Do the pseudospectra of a matrix
determine its behavior?
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Abstract. Let A and B be square matrices. It is shown that the condition
(R) ||(2I—A)7Y| = ||(2I-B)7!| for all 2z € C is equivalent to the condition

(P) ||p(A)|| = ||p(B)|| for all polynomials p if || - || is the Frobenius norm,
but not if || - || is the 2-norm.
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1. The problem

Let A and B be complex square matrices, not necessarily of the same di-

mension, and let || - || be a matrix norm. Consider the conditions
I(zI =) =1(zI-B)7"|| VzeC (R)
and
(Al =llp(B)I VY, (P)

where p is a polynomial. Are these conditions equivalent?

Condition (R) asserts that A and B have the same resolvent norms through-
out the complex plane. Equivalently, A and B have the same pseudospectra,
where the e-pseudospectrum of A is defined for each € > 0 by

A(A) = {z€C: || (zI - A > P, (1)

with the convention || (21 — A)~1|| = oo if 2 is an eigenvalue of A [10].

Condition (P) asserts that A and B have the same behavior, if behavior is
measured by norms of polynomials, or equivalently, since analytic functions of
matrices reduce to polynomials, by norms of functions. This notion of behavior
may seem restrictive, but it captures much of what one wants to know about a
matrix in applications. For example, the stability of an evolution process gov-
erned by A is determined by the norms ||A™|| in the discrete case or ||e*]| in the
continuous case [8]. Similarly, the convergence of matrix iterative algorithms for
solving linear equations or finding eigenvalues, such as the GMRES and Arnoldi
iterations [2]|, depends on how fast the norms || p}(A)|| decrease as n increases,
where p? is the polynomial that minimizes ||p(A)|| in a suitably normalized class
of polynomials of degree n [3].

If || - || is the 2-norm and A is normal (i.e., A has a complete set of or-
thogonal eigenvectors), then | (21 — A)7!|| = dist(z,A(A))~! and ||p(4)| =
Sup,ca(a) | P(2)], where A(A) denotes the spectrum of A, and thus (R) and (P)
reduce to scalar conditions that are easily seen to be equivalent. If A is not nor-
mal, however, then ||(zI — A)~!|| and ||p(A)|| are not determined by A(A). Of
course they are both determined by (2I — A)~!, thanks to the Cauchy integral

P = 5 [GT- 2 (), &)
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where T is any contour enclosing A(A) [6]. If only the norm || (21 — A)7}|| is
known, however, then (2) can be applied to derive upper bounds for ||p(A4)]|,
but they are not in general sharp. The best known and most refined example of
such a bound is the Kreiss Matrix Theorem, which can be derived from (2) by
integration by parts combined with a few other tricks [7,8,11].

2. (P) = (R)

In one direction our problem is straightforward.
Theorem 1. (P) implies (R).

Proof. If ||p(A)|| = ||p(B)|| for all polynomials p, then ||p(A)| = 0 if and
only if ||p(B)|| =

polynomial, m(z). In particular A and B have the same eigenvalues, and thus
| (2 —A)~!|| = oo if and only if || (2 — B)~!|| = co. On the other hand let 2z € C
be a number distinct from these eigenvalues. Then (21 — A)~! = ¢q(A), where

0, and this implies that A and B have the same minimal

q(w) is any polynomial that interpolates (2—w)~! in the zeros of m, counted with

multiplicity (i.e., the derivatives of orders 0,1, ..., — 1 are interpolated in the
case of a zero of multiplicity x) [5, Thm. 6.2.9]. Likewise, (I — B)~! = ¢(B)
for the same polynomial ¢. By (P), we now have ||¢(4)| = ||¢(B)||, that is,

[(zI = A7 = [I(=I = B)7'].

3. (R) # (P) in the 2-norm

Let || - || be the 2-norm. In this case the pseudospectra can be characterized
in various other ways besides (1), such as

A(A)={2€C: z€ A(A+ FE) for some F with ||E|| < €} (3)
={2€C: omn(4) <€}, (4)

where omin(A) denotes the smallest singular value of A. The first equality is
valid for any matrix norm induced by a vector norm [1]; the second applies to
the 2-norm only.

We thought at first that (R) certainly could not imply (P), since the norm
of the resolvent surely could not “contain enough information” to determine
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behavioral quantities exactly. Yet the information contents of (R) and (P) are
better matched than they may at first appear. For example, both pseudospec-
tra and norms of polynomials take no notice of eigenvalue multiplicities, as is
illustrated by the matrices

(Here and below, blank matrix entries are zero.) Both (R) and (P) are also
satisfied if one takes B = AT or B = UAU* with U unitary. Furthermore, it is
easily shown that (R) implies (P) if A and B are of dimension < 2.

Nevertheless, the following counterexample shows that our first intuition
was correct.

Theorem 2. If || - || is the 2-norm, then (R) does not imply (P).

Proof. Consider the Jordan blocks

0 1 0 «
0

with a € C. We have ||J;|| =1 and ||J,|| = |a|, so if @ > 1, then || J,| > ||J1]|-
On the other hand if & < /2, then

[z = Jy) "I < (I =)~ VzeC. ()

To show this we note first that for any Jordan block J, || (2 — J)~!|| depends
only on |z|, i.e., the pseudospectra are disks about the origin. (This can be
proved by a diagonal similarity transformation.) Thus it is enough to establish
(5) for z real and positive. Rather than providing an algebraic proof we simply
present Figure 1, which illustrates strict inequality in (5) for a = 1.1.

