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Abstract

There has been much recent interest, initiated by work of the physicists Hatano
and Nelson, in the eigenvalues of certain random, non-Hermitian, periodic tridi-
agonal matrices and their bidiagonal limits. These eigenvalues cluster along a
“bubble with wings” in the complex plane, and the corresponding eigenvectors
are localized in the wings, delocalized in the bubble. Here, in addition to eigen-
values, pseudospectra are analyzed, making it possible to treat the nonperiodic
analogues of these random matrix problems. Inside the bubble, the resolvent
norm grows exponentially with the dimension. Outside, it grows subexponen-
tially in a bounded region that is the spectrum of the infinite-dimensional op-
erator. Localization and delocalization correspond to resolvent matrices whose
entries exponentially decrease or increase, respectively, with distance from the
diagonal. This article presents theorems that characterize the spectra, pseu-
dospectra, and numerical range for the four cases of finite bidiagonal matrices,
infinite bidiagonal matrices (“stochastic Toeplitz operators”), finite periodic ma-
trices, and doubly infinite bidiagonal matrices (“stochastic Laurent operators”).
c© 2001 John Wiley & Sons, Inc.

1 Introduction

In this article we investigate random matrices in a class that we denote by

(1.1) bidiagN{X, 1} ,

whereX is a random variable taking values dense in a compact subset supp(X) of
the complex planeC. The meaning of this notation is that eachA ∈ bidiagN{X, 1}
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is anN × N bidiagonal matrix in which the diagonal entries are independent sam-
ples fromX, the superdiagonal entries are equal to 1, and all other entries are 0:

(1.2) A =




x1 1
x2 1

. . .
. . .

xN−1 1
xN




.

Such matrices have been considered previously under the name of “one-way mod-
els” by Brézin, Feinberg, and Zee [7, 17, 18], except with a corner entryaN1 = 1
included to make the structure periodic and permit nontrivial eigenvalue analysis.
They arise as a limiting case of the nonsymmetric random periodic tridiagonal ma-
trices introduced in 1996 by Hatano and Nelson [27, 28].

Although our results hold for general compactly supported probability distribu-
tions, two choices ofX will be of particular interest, which we denote by

(1.3) X = {±1} and X = [−2, 2] .

The abbreviationX = {±1} denotes the random variable that takes values±1 with
equal probability, generating perhaps the simplest nontrivial class of nonsymmetric
random matrices,

(1.4) A =




±1 1
±1 1

. . .
. . .

±1 1
±1




.

Feinberg and Zee call this (again withaN1 = 1) the “one-way sign model.” The
abbreviationX = [−2, 2] denotes the random variable that takes values in the
interval [−2, 2] with uniform probability. The matrices this random variable gen-
erates, which are equally easy to analyze, capture some of the essential features
associated with the Hatano-Nelson model [27, 28], including, as we shall discuss
in Section 7, a “delocalization transition.”

We offer this article as a contribution to the heretofore nearly empty inter-
section of two fields: the study ofrandom matricesand the study ofpseudo-
spectrafor matrices that are nonnormal (i.e., matrices whose eigenvectors, even
if a complete set exists, cannot be taken to be orthogonal). Random matrices,
particularly their eigenvalues, have been a familiar topic for about fifty years in
physics [38], statistics [39, 62], and numerical analysis [15], and more recently in
number theory [3, 34]. In condensed-matter physics, the subject was made famous
by Wigner’s semicircle law [61] and the phenomenon of Anderson localization
(exponential decay of eigenvectors) [1]. These and many other developments in
random matrix theory have emphasized Hermitian matrices, the setting for classi-
cal quantum mechanics, but random non-Hermitian problems have been studied,
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too, since the early work of Ginibre [19], by the authors mentioned in the first two
paragraphs, and by Efetov, Fyodorov, Girko, Goldsheid, Janik et al., Khoruzhenko,
Silvestrov, and Sommers, among others.

