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From the Buffon Needle Problem to the 

Kreiss Matrix Theorem 


Elias Wegert and Lloyd N. Trefethen 

In this paper we present a theorem concerning the arc length on the Riemann 
sphere of the image of the unit circle under a rational function. But our larger 
purpose is to tell a story. We thought at first that the story began in 1962 with the 
Kreiss matrix theorem, the application that originally motivated us. However, our 
arc length question turns out to be more interesting than that. The story goes back 
to the famous "Buffon needle problem" of 1777. 

SPIJKER'S LEMMA IN THE COMPLEX PLANE. Let r be a rational function of 
order n, that is, a quotient of two polynomials of degree at most n. Let S denote 
the unit circle {z E C: I z I  = 11, and let I 1  . Ill, 1 1  . ]I2, and I 1  . 11, denote the I-, 2-, 
and a-norms on S, 

Then the arc length of the curve r(S) in the complex plane, which we denote by 
L,(r(S)), can be represented compactly by the formula 

If r is multiplied by a constant a,  L,(r(S)) changes by the factor Icrl. However, 
this scale-dependence can be eliminated by considering the ratio 

In 1984, building on earlier work by Laptev, Strang, and Tadmor, LeVeque and 
Trefethen [9] observed that a bound on (1) could be used to derive a sharp form of 
the Kreiss matrix theorem (which we shall discuss at the end). They therefore 
posed the question, what is the maximum possible value of (I)? 

It is easy to see that the value 27i-n can be attained; just take r (z )  to be z n  or 
z-". If r is restricted to be a polynomial, it follows from Bernstein's inequality that 
27i-n is the maximum possible. It is also easy to see that 27i-n is the maximum value 
for rational .functions in the special case n = 1(the reader can supply the proof!). 
Based on these facts and on computer experiments, it was conjectured in [9] that 
27i-n is the maximum value (1)for all rational functions r and all n. However, only 
the bound 47i-n was proved, and the task of eliminating this gap of a factor of 2 
was presented as an Advanced Problem in this Monthly [lo]. 

Just one response to the Monthly problem was received, from James C. Smith, 
of the University of South Alabama, who improved the bound to 2(2 + 7i-)n [16]. 
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Five years later, Marc Spijker of the University of Leiden finally settled the 
conjecture in the affirmative [17]: 

Theorem 1. Lc(r(S))/llrllm I 2 ~ n .("Spijker's lemma") 

SPIJKER'S LEMMA ON THE RIEMANN SPHERE. The simplicity of Theorem 1 
is marred by the need for the normalization by Ilrllm. In looking for a cleaner 
formulation one may ask, what is the analogous result for the Riemann sphere? 
Let S denote the Riemann sphere {x E R3: 1x1 = I}, with the north and south 
poles corresponding to the points cc and 0 in C,respectively, according to the usual 
stereographic projection, and the equator corresponding to the unit circle S. This 
identification of C and S is discussed in many books on complex analysis [I], and it 
is readily shown that a unit of arc length ldzl at a position z E C is expanded by 
the factor 2/(1 + 1z12) in being projected onto S .  It follows that if r(S) is 
considered as a closed curve on S ,  with L,(r(S)) denoting its arc length on S ,  then 
we have 

Now, the trivial scale-dependence has been eliminated from the problem. It makes 
sense simply to ask, what is the maximum possible value of L,(r(S))? 

The new result of this paper is the following answer to this question: 

Theorem 2. L,(r(S)) I 27i-n. ("Spijker's lemma on the Riemann sphere") 

The proof of Theorem 2 will emerge in the following pages. For the moment, 
we note first of all that like Theorem 1, Theorem 2 is obviously sharp, with equality 
attained for any r that maps S with winding number n onto a great circle of S. 
(For example, r (z )  = z n  maps S with winding number n onto the equator, and 
r (z )  = in(z - l)"/(z + 1)" maps S with winding number n onto the Greenwich 
meridian.) A more important observation is that for any r with llrllm I 1, we have 
L,(r(S)) I L,(r(S)). This follows from (2), since 2/(1 + Ir12) 2 1 when Irl I 1. 
Consequently, Theorem 2 implies Theorem 1as a corollary. Thus Spijker's lemma 
on the Riemann sphere is both simpler and stronger than Spijker's lemma in the 
complex plane, and perhaps it should be considered the more fundamental result. 

