/C1 and C3/C2 can be 
chosen to depend only on the multistep formula. 

Theorem 9.1 differs from the corresponding Theorem 7.1 for one-step meth- 
ods in two respects. First, no additional condition analogous to (A.2) needs 
to be imposed on the operators {kLk}. This is a consequence of the fact that 
each entry of G(w) is either affine or a rational function of type (1, 1). (See 
the remarks preceding Lemma 7.4.) Second, the relationship between the con- 
stants Ci is particularly simple in this case. This fact implies the following corol- 
lary, which gives a pseudo-eigenvalue condition that is both necessary and suffi- 
cient for algebraic stability. 

Corollary 9.2. Let (9.1) be the method of lines discretization of (2.1) based upon 
a multistep formula satisfying (B.1) and (B.2). I f  

(9.8) IIA~,rt<CIN~ V n > 0  

for some fl > O, then the ~-pseudo-eigenvalues {/~} of the operators {k Lk} satisfy 

(9.9) dist(/~, S)<C2N~e Ve>O. 

Conversely, (9.9) implies 

(9.10) fJA~lh <C3N~min{Nk, n} Vn>0.  

The constants Ci are independent of k, and the ratios CJCI and C3/C2 can 
be chosen to depend only on the multistep formula. 

We will only sketch the proof of Theorem 9.1 since it is given in [28] and 
is similar to the proof of Theorem 7.1. Theorem 6.1 and the relationship between 

5 Let S be a region in ~ with boundary c3S. A point Wo~S is a cusp if at most one ray 
from w0 leads into S [4] 
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pseudospectra and resolvents imply that the theorem can be proved by showing 
the equivalence of the resolvent conditions (7.8) and (7.9). The proof of this 
equivalence is similar to the corresponding proof for one-step methods. The 
only difference is that we require multistep analogs of Lemmas 7.3 and 7.4 to 
relate the resolvents (2I--Ak)- ~ and (#I --kLk)- ~ for 2 near D and p near S. 

First, let us define the appropriate sets f2~ and f2w. Let f2~ be the annulus 
defined in (7.13), where z ~ < ~  is now chosen so that r(z)4:~ for all zef2.. 
Let f2w be the set defined in (7.14) with r~< ~v chosen so that for all p~12w, 
the number 2 with maximum modulus satisfying r(2)=/~ satisfies 2 ~ , .  The 
following two results relate the resolvents. 

Lemma 9.3. Suppose that A(Ak)C_D. Choosing 2~f2~ and defining/~= r(2)yields 
the estimate 

(9.11) 11(2I- Ak)- t I[ < M~ I[(pI-k Lk)- ~l] + M2. 

The constants M1 and M 2 are finite and depend only on the multistep formula, 
which is assumed to satisfy (B.1). 

Proof This estimate (9.11) can be derived using the contour integral 

1 
(9.12) (21 - Ak)- ~ -- ( (2-- G (w))- ~ | (w I -  k Lk)- 1 d w, 

2 i 

where the symbol | denotes a tensor product and F is any closed contour 
enclosing A(kLk). The details are given in [28]. Alternatively, (9.11) can be 
verified by directly expressing (21 - Ak) - t in terms of (# I -- k Lk)- t [27-]. 

Lemma 9.4. Suppose that A(k Lk)c_S. Choose p~f2 w and let 2,. denote the root 
of r(z)=# of maximum modulus. We then have the estimate 

(9.13) I I (#I -kLk)-  111 =<M 3 11(2ml-Ak)-lll +M4.  

The constants M 3 and M 4 a r e  finite and depend only on the multistep formula, 
which is assumed to satisfy (B.1). 

Proof The resolvent bound (9.13) also follows from the integral (9.12) [28] 
(see also [27]). [] 

These results differ slightly from the  corresponding lemmas for one-step 
methods. In contrast to Lemma 7.3, (RI-Ak)-~  is related to (#l--kL~) -~ a t  
only one point in Lemma 9.3. The result in Lemma 9.4 does not require a n y  
additional assumptions analogous to (A.2) about the operator k L~. 

The proof of the equivalence of(7.8) and (7.9) for multistep methods is accom- 
plished using Lemmas 7.2, 9.3, and 9.4 a n d  is similar to the proof of Theorem 7.1. 