Pseudospectra and related quantities for nonnormal matrices and operators were
first investigated in the 1970s and 1980s [20, 36, 58] and became a standard tool
in the 1990s [9, 50, 51, 54], with applications in fluid mechanics [56], numeri-
cal analysis [29, 43, 48, 49], operator theory [2, 5], control theory [30], Markov
chains [32], differential equations [10, 11, 44], and integral equations [41, 42].
In all of these fields it has been found that in cases of pronounced nonnormality,
eigenvalues and eigenvectors alone do not always reveal much about the aspects
of the behavior of a matrix or operator that matter in applications, including phe-
nomena of stability, convergence, and resonance, and that pseudoeigenvalues and
pseudoeigenvectors may do better. We shall show that random bidiagonal matrices
also follow this pattern. As has been found previously in studies of Toeplitz matri-
ces [5, 6, 46] and magnetohydrodynamics [4], the consideration of pseudospectra
rather than spectra for these matrices sheds light on the exponential (with respect
to N) sensitivity to perturbations of eigenvalues and eigenvectors and eliminates
troubling discontinuities in the limitN → ∞. It also allows the delocalization
phenomenon to be analyzed without recourse to eigenvalues or eigenvectors and
without the need for nonzero corner entries.

Previous works emphasizing the nonnormal aspects of random nonsymmetric
matrices include [12] and [59]. A report on the pseudospectra of random triangular
matrices is in preparation [16], which will present analytical results motivated by
experiments in [50] and [58]. The significance of pseudospectra for the Hatano-
Nelson model, and the limited significance of eigenvalues, eigenvectors, and cor-
ner entries for that problem, have been pointed out by the first author since late
1997 [52].

Our theorems are summarized in Table 9.1 at the end of the paper.

2 Spectra and Pseudospectra

The spectrum of anN × N matrix A, which we denote by3(A), is its set of
eigenvalues, a finite subset ofC consisting of at mostN points. For eachz ∈ C, the
resolventof A at z is (z − A)−1 if this matrix exists; herez − A is an abbreviation
for z I − A, whereI is the identity. An equivalent definition of3(A) is that it is the
set of numbersz ∈ C for which (z − A)−1 does not exist; see, e.g., [33] or [45].

Since the eigenvalues of a bidiagonal matrix are its diagonal entries, the spec-
trum of any A ∈ bidiagN{X, 1} is a subset of supp(X). Thus there is not much
to say about the spectra of these matrices. The most interesting fact is that they
behave discontinuously in the limitN → ∞, as can be seen by comparing our
Theorems 4.2 and 5.1. Such a discontinuity was pointed out by Davies [12] and
Goldsheid and Khoruzhenko [24, 25], and as already noted, it is one motivation for
considering pseudospectra instead.
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The pseudospectra of a matrixA are compact sets in the complex plane. They
depend on vector and matrix norms, and all our discussion is based on the familiar
choices

‖x‖ =
(∑

|xj |2
)1/2

, ‖A‖ = sup
‖x‖=1

‖Ax‖ ,

although many of our statements can be generalized to other norms. The 0-pseudo-
spectrum30(A) is the same as the spectrum3(A), and forε > 0, theε-pseudo-
spectra are strictly nested sets that expand to fill the plane asε → ∞. We can
define3ε(A) in various equivalent ways:

DEFINITION 2.1 For anyε ≥ 0, theε-pseudospectrum3ε(A) of a matrixA is the
set of numbersz ∈ C satisfying the equivalent conditions

(i) ‖(z − A)−1‖ ≥ ε−1,
(ii) σmin(z − A) ≤ ε,

(iii) ‖Au − zu‖ ≤ ε for some vectoru with ‖u‖ = 1, and
(iv) z is an eigenvalue ofA + E for some matrixE with ‖E‖ ≤ ε.

Hereσmin denotes the smallest singular value, and we follow the convention of
writing ‖(z − A)−1‖ = ∞ if z ∈ 3(A).

Conditions (i) and (ii) assert that3ε(A) is the subset of the complex plane
bounded by theε−1-level curve(s) of‖(z− A)−1‖ or theε-level curve(s) ofσmin(z−
A). Condition (iii) concerns the existence of anε-pseudoeigenvector. Condition
(iv) asserts that3ε(A) is the set of all complex numbers that are in the spectrum of
some matrix obtained by a perturbation of norm≤ ε. The equivalence of (i)–(iv)
is discussed in [57], [46], and [49], and much more extensive related material can
be found in [33].