FROM THE NEEDLE PROBLEM TO POINC&'S FORMULA. The reader has 
undoubtedly encountered the Buffon needle problem, published by the Comte de 
Buffon in 1777. Suppose a needle of length 1is thrown at random on a plane ruled 
by parallel lines at a distance 1 apart. What is the probability that the needle will 
land in a position that crosses a line? Easy calculus shows that the answer is 

2 
Probability of intersection = -

7T 

Buffon, incidentally, was the leading French naturalist of the eighteenth century 
and also a translator of Newton. He worked on his "problbme de l'aiguille" long 
before publishing it as an appendix on "moral arithmetic" in his 44-volume treatise 
on natural history [3]. 

The needle problem became well known, especially among the French, and was 
generalized. Laplace, without referencing Buffon, solved the analogous problem 
for a square grid (Thkorie Analytique des Probabilitb, 1812). A more important 
generalization was to consider the slightly modified question: if the needle has 
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length L, possibly greater than 1, what is the expected number of intersections? 
The answer is easily seen to be 

2L 
Expected number of intersections = -. 

7r 

And from here it is a small step mathematically, but a big one conceptually, to 
note that the same formula (3) is valid also for a paper clip. Various steps in this 
direction were taken by Cauchy, LamC, and Barbier, among others [2]. In fact, if 
any rectifiable curve r of arc length L is thrown at random on the parallel grid, 
the expected number of intersections is (3). (A curve is rectifiable if its real and 
imaginary parts are functions of bounded variation [I].) The idea behind this result 
is that r can be thought of as a concatenation of infinitesimal straight segments, 
each satisfying (3) for an appropriate infinitesimal value of L. Now it may seem at 
first that the expected number of intersections for r should be more complicated 
than the sum of the expected numbers for the segments r is composed of, since 
after all, the segments do not fall on the grid independently. However, indepen- 
dence is not relevant unless one cares about the efficiency of (3) as a method for 
approximating 7r. It is a basic fact of statistics that the expectation of a sum of 
random variables is equal to the sum of the expectations, regardless of whether or 
not they are independent. This observation seems elementary to us now, but its 
application to the needle problem was evidently not obvious in the nineteenth 
century. 

Taking the paper clip to be a circle of radius gives an easy way to remember 
Buffon's result and'its generalization (3). For this choice of T, L is 7r and the 
number of intersections is exactly 2, no matter how the paper clip falls. 

We now want to move from the plane to the sphere, a step taken as early as 
1860 by Barbier [2]. Consider a "spherical paper clipv-that is, a curve r 
embeddable in the Riemann sphere. Suppose r is oriented at random on S. What 
is the expected number of intersections with the equator? The answer is again 
essentially a matter of combining calculus with elementary statistics: 

L 
Expected number of intersections on the sphere = -. (4)

7r 

Or one can skip the calculus and remember this result by thinking of the case in 
which r is itself a great circle. In this case L = 27r and the number of intersec- 
tions is again exactly 2 unless r happens to land exactly on the equator, an event 
of probability zero. 

A final development completes this brief history. After Barbier, other mathe- 
maticians generalized these results further, including PoincarC, who referenced 
neither Buffon nor Barbier (Calcul des Probabilitb, 1896 [12]). By this time it was 
clear that although the needle problem and its generalizations had conventionally 
been formulated as problems of probability, that interpretation could be dispensed 
with. Instead of orienting r at random on S and asking for the expected number 
of intersections with a fixed equator, one can consider r to be fixed on S and 
compute its arc length L,(r) as an integral of the number of intersections with all 
great circles. To be precise, for any rectifiable curve T cS and any x = 

(x,, x,, x,) E S, let v(r, X) denote the number of points of intersection of r with 
the great circle on S consisting of points equidistant from the antipodes kx. 
(When this number is infinite, the definition of v(r, x) does not matter, for the set 
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of such points has measure zero.) One obtains the following elegant result: 

Lemma 1. L,(T) = f j v(T, x)  dr. ("PoincarC7s formula") 
9 

The integral is taken with respect to area measure on S. 
Lemma 1 can be expressed in words as follows. To find the arc length of a curve 

on the Riemann sphere, integrate its numbers of intersections over all great 
circles, then divide by 4. Or, equivalently, since the sphere has surface area 4 ~ ,  
take the average number of intersections and multiply by T. This latter paraphrase 
of Lemma 1makes plain its equivalence to (4). 

Poincar6's formula has far-reaching generalizations described in the book by 
Santal6 [IS], which the reader may consult for a wealth of related ideas as well as 
for the rigor lacking in the discussion above. It forms a centerpiece of the field 
known earlier as "geometric probability" but now as "integral geometry." 