The proof is completed by taking

A= B:<J1 J)’
2

with 1 < |a| < V2. We then have ||B]| = |a| > [|A]| = 1 but ||(zI — A)~1|| =
|(2I — B)7Y|| = ||(2I — J;)7!|| for all z € C. Thus these matrices provide a
counterexample to (R) = (P) with p(2) = 2. |
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Figure 1. Illustration of strict inequality in (5); the ordinate is taken as |z| -
|(2I — J)~Y|| — 1 instead of ||(2I — J)~!|| because this makes the behavior in
both limits |2| — oo and |z| — 0 clear. The upper curve corresponds to a matrix
with smaller norm, but larger resolvent norm || (21— J)~!|| for all nonzero 2 € C.

In the counterexample just given, the matrices A and B have different
dimensions (3 and 5), but this is inessential. The dimensions could be made
equal, for example, by padding A with zeros.

4. (R) = (P) in the Frobenius norm

Our third theorem shows that in the Frobenius norm, the pseudospectra do
determine the behavior of a matrix.

Theorem 3. If || - || is the Frobenius norm, then (R) implies (P). In this
case we have dim(A) = dim(B).

Proof. The Frobenius norm of (21 — A)~! is given by
I(zI = A)TH* = 2|7 tr [(T - 27" A) T (I = 271 4)TH) ]
where tr(-) denotes the trace. If 2| > p(A), where p(-) denotes the spectral
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radius, then this expression can be expanded in a convergent Neumann series as

(21 — A)7YH)? = |2|72 tr ( Z kA* : Zz_kAk))

=0 k=0
oo £
k
= |2|72 tr ( E E 7R Rl Ax Ae_k> .
£=0 k=0

For |z| > max{p(A), p(B)}, then, condition (R) implies that we can write

o /L o £
SN aRA (A AR = 3TN s (B BYR). (6)

Taking the limit as |2| — oo implies that the £ = 0 terms of (6) must be equal,

tr(Z,) = tr(/p),

where I, and I denote the identities of dimensions dim(A) and dim(B), respec-
tively. This implies dim(A) = dim(B), as claimed. Now subtract these £ = 0
term from both sides of (6), multiply by z, and take the limit as |z| — oo again
to obtain

tr(A) + z tr(A*) = tr(B) + z tr(B*).

Choosing two different values for z/z, say, 1 and —1, we find
tr(A) = tr(B), tr(A*) = tr(B™).

Continuing in this way, suppose it has been shown that the traces involved in
the terms with £ < m are all equal. To show that the traces involved in the
{ = m terms are equal, first subtract the known equal terms from both sides of
(6), then multiply by 2™ and take the limit as |z| — oo to obtain

mfk *km—k_mfk w* om—k

D (S (AT AmTE) = 3 (D) (BT B,

k=0 k=0
Choosing m + 1 different values on the unit circle for z/Z, say, ug, ..., unm, gives
a Vandermonde system of m + 1 independent homogeneous equations for the
m 4 1 quantities tr(A*" A™=*) — tr(B*" Bm—F).

1w ... uwl tr(A™) — tr(B™) 0
1w ... ul tr(A*A™ 1) — tr(B*B™ 1) 0
1wy ... ul tr(A*") — tr(B*") 0
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It follows that tr(A*kAe) — tT(B*kBE) for all k and £, and this implies | p(A)]| =
|lp(B)|| for all p since

Ip(A))? =33 e (A4, |pB)? =Y. aee tr(B*BY),

K ke
if p(z) = 3, cez®. |

Unfortunately, in the Frobenius norm the pseudospectra, defined by (1), are
not characterized by (3). Even for the simplest example, where A is the zero
matrix of dimension N, A_(A) is the closed disk about the origin of radius v/ Ne,
whereas the set defined in (3),

S.={2€C: z€ A(F) for some E with ||E| < €},
is the disk of radius e. In general, for any A and € we have

SE(4) € AP(4) € AP(),
where the superscripts indicate Frobenius or 2-norm. The first inequality follows
from ||E||z > ||E||, for the perturbation matrix F, and the second from || (21 —
A > (|21~ A7),

5. Discussion

The problem of relating information in the complex plane to the behavior of
a matrix or linear operator A is an old one. Many results are known, of which the
most important connect the spectrum of A with the asymptotic behavior of A™
and e as n,t — oo, and the numerical range of A with the initial behavior of A™
and e‘4 asn,t — 0 [1]. Since the spectrum is determined by the e-pseudospectra
in the limit € — 0 and the numerical range by the (2-norm) e-pseudospectra in
the limit € — 00, these two examples can both be regarded as special cases of
pseudospectral information [4]. In effect this paper has considered the question
of how much more can be gained if one knows A_(A) for finite values of € in
addition to the limits € — 0 and € =— 0.

A related collection of results is associated with von Neumann’s theory of
spectral sets, described for example in [9].

Since the 2-norm is more useful for most applications than the Frobenius
norm, we regard the main result of this paper as negative: exact information
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about matrix behavior cannot be inferred from the norm of the resolvent (The-
orem 2). It remains to be seen, however, whether the gap between these two
kinds of information may be quantifiable. For example, the gap between the
norms of powers ||[A™|| and the bound provided by the Kreiss Matrix Theorem
is known to be linear in the dimension of the matrix—remarkably small, in view
of the exponential factors that appear in the process of taking powers. It would
be interesting to know whether analogous results may hold for more general
functions p(A).
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