Figure 2.1 shows pseudospectra of two matrices from bidiagN{{±1}, 1}, one
with N = 100 and one withN = 10,000.1 The pictures reveal that the nonnormal-
ity of these matrices is pronounced. The resolvent norm grows exponentially in a
region with the form of a figure 8, more precisely a lemniscate, and for largeN
and smallε, the ε-pseudospectra have approximately this fixed shape, including
points far from the real axis. (An example in [46] considers the pseudospectra of

1In view of condition (ii) of the definition of pseudospectra, pictures like this can be generated
by computingσmin(z − A) for values ofz on a grid in the complex plane and sending the results
to a contour plotter. The work involved is potentially very large,O(N3ν2) floating point operations
for a ν × ν grid, if the standardO(N3) dense matrix methods for computing the SVD are used.
However, our matrices are bidiagonal, so only “phase 2” of an SVD computation is needed, involving
the QR or LR or divide-and-conquer algorithms, and this reduces the operation count to an easily
manageableO(N2ν2) or O(Nν2), depending on whether one computes all the singular values or
just the smallest [13, section 5.4]. Since the bidiagonal SVD is not accessible in MATLAB, we have
achieved the speedup toO(Nν2) instead by computingσmin(z− A) by Lanczos inverse iteration, as
described in [53]. Each plot of Figures 2.1 and 2.2 withN = 10,000 took 5–10 hours to generate on
a Pentium III workstation, essentially the cost of solving on the order of 106 bidiagonal systems of
104 equations. The plots withN = 100 each took about ten minutes.
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N = 100

N = 10,000

FIGURE 2.1. Spectra and pseudospectra in the complex plane of typical
matrices from bidiagN{{±1}, 1}. The solid dots, atz = ±1, are the
eigenvalues. The contours, from outside to inside, are the boundaries of
3ε(A) for ε = 10−2, 10−6, 10−10, 10−14, . . . , 10−30.

matrices of this form in which the diagonal entries±1 are not random but strictly
alternating.) There is also some weaker growth of the resolvent norm outside the
lemniscate.

Figure 2.2 shows analogous pictures for the case bidiagN{[−2, 2], 1}. The be-
havior is similar, except that instead of a lemniscate we see a “Hatano-Nelson bub-
ble.” Outside the bubble, there is again modest growth of the resolvent norms, and
inside the bubble, the norms are again exponentially large. We see, for example,
that a matrix perturbation of norm as small as 10−30 may again change the eigenval-
ues forN = 10,000 completely, making them lie close to the bubble. Introducing
a nonzero corner entryaN1 would be an example of such a perturbation. It is a tenet
of the theory of pseudospectra, however, that these sets reveal more than just the
motion of eigenvalues under perturbation: They have implications for the behavior
of the unperturbed matrix, too. For example, the strong transient effects that make
streamwise streaky structures ubiquitous in high Reynolds number shear flows are
linear but nonnormal in origin; they can be explained by pseudospectra but not by
spectra [47, 56]. Some estimates of the behavior of a matrix that can be obtained
from a knowledge of its pseudospectra are reviewed in [51].
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N = 100

N = 10,000

FIGURE 2.2. Same as Figure 2.1 but for bidiagN{[−2, 2], 1}. The
eigenvalues are now distributed in the interval[−2, 2]; in the lower plot,
they appear to have fused into a solid line. The lowest pseudospectral
contour that appears in the upper plot isε = 10−22. The others are there
too, in principle, but hidden under the dots.

We will now develop theorems that make the observations of Figures 2.1 and 2.2
precise.

3 Four Subsets of the Complex Plane

Our results, which are closely related to the results of Goldsheid and Kho-
ruzhenko [24, 25] and Brézin, Feinberg, and Zee [7, 17, 18], among others [8, 31],
are based on the explicit computation of the resolvent of the bidiagonal matrixA.
In the 3× 3 case, since

a−1 −1
b−1 −1

c−1





a ab abc

b bc
c


 = I ,

we see that ifxj is the j th diagonal entry ofA, then

(z − A)−1 =

z − x1 −1

z − x2 −1
z − x3




−1

=

(z − x1)

−1 (z − x1)
−1(z − x2)

−1 (z − x1)
−1(z − x2)

−1(z − x3)
−1

(z − x2)
−1 (z − x2)

−1(z − x3)
−1

(z − x3)
−1


 .
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The pattern for generalN is clear. The(i, j ) entry ri j of (z − A)−1 for j ≥ i is
given by

(3.1) ri j =
j∏

k=i

(z − xk)
−1 ,

which implies

(3.2) log|ri j | = −
j∑

k=i

log |z − xk| .

If z = xk for one of the terms in the product or sum, the formulas are still valid if
we define|ri j | to be∞.