PROOF OF SPIJKER'S LEMMA. Is it obvious now how to prove Theorem 2? All 
we need is the following lemma, whose proof we shall spell out though it might 
equally well have been left as an exercise. As above, u(r(S), x )  denotes the 
number of intersection points of the curve r(S) with the great circle on the 
Riemann sphere S defined by the points *x. 

Lemma 2. If r is a rational function of order n, then v(r(S), x )  _< 2n for all x E S 
with the possible exception of a single pair x = +x,, x, E S. 

Proof: Since any point of S can be rotated to any other by a Mobius transforma-
tion, leaving the set of rational functions of order n invariant, we are free to 
choose a particular value of x for convenience. Let us take x to be the north pole, 
so that the great circle in question is the equator, i.e., the image of S on S. If 
r (z)  = p(z)/q(z) for polynomials p and q of degree n, then for z E S ,  

where p*(z) :=znJ(z-l) and q*(z) :=znij(z-'1. The condition lr(z)I2 = 1 is thus 
a polynomial equation in z of degree at most 2n. Therefore r(S) intersects the 
equator in at most 2n points, counted with multiplicity, unless it lies along the 
equator exactly. In the latter case it is obviously only the north and south poles for 
which the intersection number is infinite. 

Since the surface area of S is 4~ and since . 2n . 4 7 ~= 2 ~ n ,Theorem 2 is an 
immediate consequence of Lemmas 1and 2. 

Spijker's original proof of Theorem 1, though derived independently, can be 
interpreted as a planar version of the same argument just given to establish 
Theorem 2. In particular, equation (6) of [17] is a kind of PoincarC formula for the 
complex plane, expressed in terms of lengths of one-dimensional projections 
instead of numbers of intersections. Apparently this formula was first worked out 
by Cauchy in 1832 and published by him in 1841 [S]. 
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THE KREISS MATRIX THEOREM. What does all this have to do with the Kreiss 
matrix theorem? Let A be an n x n matrix, and let 1 1  . I 1  denote the matrix norm 
induced by the vector norm I 1  . ] I 2 .  The Kreiss matrix theorem, originally published 
in 1962 [a], concerns the problem of characterizing matrices and families of 
matrices that are power-bounded. Let us define 

The current, sharp form of the theorem reads as follows [17]: 

Theorem 3. r ( A )  I p ( A )  I enr (A) .  ("Kreiss matrix theorem" 

In words, a matrix A is power-bounded ( p ( A )  < m) if and only if the norm of its 
resolvent ( z I  -A)- '  increases at most inverse-linearly as z approaches the unit 
circle from the outside ( r ( A )  < m). Moreover, the gap between p ( A )  and r ( A )  is 
a factor of at most e (= 2.718.. .) times n ,  so the same conclusion applies to 
families of matrices {A,)of fixed dimension that satisfy uniform bounds on p ( A , )  
and r(A,) .  

The first inequality of Theorem 3 asserts that if llAkllI C for k 2 0, then 
Il(zI -A)Y1ll I C/( lz l  - 1) for lzl > 1. This is easy to prove by making use of the 
power series ( z I  -A)- '  = z-'I + z-?A + z-Q2 + . . . . The more interesting in- 
equality is the second one, which asserts that if ll(zI -A)-'11 I C/( l  z I - 1) for 
lzl > 1, then llAkll I enC for k 2 0. According to Tadmor's remarks in [la] for the 
earlier developments, the history of successive improvements toward this constant 
en involves no fewer than nine steps, though the earlier authors in the list were 
certainly not concerned with optimizing the constant: 

Kreiss '62: - [ r ( ~ ) l " "  
Morton '64: - 6% + 4)5n 

Miller & Strang '66: nn 
Miller '67: e9n2 

Laptev '75/Strang '78: 32en2/.rr 
Tadmor '81: 32en/.rr 

LeVeque & Trefethen '84: 2en 

Smith '85: 

Spijker '91: en 

History, thank goodness, stops here. It is shown in [9] that the constant en is best 
possible. 

As the estimates have become sharper, the proofs have become mercifully 
simpler and have ceased to depend upon the explicit manipulation of eigenvalues 
and normal forms of matrices. We reproduce now the argument from [9] that 
shows how the constant en follows from Spijker's lemma. 