Theorem 9.1 can be extended to give conditions for algebraic stability a n d  
for stability on finite time intervals. The following theorems are similar to Theo- 
rems 8.1 and 8.2 for one-step formulas. For stability on finite time intervals 
we once again assume that k is sufficiently small so that A(kLk) and A(Ak) 
are close to S and D, respectively. Ti le  proofs of these theorems are  similar 
to the proofs of the corresponding results for one-step formulas. 
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Theorem 9.5. Let (9.1) be the method of lines discretization of (2.1) based upon 
a multistep formula satisfying (B.1) and (B.2). I f  

llA~[I ~C1 n ~ Vn>0  

for some ~ > O, then the e-pseudo-eigenvalues {#~} of the operators {k Lk} satisfy 
1 

(9.14) dist(p~,S)<=Cz(e~+l+e.) re.>0. 

Conversely, (9.14) implies 

14A~II <=C3n~min{Nk, n} Vn>0. 

The constants Ci are independent of k. 

Theorem 9.6. Let (9.1) be the method of lines discretization of (2.1) based upon 
a multistep formula satisfying (B.1) and (B.2) and having a sufficiently small time 
step k. I f  

(9.15) HA~[I<=C, O<nk<=T, 

then the e-pseudo-eigenvalues {/~} of the operators {k Lk} satisfy 

(9.16) dist (#~, S)~C213-}-C3k ~ E ~ O .  

Conversely, (9.16) implies 

(9.17) [[A"k]l<C4(T)min{Nk, n} O<nk<T. 

The constants Ci are independent of k. 

These above stability theorems do not apply to linear multistep formulas 
whose stability regions have cusps. If wo~A(kLk) for some cusp woeS, then 
Ak has a defective eigenvalue of unit modulus and hence is not power-bounded. 
Suppose on the other hand that the pseudo-eigenvalue condition (9.6) is satisfied 
and woCA(kLk) for any k, but that w0 is an accumulation point of UA(kLk). 

k 
In this case, each operator Ak is individually power-bounded but the family 
{Ak} is not uniformly power-bounded. If (9.6) is satisfied and the spectra of 
the operators {kLk} are bounded away from w0, then the operators {Ak} are 
power bounded. A theorem to this effect is proved in [-4] for the special case 
in which the operators {k Lk} are scalars. 

The following example illustrates these ideas. Consider the midpoint rule, 
vn+ 1= V n- l.q_ 2 k L k v n, in the special case where L k = lk is a scalar. The stability 
region is the complex interval ( - i ,  i), and the two endpoints _+i are cusps. 
Suppose that one of the cusps is an accumulation point of the family {k lk}. 
For example, let k lk = i(1 -- k) for 0 < k < 1. Since Lk =-- k Lk is a scalar, the pseudo- 
eigenvalues of these matrices lie within a distance e of S. If applicable, Theo- 
rem 9.1 would imply that the powers of the matrices {Ak} are uniformly bounded 
since ~ = 1. It can be shown that this family of matrices is not uniformly power- 
bounded; for each power n > 0  there is a k, such that I[A~II2 > n  for all k<k,.  
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To adapt our theorems to stability regions with cusps, it is convenient to 
work with the sets defined by 

$6= {we(;: all roots of 7c~(z)lie in Do}, 

where D~, defined in Sect. 6, is the closed disk of radius 1 +6  centered at the 
origin. These sets have the property that if Wo is a cusp, then dist (Wo, t?S~)= 0(62) 
as 6 ~ 0 ,  whereas if w ~ S  is not a cusp, then t3S0 lies within a distance 0(6) 
of w as 6 ~ 0. The stability result for the infinite time interval can be roughly 
stated as follows: the method of lines discretization is stable if and only if 
A~(k Lk)~--So~,) as e ~ 0 for 0 < t < to. The following theorem is a modified version 
of Theorem 9.1. 

Theorem 9.7. Let (9.1) be the method of lines discretization of (2.1) based upon 
a linear multistep formula satisfying (B.1). I f  

(9.18) [IA~[I ~ C ,  Vn~0,  

then the pseudospectra of the operators {k Lk} satisfy 

(9.19) A~(kLk)C_Sc2,, 0 < t < c  o 

for some eo < ~ .  Conversely, (9.19) implies 

(9.20) llA~,lf<C3min{Nk, n} Vn>0.  

The constants Ci are independent of k. The ratios C2/C 1 and C3/CE and to can 
be chosen to depend only on the multistep formula. 