We now ask what (3.1) and (3.2) imply about the behavior of|ri j | as j +1−i →
∞. We can establish a framework for this as follows. For anyi , j , and N with
1 ≤ i, j ≤ N, the quantity|ri j | is a random variable taking values in[0,∞]
determined by the set of matrices bidiagN{X, 1}. However, it is easily seen that
this random variable depends only onj + 1 − i , not oni or j individually or on
N. Let us call it simplyRj +1−i . Now by (3.2), we have

− log Rj +1−i = log |z − X1| + log |z − X2| + · · · + log |z − X j +1−i | ,
a sum of independent, identically distributed random variables, all equal to log|z−
X|. Since|z − X| is bounded above, the expected value of log|z − X|, defined by

E(log |z − X|) =
∫

supp(X)

log |z − x|dµ(x) ,

necessarily exists: It is either finite or−∞. Hereµ is the measure defining the
random variableX, with

∫
supp(X)

dµ(x) = 1. Accordingly, the numberdmean(z)
defined by

(3.3) dmean(z) = exp
(
E(log |z − X|))

also exists: It is either positive or 0. (Ifz 6∈ supp(X), it is positive; ifz ∈ supp(X),
it may be either positive or 0.) We can interpretdmean(z) as the mean distance of
z to supp(X) in the sense of a geometric mean weighted byµ. For X = {±1},
dmean(z) is given by

(3.4) dmean(z) = |z2 − 1|1/2 ,

and forX = [−2, 2], an easy integral shows that we have

(3.5) dmean(z) = exp
(−1 + 1

4Re[(z + 2) log(z + 2) − (z − 2) log(z − 2)]) .

Variants of (3.5) arise in numerical analysis whenever one deals with problems of
polynomial interpolation in equally spaced points; see, e.g., [35, section 12.2], [55,
chapter 5].
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SinceE(log |z − X|) exists, the law of large numbers implies that

(3.6)
− log Rj +1−i

j + 1 − i
→ E(log |z − X|) ,

or equivalently,

(3.7) (Rj +1−i )
1/( j +1−i ) → 1

dmean(z)

almost surely asj + 1 − i → ∞ [26].2 If dmean(z) = 0, the meaning of this
statement is that(Rj +1−i )

1/( j +1−i ) → ∞ a.s. asN → ∞.
For anyX andz, let dmin(z) anddmax(z) be defined by

dmin(z) = min
x∈supp(X)

|z − x| , dmax(z) = max
x∈supp(X)

|z − x| .

Our three measures of distance ofz to supp(X) are ordered,

0 ≤ dmin(z) ≤ dmean(z) ≤ dmax(z) < ∞ ,

and thus they can serve to divide[0,∞) in general into four subintervals. Our
results will distinguish four subsets ofC defined by the conditions

�I : dmax(z) < 1 ,

�II : dmean(z) < 1 ≤ dmax(z) ,

�III : dmin(z) ≤ 1 ≤ dmean(z) ,

�IV : 1 < dmin(z) .

(The number 1 in these conditions would become|σ | if (1.4) containedσ instead
of 1 above the diagonal.) Either or both of�I and�II can be empty, but�III and
�IV are always nonempty. The sets are disjoint, with

�I ∪ �II ∪ �III ∪ �IV = C .

Any or all of �I , �II , and�III may contain a portion of supp(X), but�IV lies at a
distance 1 from supp(X).

We summarize the observations above in a lemma.

LEMMA 3.1 For z ∈ C,

(3.8) (1/dmax(z))
k ≤ Rk ≤ (1/dmin(z))

k

and

(3.9) (Rk)
1/k → 1

dmean(z)
a.s. as k→ ∞ .

2A condition holdsalmost surely, abbreviateda.s., if it holds with probability 1. For example,
if x1, x2, . . . is a sequence of independent samples from the uniform distribution[−2, 2], then the
numbers 1/xj are almost surely all finite.
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Thus for z in�I , �II , �III , and�IV we have guaranteed exponential growth, almost
sure exponential growth, almost sure exponential decay, and guaranteed exponen-
tial decay of Rk as k → ∞, respectively. In particular, these conclusions do not
depend on whether or not z∈ supp(X).