Proof of the second inequality of Theorem 3. According to the calculus of resolvents 
described for example in [7], the matrix can be written as the Cauchy integral 

where G is any curve enclosing the eigenvalues of A ,  which must lie in { z  E C: 
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lzl I 11 if r(A) < m. Let u and u be arbitrary n-vectors with Ilul12 = Ilull2 = 1. 
Then 

where u* denotes the conjugate transpose of u and q(z) is the function u*(zI -
A)-lu, which can be shown to be a rational function of order n. Integration by 
parts gives 

I 

u*Aku = 1~ " ~ q ' ( z )dz.
2 ~ i ( k+ 1) G 

Let the contour of integration be taken as G = {z E C:I z I  = 1 + (k + I)-'}. On 
this contour we have Izk+llI e and hence 

This integral can be interpreted as the arc length of q over the circle G. By a 
trivial change of variables it might as well be an arc length over the unit circle S. 
Theorem 1therefore implies 

and therefore, since the supremum of Iq(z)l on G is at most (k + M A ) ,  by the 
definition of r(A), we have 

Iv*Akul -< enr(A). 

Finally, we note that since l l ~ ~ l lis the supremum of l u * ~ ~ u lover all vectors u and 
u with llullz = Ilul12 = 1, this last inequality proves the theorem. 

The Kreiss matrix theorem has been a fixture of numerical analysis since its 
appearance in 1962 and dissemination in the well-known book by Richtmyer and 
Morton [14]. It is one of the fundamental results available for establishing numeri-
cal stability of discrete processes. 

CONCLUSION. From Buffon to Spijker to Kreiss, the pieces of our story fit 
together so neatly that it may seem there can be nothing more to say. Nevertheless, 
matters related to the Kreiss matrix theorem are subjects of active interest today, 
and in conclusion, we would like to mention a recent generalization of Theorem 3 
and an open question. 

The generalization concerns the problem of numerical stability of the "method 
of lines." When time-dependent partial differential equations are solved numeri-
cally by discretization, it is common to simplify the process by constructing the 
space discretization and the time discretization independently. For example, the 
Crank-Nicolson formula for solving parabolic PDEs, of which the prototype is 
the heat equation u, = u,,, can be viewed as a second-order centered finite 
difference with respect to x coupled with the "trapezoid formula" with respect to 
t .  In more realistic problems the space discretization might involve more compli-
cated finite difference, finite element, or spectral approximations and the time 
discretization might be accomplished by any of the familiar methods for ODES 
such as Runge-Kutta or Adams-Bashforth formulas [6]. 
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According to the celebrated Lax Equivalence Theorem, the numerical solution 
computed by a consistent discretization of a well-posed linear partial differential 
equation will converge to the solution of the PDE as the mesh size shrinks to 0 if 
and only if the discretization is numerically stable [14]. (We ignore the effects of 
rounding errors.) But how does one test for numerical stability? It has recently 
been shown that for method of lines calculations, one can do it by a transplanta- 
tion of the Kreiss matrix theorem from the unit disk to the subset of @ known as 
the stability region of the ODE formula [13]. One replaces the monomial Ak  in the 
term p(A) of Theorem 3 by the solution to a more general matrix recurrence 
relation, and the unit disk in the term r(A) of Theorem 3 by the stability region. 
The condition for stability is that the norm of the resolvent of an appropriate 
spatial discretization matrix must increase at most inverse-linearly as z approaches 
the boundary of the stability region from the outside. For numerical analysts, to 
whom stability regions of ODE formulas are as familiar as simple groups are to 
algebraists, this result provides an easy means of applying the Kreiss matrix 
theorem to a wide range of practical problems. In particular it is applicable to the 
stability analysis of the high-accuracy numerical techniques known as spectral 
methods [4], where the matrices that arise are often far from normal and difficult 
to analyze by more elementary techniques. 

The open question is, what happens to Theorem 3 if r (A) is viewed as a 
constant rather than a variable? If r (A) = 1, then it can be shown that the field of 
values of A,  that is, the set of Rayleigh quotients u*~u/ l lu l l~ ,  must lie in the 
closed unit disk. By a result due originally to Lax and Wendroff and subsequently 
sharpened by Halmos, Berger, and Pearcy [14], it follows that when r(A) = 1we 
have p(A) 5 2, or in other words, the factor en of Theorem 3 can be replaced by 
the constant 2, independently of n. Now, what if r (A) is a constant greater than I?  
For example, what can be said about p(A)  ifr(A) = 2? It is known that p(A)  can 
no longer be bounded by a constant [ l l ] ,  but beyond this-for example, whether 
en can be improved to a quantity that grows only logarithmically in n-nothing is 
known. 
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PICTURE PUZZLE 
('om the collection of Paul Halmos) 

He made it possible to study compact 
groups as if they were finite. 

(see page 190.) 
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