Proof The proof of Theorem 9.7 is slightly different from the proofs of the 
corresponding results for multistep formulas without cusps since these previous 
theorems are stated in terms of distances. First, it is convenient to rewrite (9.19) 
in the form 

(9.21) A,/c2(kLk)~_S~, 0 < t < g o .  

By Theorem 6.1 and Lemma 7.2, the above result is true if the pseudospectra 
of the operators {Ak} satisfy 

(9.22) A,/c,~ (Ak) ~-- De, 0 < t < g'o 

for some constants C~ and gb. The theorem is proved by showing the equivalence 
of(9.21) and (9.22), which can be accomplished using Lemmas 9.3 and 9.4. [] 

This result holds for all linear multistep formulas with bounded stability 
regions. If Assumption (B.2) holds, then dist (w, O S~) = O (6) as 6 --* 0 uniformly 
for all w~dS. In this case, the condition on the pseudospectra (9.21) can be 
expressed in terms of the distance to the stability region as in Theorem 9.1. 
It is straightforward to extend Theorem 9.7 to algebraic stability and to stability 
for finite time intervals; see 1-27] for the precise statements of these theorems. 

Finally, as in the case of one-step formulas, the above results can be partially 
extended to formulas with unbounded stability regions. In fact, Theorem 9.7 
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and its generalizations are also valid for multistep formulas with unbounded 
S and bounded OS. This follows from the fact that Lemmas 9.3 and 9.4 can 
both be extended to this class of multistep formulas. 

10 Applications 

In this section we reexamine, from the point of view of pseudospectra, two 
stability results for finite difference approximations that fit into the method 
of lines framework. First, we consider discretizations of systems of constant- 
coefficient partial differential equations on infinite or periodic domains. By com- 
bining the theory of the previous sections with Fourier analysis we obtain neces- 
sary and sufficient conditions for stability that apply even when the amplification 
matrices involved are not normal. We next consider a specific example: an 
upwind approximation to the wave equation on a bounded interval. For  this 
problem, analysis based on pseudospectra correctly predicts the stability condi- 
tion, whereas it is well known that standard analysis, based on eigenvalues 
alone, gives an incorrect condition. 

10.1 Finite difference approximations with constant coefficients 

Finite difference approximations of constant-coefficient initial-value problems 
have been studied extensively. We present a general stability result for approxi- 
mations fitting into the method of lines framework. The following analysis closely 
parallels [30, Chapter 4]. 

Assume that (2.1) is a constant-coefficient initial-value problem, where u(x, t) 
is a vector function with p components of t and of a single space variable 
x on an unbounded or periodic domain. The operator s is a p x p matrix 
whose entries ~ j  are linear differential operators. This system is first discretized 
in space at the equally spaced points xj = j  h. The spatial discretization operator 
Lk is a p x p matrix whose elements lij are biinfinite Toeplitz operators. Approxi- 
mating in t with a one-step or multistep formula satisfying our usual assump- 
tions, we obtain the full discretization, which is often written in the form 

(10.1) G x (k Lk) v" + 1 = Go (k Lk) v", 

where in our notation G(w) = G? 1 (w) Go(w). 
Many common finite difference formulas can be derived in the above manner. 

For  the first-order wave equation ut = ux, the leap frog formula 

(10.2) n + l  n - 1  k ,  n v i -v~ +- ~v j+ l - v T _ l )  

combines a centered difference in space with the midpoint formula in time. 
Similarly, the upwind approximation given below as (10.6) combines upwind 
differences in space and the Euler formula in time. 
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The stability of the approximation (10.1) is determined by examining the 

behavior of each Fourier mode ei~xJ for ~ [ - h ,  ~]. Let ~"(~) and Lk(~) denote 

the Fourier transforms of v" and Lk, respectively. The entries of the p • p matrix 
Lk(~ ) are the Fourier transforms r/j(~) of the Toeplitz operators l~j. Taking the 
Fourier transform of (10.1) and employing the solvability assumption that 
G1 (k Lk(~)) is invertible, we obtain 

(10.3) ~"+I(r Go(kLk(~))~"(O=G(kLk(O)~"(~). 

The operator G(k Lk(()) is the so-called amplification matrix. The approximation 
(10.1) is Lax-stable if 

(10.4) IIG"(kLk(r O<=nk~T, 

F rt ] 
uniformly for all r  h i '  where here I/" II denotes the unweighted 2-norm. 