Figure 3.1 illustrates these sets for three examples of random variablesX. The
second and third of these are our choices{±1} and [−2, 2], but since supp(X)

has diameter≥ 1, the set�I is empty in both of these cases. Our first example
accordingly takesX to be the random variable distributed uniformly in the complex
disk {x ∈ C : |x| ≤ 1

3}.
For some of our assertions we will need a stronger convergence result than in

Lemma 3.1. If we make the additional assumptionz 6∈ supp(X), then log|z− X| is
bounded below as well as above; this is now a random variable with the best possi-
ble behavior, including, for example, existence of the variance and all higher mo-
ments. From the existence of the variance we could apply the central limit theorem,
for example, to conclude that the distribution of(− log Rk/k − log(dmean(z)))/

√
k

converges ask → ∞ to the normal distributionN(0, Var(log |z − X|)).
What we actually need is a somewhat different statement to the effect that the

tails of the distribution for finitek are small:

LEMMA 3.2 Let z∈ C \ supp(X) be fixed. For anyε > 0,

(3.10) P

(∣∣∣∣(Rk)
1/k − 1

dmean(z)

∣∣∣∣ > ε

)
≤ C1e

−C2
√

k

for all k ≥ 1 for some positive constants C1 and C2.

SKETCH OF PROOF: The condition in question is equivalent (with a change of
ε) to the condition

P
(∣∣− log Rk − kE(log |z − X|)∣∣ > εk

) ≤ C1e
−C2

√
k ,

which is the same as

P
(∣∣ log |z − x1| + · · · + log |z − xk| − kE(log |z − X|)∣∣ > εk

) ≤ C1e
−C2

√
k .

Let F(t) be the distribution function for log|z− X| − E(log |z− X|), and, follow-
ing a standard technique in probability theory, letf (ω) denote thecharacteristic
functionof F [26],

(3.11) f (ω) =
∫ ∞

−∞
eiωtF(dt) ,

which is the Fourier transform ofdF/dt. The sum ofk independent copies of this
random variable has the characteristic function( f (ω))k, and the inverse Fourier
transform gives

(3.12) P
(
(− log Rk − kE(log |z − X|)) > εk

) =∫ ∞

εk

1

2π i

∫ ∞

−∞
e−iωt( f (ω))k dω dt ,
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I
II

III
IV

(a) If X is the uniform distribution on{x ∈ C : |x| ≤ 1
3}, then�I is defined by

|z| < 2
3, �II by 2

3 ≤ |z| < 1, �III by 1 ≤ |z| ≤ 4
3, and�IV by 4

3 < |z|.

II
III

IV

(b) For X = {±1}, �I is empty,�II is defined by|z2 − 1| < 1, �III by 1 ≤ |z2 − 1|
and min{|z − 1|, |z + 1|} ≤ 1, and�IV by min{|z − 1|, |z + 1|} > 1.

II
III

IV

(c) For X = [−2, 2], �I is again empty,�II is defined bydmean(z) < 1, �III by
dmean(z) ≥ 1 and minx∈[−2,2] |z − x| ≤ 1, and�IV by minx∈[−2,2] |z − x| > 1,
wheredmean(z) is given by(3.5). The stars are explained in Figure 4.1.

FIGURE 3.1. The sets�I , �II , �III , and�IV for three random variables
X. By Theorem 4.2, the resolvent norm of theN × N matrix grows
exponentially asN → ∞ for z ∈ �I (surely) and�II (almost surely),
grows subexponentially in�III (almost surely), and is bounded indepen-
dently of N in �IV . The boundary between�II and�III (dashed) is the
“bubble” of points whose weighted geometric mean distance to supp(X)

is equal to 1. Theorems 5.1–8.1 relate these regions to the spectra of the
corresponding singly infinite, periodic, and doubly infinite matrices.
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with a similar integral for values< −ε. Now sinceX has compact support, by
the standard theory of characteristic functions,f (0) = 1, f ′(0) = 0, | f (ω)| < 1
for ω ∈ R\{0}, and f ′′(0) < 0 (unless the distribution log|z − X| has zero vari-
ance, in which case the lemma is trivial). Moreover,f (ω) is an entire function
of ω, i.e., analytic throughout the complexω-plane. This means that the contour
of integration of the inner integral in (3.12) can be deformed into the complex
plane without changing the value of the integral. In particular, let the real axis
be replaced by the complex path−∞ → α → β → γ → δ → +∞, where
α = −k−1/4, β = −k−1/4 − ik−1/2, γ = k−1/4 − ik−1/2, andδ = k−1/4. (In-
stead of the exponent−1

4, we could take any number in[−1
4, 0).) On the segment

[ β, γ ] of this new contour of integration,|e−iωt | ≤ e−ε
√

k sincet ≥ εk. On the
segments[α, β] and [γ, δ], | f (ω)| ≤ 1 − (1 + o(1))| f ′′(0)|/(2√

k), implying
|( f (ω))k| ≤ e−(1+o(1))| f ′′(0)|√k/2. On the segments(−∞, α] and[δ, ∞), | f (ω)| is
bounded below 1 and thus|( f (ω))k| is exponentially small. Putting together these
estimates, we see that the the integrand is bounded over the whole contour by a
function of the formC1e−C2

√
k. �

4 Random Bidiagonal Matrices

Lemmas 3.1 and 3.2 concerned the entries|ri j | of the resolvent(z − A)−1, but
our main interest is in the resolvent norm, which defines the pseudospectra. The
following theorem records a number of facts about these norms. It also makes
some statements about spectra, which depend on a definition of what it means for a
sequence of sets to converge to a limit. For our purposes the following quite strong
definition is suitable.