The von Neumann condition is necessary for stability: the spectra of the 
amplification matrices, A(G(k Lk(())), must lie within a distance O(k) of the unit 
disk. The resolvent condition of the Kreiss matrix theorem, Theorem 6.1, streng- 
thens this eigenvalue condition by giving both necessary and sufficient conditions 
for stability in terms of the pseudospectra of the amplification matrices. On 
the other hand, the following result, an application of Theorems 8.2 and 9.6, 
gives conditions for stability in terms of the pseudospectra of the spatial discreti- 
zation operators {kLk(~)} themselves. 

Theorem 10.1. The approximation (I0.1) is Lax-stable if and only if the e-pseudo- 
eigenvalues of the operators {kLk(~)} lie within a distance O(e)+O(k) of S as 

e, k--*O, uniformly for all ~e [ -h ,  h]. 

In contrast to the theorems in the previous sections, the above result does 
not contain any additional algebraic factors. The reason is that Fourier analysis 
has reduced the stability analysis to the examination of matrices {Lk(~)} of 
fixed dimension p. 

10.2 Upwind difference approximation of the wave equation 

Our second application is a much more specific example in which the presence 
of boundary conditions precludes the use of Fourier analysis. The upwind finite- 
difference approximation to the first-order wave equation 

(10.5) ut=ux, x~[0, 1), u(x, 0)=f(x), u(1, t )=0 

on the infinite time interval is a well-known example of the failure of eigenvalue 
analysis to predict correctly the stability condition for method of lines discretiza- 
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tions [3, 9, 11, 30].6 Stability analysis of the discretization via pseudospectra 
is straightforward and predicts the correct condition. 

The upwind discretization of (10.5) is 

n + l  n k n (10.6) vj =vj.-~-~ ( v j +  1 - / ) ; )  , O~j<Nk, n>O, 

where v~' is an approximation to u(jh, nk) and h=l/Nk. Setting v" 
=(v~, v] . . . . .  vTvk_l) T, we can put (10.6)into the form (2.3) with G(w)=l+w 
and 

(10.7) 
 1-11 

,~l'rk = - -  1. ". 
B 

For  simplicity we assume that 7=  k/h is a constant and that [1" [I denotes the 
unweighted 2-norm. 

Eigenvalue stability analysis of the full discretization requires that 
A (k Lk) ~-- S - D(-- 1, 1), where D(a, b) denotes the closed disk of radius b centered 
at a. Since A(kLR)={-?}, this in turn implies 7<2.  This inequality is strict 
since Ak has a defective eigenvalue of unit modulus if 7 = 2. As mentioned in 
Sect. 4, the eigenvalue stability condition ensures that [rA~,I[_-<C for all n>0 ,  
for fixed k and therefore fixed dimension Nk. In general the constant C depends 
on k, so we must write C-C(k). The discretization is Lax-stable if C(k) is 
bounded for all k. If 1 < 7 < 2 ,  then the discretization is time-stable but not 
Lax-stable. In fact, for such a choice of 7 the discretization is exponentially 
unstable; it can readily be shown that 

( 1 0 . 8 )  m a x  IIA~,lb ~ 7  u k -  1 .  
n>O  

See [3, Sect. 10.5] for numerical results. 
Where does the above analysis fail? Roughly speaking, eigenvalue analysis 

is valid only if the spatial discretization operators are normal or close to normal. 
The operators {k Lk) for the upwind approximation are Jordan blocks and are 
highly non-normal. ~ For  these operators A (k Lk) is the single point { -- 7}. Stabili- 
ty is determined by the pseudospectra, which for these operators are much 
larger than the spectra. The e-pseudospectra A~(kLk) are disks about - 7  of 
radius approximately 7. In particular, any z e ~  interior to D ( - 7 ,  7) is an e- 
pseudo-eigenvalue of k Lk for a value of e decreasing exponentially as k--* 0 
[29]. 