DEFINITION 4.1 Let{KN}, N = 1, 2, . . . , be a sequence of subsets ofC, and let
K be a closed subset ofC. We say that

(4.1) KN → K asN → ∞
if for every ε > 0, there exists an integerN0 such that for allN ≥ N0, KN andK
are each contained in theε-neighborhood of the other. We say that

(4.2) KN → K a.s. asN → ∞
if this condition holds with probability 1.

THEOREM 4.2 (Random bidiagonal matrices)Let A be an N× N matrix of the
form (1.2), and let �I , �II , �III , �IV , dmin(z), dmean(z), and dmax(z) be defined as
in the previous section. Then for z∈ C, we have the following conditions on the
norm of the resolvent. As always, we write‖(z − A)−1‖ = ∞ if (z − A)−1 does
not exist.

(i) If z ∈ �I , then‖(z − A)−1‖ ≥ (1/dmax(z))N (guaranteed exponential
growth).
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(ii) If z ∈ �I ∪ �II , then‖(z − A)−1‖ → ∞ a.s., and if in addition z6∈
supp(X), then‖(z− A)−1‖1/N → 1/dmean(z) a.s. as N→ ∞ (almost sure
exponential growth).

(iii) If z ∈ �III , then‖(z − A)−1‖ → ∞ a.s., and if in addition z6∈ supp(X),
then‖(z − A)−1‖1/N → 1 a.s. as N→ ∞ (almost sure subexponential
growth).

(iv) If z ∈ �IV , then‖(z− A)−1‖ < 1/(dmin(z)−1) (guaranteed boundedness).

The spectrum satisfies3(A) ⊆ supp(X), with 3(A) → supp(X) a.s. as N→
∞ in the sense of Definition4.1. The numerical range satisfies W(A) ⊆ conv(�III ),
with W(A) → conv(�III ) a.s. as N→ ∞, whereconv( · ) denotes the convex hull.

PROOF: Since the norm of a matrix is at least as large as the absolute value of
any of its entries, condition (i) follows from Lemma 3.1 by considering the corner
entryr1N of (z − A)−1.

For condition (ii), by Lemma 3.1, consideration ofr1N again is enough to
ensure that‖(z − A)−1‖1/N is at least as large as 1/dmean(z) a.s. asN → ∞:
The precise statement is lim infN→∞ ‖(z − A)−1‖1/N ≥ 1/dmean(z) almost surely.
To complete the proof we must show that‖(z − A)−1‖1/N cannot be essentially
larger than this, i.e., lim supN→∞ ‖(z − A)−1‖1/N ≤ 1/dmean(z) almost surely.
To do this, we consider the entriesri j of (z − A)−1 in two classes: those with
j + 1 − i ≤ √

N and those withj + 1 − i >
√

N. By (3.8), the entries in the for-
mer class satisfy|ri j | ≤ (1/dmin(z))

√
N and therefore lim supN→∞ maxi, j |ri j |1/N ≤

1. By Lemma 3.2, for anyε > 0, each of the entries in the latter class sat-
isfy |ri j |1/N > 1/dmean(z) + ε with a probability that decreases asN → ∞
faster than the inverse of any polynomial inN. Since there are only polynomially
many entries in the matrix, it follows that the same statement about probabilities
is true of maxi j |ri j |1/N and of‖(z − A)−1‖1/N . Sinceε is arbitrary, it follows that
lim supN→∞ ‖(z − A)−1‖1/N ≤ 1/dmean(z) almost surely.

For condition (iv), we note that‖(z− A)−1‖ ≤ ‖D0‖ + ‖D1‖ + · · · + ‖DN−1‖,
whereDj denotes thej th upper diagonal of(z − A)−1. Since‖Dj ‖ ≤ dmin(z)−1− j

by Lemma 3.1, the result follows on summing a finite geometric series.
This leaves condition (iii) of the resolvent norm estimates, which is the most

interesting one, since the resolvent norms are diverging to∞ while the corner
entriesr1N are converging to zero. What is going on here is that although on
average the entries of the resolvent decrease away from the diagonal, arbitrarily
large pockets must (almost surely) appear in which they increase, a phenomenon
we shall consider from another angle in Section 6. To be precise, forz ∈ �III , since
dmin(z) ≤ 1, there existsx0 ∈ supp(X) with |z − x0| ≤ 1. For anyε > 0, there
is a positive probability that a random samplex ∈ X will satisfy |x − x0| < ε. It
follows that for anyJ > 0, a sequence of matricesA1, A2, . . . from bidiagN{X, 1}
for N = 1, 2, . . . almost surely eventually contains a block with diagonal entries
xj , of length at leastJ, with |xj − x0| < ε. The resolvent(z − A)−1 of such a
matrix contains aJ × J square block along the diagonal determined by theseJ
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entries, and by takingε sufficiently small andJ sufficiently large, we can make
the norm of this square block arbitrarily large. The proof of‖(z − A)−1‖ → ∞
a.s. is finished by noting that the norm of the square block is a lower bound for
‖(z − A)−1‖. (This argument is analogous to one used by Davies [12].) To prove
that‖(z − A)−1‖1/N → 1 a.s., on the other hand, we can reason as in the second
part of (ii), above. As in that argument, the entries withj + 1 − i ≤ √

N haveN th

roots bounded by 1 in the limitN → ∞ because of the absolute bound on|ri j |, and
the entries withj + 1 − i >

√
N almost surely have the same property because of

Lemma 3.2.
Concerning the spectrum, the inclusion3(A) ⊆ supp(X) is trivial. To establish

that3(A) → supp(X) a.s. asN → ∞, we must show in addition that for anyε,
with probability 1, there exists an integerN0 such that for allN ≥ N0, supp(X) is
covered by theε-neighborhood of3(AN). Such a result holds pointwise for each
z ∈ supp(X) individually, and the extension to supp(X) as a set is an easy matter
of compactness.

Concerning the numerical range, the inclusionW(A) ⊆ conv(�III ) follows
from the inequality‖(z − A)−1‖ ≤ 1/(dmin(z) − 1) for all z ∈ �IV , thus including
all z 6∈ conv(�III ). The limit W(A) → conv(�III ) a.s. follows from this together
with the fact that‖(z − A)−1‖ → ∞ a.s. forz ∈ �III . �

Theorem 4.2 explains the results of Figures 2.1 and 2.2. In particular, it explains
the exponential growth of the resolvent norms inside the bubble and the slower
growth outside. We see that the bubble is defined by the conditiondmean(z) = 1;
i.e., it is the set of points whose weighted geometric mean distance to supp(X)

is equal to 1; we shall make more of this definition in Section 7. Feinberg and
Zee [17] obtained the same formula for the location of eigenvalues in their periodic
one-way model, based on a similar result by Goldsheid and Khoruzhenko [24, 25]
for the eigenvalues of the Hatano-Nelson model.

A more quantitative confirmation of Theorem 4.2 is presented in Figure 4.1.
Here, for randomly selected matricesA ∈ bidiagN{[−2, 2], 1} for various dimen-
sionsN, the norm‖(z − A)−1‖ is plotted for the five values ofz in �II , �III , and
�IV marked by stars in Figure 3.1(c). As predicted, we see exponential growth in
the first case, subexponential growth in the second, and no growth in the third.

Figure 4.2 shows numerically computed boundaries of theε-pseudospectra of a
single matrixA ∈ bidiagN{[−2, 2], 1} of dimensionN = 106 for ε = 10−1, 10−2,
and 10−100. Note that the 10−100-pseudospectrum is almost identical to the region
inside the “bubble” plus two “wings” (actually strings of very small connected
components around the eigenvalues) extending outside. Inside this region we have
‖(z − A)−1‖ > 10100, and the norms at the points 0.3i and 0.1i indicated by stars
in Figure 3.1 are approximately 1035,804 and 1099,698, respectively. In an applica-
tion governed by this operator, one would expect that for practical purposes, the
behavior would be as if the spectrum included all of the region inside the bubble.
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(a) Resolvent norms for two choicesz ∈ �II . The straight lines mark the as-
ymptotic results of Theorem 4.2(ii).
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(b) Resolvent norms for two choicesz ∈ �III and one choicez ∈ �IV .
As guaranteed by Theorem 4.2(iv), the latter data are all bounded by
1/(dmin(1.2i ) − 1) = 5.