These properties of the pseudospectra of the operators {k Lk} have the follow- 
ing implications for stability. If 7>1,  then D ( - 7 ,  7) is not contained inside 

6 Other examples of the failure of eigenvalue analysis of finite difference discretizations are 
described, for example, in [It, 24, 25] 
7 The non-normality of these matrices is also pointed out in [3] 
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(a )  uns t ab l e :  7 > 1 (b)  s t ab le :  ~f _< 1 

Fig. 4a, b. Upwind finite difference example (10.7). The shaded disk is the set D(-7, y) and 
the striped region is the stability region S. For any e> 0, the e-pseudospectra of the operators 
{k Lk} approximately fill the disk D (-7, 7'). If 7 > 1 the ~-pseudo-eigenvalues lie a finite distance, 
independent of e, outside of S and the calculation is unstable. If y< 1, the e-pseudo-eigenvalues 

lie w~thin a distance e. of S and the calculation is stable 

the stability region, as shown in Fig. 4a. A number z s D ( - v ,  7)\S, is an e- 
pseudo-eigenvalue for a value of e which goes to 0 as k ~ 0 .  This violates the 
pseudo-eigenvalue condition of Theorem 9.1, and therefore the condition 

(10.9) 7<  1 

is necessary for stability. This condition is sufficient for stability also. It can 
be shown that the e-pseudo-eigenvalues of the operators {kLk} lie within a 
distance e of the disk D ( - 7 ,  7) for all e > 0  [29]. As shown in Fig. 4b this 
last property implies that the ~-pseudo-eigenvalues lie within a distance e. of 
the stability region. Hence, condition (10.9) gives a necessary and sufficient condi- 
tion for stability on the infinite time interval. This result can also be proved 
by directly examining the resolvent (p I - k  Lk)-1, which is easy to compute. 

The figure suggests another way of stating the stability condition for the 
upwind discretization: (10.6) is stable, except for an algebraic factor, if and 
only if the disk D(--  7, 7) lies in the stability region. It is clear from our results 
in the previous sections that this result is also valid if we replace Euler's method 
with an arbitrary time-integration formula satisfying our usual assumptions. 
This fact is summarized by the following theorem, which is valid for finite and 
infinite time intervals. 

Theorem 10.2. Let (2.1) be the full discretization of (10.5) with an upwind discretiza- 
tion (10.7) in space such that 7=k/h is a constant. Then the discretization is 
stable, except for an algebraic factor, if and only if the disk D ( - 7 ,  7) lies in 
the stability region. 

For  one-step methods, the disk condition in Theorem 10.2 implies stability 
without any additional algebraic factors. This result holds because of the remark 
after Theorem 6.1 : if the e-pseudo-eigenvatues of the operators {Ak} lie within 
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a distance e of the unit disk, then IIA~,I[ <2 for all n>0. It can be shown that 
the disk condition imposed on the pseudospectra of the operators {k Lk} implies 
that the pseudospectra of the operators {Ak} satisfy the condition above by 
using standard properties of Toeplitz matrices (see [27] for the details). 

The upwind example (10.6) can be correctly analyzed by many alternative 
methods, as is well known. For example, it can be shown that (10.9) is necessary 
for stability via the Courant-Friedrichs-Lewy condition [30], the Godunov- 
Ryabenkii criterion [9, 30], or its transplanted version [5]. It can be shown 
that (10.9) implies IIA~[I <1 for all n~0  by using the contractivity results in 
[32]. Furthermore, for this example it is straightforward to verify that (10.9) 
is sufficient for stability by directly examining the powers of the operators {Ak}. 
For more complicated examples, however, the alternative methods for stability 
analysis are not always applicable. 

11 Previous stability results 

There have been many previous stability results for method of lines discretiza- 
tions of linear evolution equations. The majority of these focus on conditions 
for algebraic stability on the infinite time interval, defined by 

(11.1) [1 A?,II <~Cn=Nk a Vn>O 

for some constants ~, fl__>0, and apply to one-step time integration formulas 
with general norms. For the most part, these results are limited to sufficient 
conditions for Lax-stability, or, when both necessary and sufficient conditions 
are obtained, to a restricted class of discretization operators {Lk}. 

In one of the early papers [2], Brenner and Thom6e prove a stability result 
for A-stable one-step formulas on finite as well as infinite time intervals. They 
assume that the operators {LR} satisfy 

(11.2) IleLkt]l <Co e~ Vt>O 

for some constants Co and co>0, and show that if co=0, then (11.1) holds 
with ct=�89 and fl=0. If co>0 then this same result only holds on the finite 
time interval. These results are obtained using the Hille-Phillips operational 
calculus. 

Spijker, Lenferink and Kraaijevanger consider more general one-step time 
integration formulas [15, 17, 32]. They restrict attention to operators satisfying 
the circle condition: 

(11.3) IlkZk+Pll ~p,  

for some p>0.  They estimate IIA~TI directly by using a series expansion and 
show that (11.3) implies (11.1) with ct=�89 and f l=0 if D ( - p ,  p)cS,  where D(a, b) 
denotes the disk of radius b centered at a. If this disk intersects the boundary 
of the stability region only at the origin, then (11.1) holds with ct=0 and fl=0. 
A more restrictive condition on k related to the absolute monotonicity of ~b (w) 
implies contractivity - that is, (11.1) with a=0,  fl=0, and C=I .  Their results 
are applied to convection-diffusion equations. 
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Sanz-Serna and Verwer derive sufficient conditions for stability with ~ =0  
and fl = 0 based on contractivity and C-stability for more general p.d.e.s, nonlin- 
ear as well as linear [31, 40]. Their results are applied to a nonlinear parabolic 
equation and a cubic Schr6dinger equation. 

Our theory is most closely related to the results of Di Lena and Trigiante, 
Lenferink and Spijker, Lubich and Nevanlinna, and Kreiss and Wu, which are 
also based on resolvents. These stability results are obtained directly by estimat- 
ing IIA~II using the resolvent integral 

(11.4) 
. 1 

Ak=2~ni ~r 49"(w)(wl-kLk)-t dw, 

where F is a simple closed curve enclosing A (k Lk). 
Di Lena and Trigiante's results [5, 6] are based on the notion of the spectrum 

of a family of matrices, an idea that goes back to Godunov and Ryabenkii 
[9] and is also described in [1] and [30]. Let {A~} be a family of matrices 
of dimension Nv< oo. The spectrum of the family {Av}, denoted P({Av}), is a 
set in the complex plane which can be related to pseudospectra as follows: 
z~P({Av}) if and only if for each e>0,  z~A~(A 0 for some v. If zfsP({kLk}), 
then 11(2I-A~)-111 is bounded uniformly as a function of v. Stability results 
for one-step formulas with bounded stability regions are obtained by using 
this idea. Di Lena and Trigiante show that the condition P({kLk})~_ S is neces- 
sary for (11.1). This result is a corollary of Theorem 7.1 if II �9 II is a weighted 
2-norm. They also show that the condition 

(11.5) P({k Lk}) ~-int(S) 

is sufficient for (11.1) with 7 = 0  and f l=0.  This last result is limited since in 
virtually any application the origin belongs to P({kLk}) and to t?S, and not 
to the interior of S. 

Lenferink and Spijker [20-] obtain several stability results based on the con- 
cept of the M-numerical range [18]. The M-numerical range of a matrix A, 
denoted by zM(A), generalizes the usual numerical range in many directions. 
It is related to the resolvent as follows: if V___tl; is any set with the property 
that ZM (A) c V, then 

M 
(11.6) II(z/-h)-kll < dist(z, V) k Yz~tE\F" 

for all integers k >0. The set zM(A) is the smallest closed convex set satisfying 
(11.6). Their first stability results states that if 

(11.7) zM(k  Lk) ~-- W ~ - S, 

where Wis a bounded sector in the left half-plane, then (11.1) holds with ct = fl = 0. 
If, on the hand, Wis an arbitrary compact convex set, then (11.7) implies stability 
with ~ = 1 and fl = 0. A more complicated argument based on a generalization 
of Theorem 6.1 to arbitrary compact convex sets [19] shows that (11.7) implies 
stability with a = 0 and fl-- 1. These last two results can be considered as corollar- 
ies of Theorem 7.1 if I1" [b is a weighted 2-norm. 
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LuNch and Nevanlinna [22] have obtained several results similar to Theo- 
rems 7.1 and 9.1 for A-stable one-step and multistep formulas. They show that 
if the e-pseudo-eigenvalues of the operators {kLk} lie within a distance O(~,) 
of the left half-plane, then (11.1) holds with c~=0 and fl= 1 or with ~= 1 and 
f l=0.  s For  one-step methods this result is obtained via Theorem 6.1, while 
for multistep formulas it is proved using a modified version of (11.4). They 
also prove additional stability results for more restricted classes of time integra- 
tion formulas. 

Finally and most recently, Kreiss and Wu [ t6]  have obtained sufficient 
conditions for stability of one-step and multistep formulas in exponentially 
weighted norms. They show that the full discretization is stable on the finite 
time interval with 7 = 0  and f l=0  if the semidiscretization is stable and the 
full discretization is locally stable. A discretization is defined to be locally stable 
if the open half-disk 

(11.8) H={w:  Rew<O, Iwl< Ilkgkll} 

is a subset of the stability region. The proofs of their results are similar in 
spirit to the proof of our theorems. Using Parsevars relation, they first relate 
stability to a bound on the resolvent (2I--Ak) -1. They complete the proof by 
bounding (21 - Ak)- 1 in terms of bounds on (# I - k Lk)- 1. 

A. Appendix 

In this appendix we prove two lemmas that are used in the proof of Lemma 7.4. 
Let (a(w)=p(w)/q(w) be a rational function of type (r, s) and let {kLk} be a 
family of bounded linear operators satisfying Assumptions (A.1) and (A.2) in 
Sect. 7. Denote the family of functions that are analytic in a neighborhood 
of the spectrum of k Lk by 

Lemma A.1. Suppose that Ak=(9(kLk),  where ( 9 ~  is a rational function with 
r > s and k L k is a bounded linear operator. Then 

(A.1) Hk Lk[I ~ C1 rlhkll +C2,  

where the constants Cx and C 2 depend only on the function dp, and on the constant 
M and the set V of Assumption (A.2). 

Proof The proof is by induction. The estimate (A.1) follows trivially if ~b(w) 
is a polynomial of degree 1. 

8 The result proved by Brenner and Thom~e is different from this second result. It can be 
shown that (11.2) with co = 0 implies that 

ll(#l--kLk)-Jll<Co/(Rel~) j u V j>0; 

this is the Hille-Yosida theorem. The pseudo-eigenvalue condition assumed by Lubich and 
Nevanlinna is equivalent to this last expression for j = 1 only 



Stability of the method of lines 265 

(i) Suppose that fe~,~ is a rational function of type (r, s) with r>s. We show 
that there is a rational function f e . ~  of type ( r -  1, s) such that 

(A.2) II f (k Lk) ll ~ c3 ill f (k Lk) ll + c4), 

where the constants C3 and C4 depend only on f the set V and the constant 
M. Choose 2e V and let 7=f(2). Define the functions g ( w ) = ( 2 - w ) - l  and h(w) 
=7- f ( w ) .  The function f (w)=g(w)h(w) is a rational function of type ( r - 1 ,  s) 
and is analytic in a neighborhood of A(kLk). We can replace w in this last 
expression with k LR. Taking the norm gives (A.2). 

(ii) Suppose that f e f f  is a rational function of type (r, s) with r>s and s>  1. 
We show that there is a rational function jTe~- of type ( r -  1, s -  1) such that 

(A.3) Ilf (k Lk)ll ~ C5 IIf (k gk)ll + C6, 

where the constants C5 and C6 depend only on f, and on the set V and the 
constant M. First, we apply the procedure (i) to construct a rational function 
f ~ g  of type ( r - l , s )  that satisfies (A.2). If f(w)=j~(w)/fz(w), then f (w) 
=fl(w)/jz(W), where f l  is a polynomial of degree (r-1) .  Suppose that Wo is 
a root of J2. Define'c~ so that f~(wo)+~fl(Wo)=O. The function f = f + ~ f  is 
a rational function of type ( r -1 ,  s - 1 )  and is analytic in a neighborhood of 
the spectrum of k Lk. We can replace w by k L k. Taking the norm, we obtain 

(A.4) II~ (k Lk)H ~ Il f (k Lu)ll + II~ f (k Lk)ll . 

This last bound and (A.2) imply (A.3). 
If q~(w) is a rational function of type (r, s) with r>s, then (A.1) follows after 

applying (ii) s times and (i) r - s -  1 times. [] 

The next result gives a bound for the resolvent (WoI-kLk)-~,  where Wo 
is a root of q. 

Lemma A.2. Suppose that Ak=O(k Lk), where k L~ is a bounded linear operator 
and 0~o ~ is a rational function. I f  Wo is a root of q(w), then 

(A.5) [l(Wo I -  k Lk)- 1N ~ Cl I] Ak  II -t- C 2 . 

The constants C1 and C 2 depend only on the function c~, and on the set V and 
the constant M of Assumption (A.2). 

Proof By using procedure (ii) of Lemma A.1 it can be shown that there is 
a rational function f e f f  of type (r', 1) such that f=f~ (w)/(Wo - w) and 

(A.6) Il f (k Lk)lt < C3 [IAkll + C4. 

The result (A.5) follows after r' applications of procedure (i) of Lemma A.I. [] 
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