FIGURE 4.1. Norms‖(z − A)−1‖ for randomly selected matrices from
bidiagN{[−2, 2], 1} for N = 2, 3, . . . , 1000. The five sets of data cor-
respond to the five values ofz indicated by stars in Figure 3.1. Note the
different vertical scales.
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‖(z − A)−1‖ ≈ 1099,698

FIGURE 4.2. Numerically computedε-pseudospectra for a single ma-
trix A ∈ bidiagN{[−2, 2], 1} with N = 106 for ε = 10−1, 10−2, and
10−100. The inner dashed curve is the bubble separating�II and�III ,
and the outer dashed curve is the boundary of�III and�IV . Inside the
bubble, the resolvent norm is very large.

We do not know of a previously published plot of a 10−100-pseudospectrum, or
of pseudospectra of a matrix with dimension in the millions.

5 Random Bidiagonal Infinite Matrices

For an operator acting on a space of infinite dimension, complications arise in
spectral theory that are absent for matrices. It is no longer the case that the spectrum
is just the set of eigenvalues. Instead, for a bounded operatorA acting in Hilbert
space (which is the natural context of our problem, though various generalizations
are possible),3(A) is the set of numbersz ∈ C for which z − A does not have a
bounded inverse(z − A)−1 [23, 33, 45].

Let us be specific about our bidiagonal matricesA of the form (1.2). In the
infinite-dimensional limit, we could consider a singly infinite bidiagonal matrix
acting on vectors(v1, v2, . . .)

T. We like to think of such anA as a bidiagonalsto-
chastic Toeplitz operator, with domain`+

2 = `2(Z
+). (A Toeplitz matrix has con-

stant entries on each diagonal; a “stochastic Toeplitz matrix” has independent sam-
ples from a fixed distribution on each diagonal.) Alternatively, we could consider
a doubly infinite bidiagonal matrix acting on vectors(. . . , v−1, v0, v1, . . .)

T. We
think of this as a bidiagonalstochastic Laurent operator,with domain`2 = `2(Z).

Roughly speaking, for these stochastic problems as for their nonstochastic
Toeplitz and Laurent cousins, the Toeplitz operator corresponds to a limit of Toep-
litz matrices, and the Laurent operator corresponds to a limit of circulant matrices
(i.e., Toeplitz matrices with corner entries introduced to make the structure peri-
odic) asN → ∞. We can explain this for our bidiagonal matrices as follows. If
a singly infinite triangular matrixB has an inverseB−1, then it is easily shown by
induction that the finite sections ofB−1 must be the inverses of the corresponding
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finite sections ofB. Thus a nonsingular upper triangular Toeplitz operator has an
upper triangular inverse, namely, the matrix one gets by computing out from the
diagonal in the obvious fashion.

Here are results for the singly infinite case; the doubly infinite case is addressed
in Section 7.

THEOREM 5.1 (Random bidiagonal infinite matrices)Let A be a singly infinite
matrix (“stochastic Toeplitz operator”) of the form(1.2). Then�I ⊆ 3(A) ⊆
�I ∪ �II ∪ �III , and with probability1,

(5.1) 3(A) = �I ∪ �II ∪ �III .

For z ∈ �IV , we have

(5.2) ‖(z − A)−1‖ ≤ 1

dmin(z) − 1
,

and with probability1, this inequality is an equality. Also with probability1, the
numerical range W(A) is

(5.3) W(A) = conv(�III ) .

PROOF: Suppose a bounded inverse(z − A)−1 exists for somez. As was just
noted, one can show by induction starting at the upper left corner that(z− A)−1 is
upper triangular too and that its entries are given by the same formula (3.1) as for
finite-dimensional matrices.

For the first assertion of the theorem, considerz ∈ �I , i.e., dmax(z) < 1. If
z 6∈ 3(A), then (3.1) applies, giving us|ri j | ≥ 1 for eachi and j with j ≥ i (in
fact, with exponential growth). Thus(z − A)−1 cannot be bounded after all, and
we have a contradiction.

Next, considerz ∈ �II ∪ �III , i.e., dmin(z) ≤ 1. Again, if z 6∈ 3(A), then
(3.1) applies, and by parts (ii) and (iii) of Theorem 4.2, with probability 1 there are
finite sections of(z − A)−1 with arbitrarily large norms. Thus with probability 1
(z − A)−1 is unbounded after all, implying thatz ∈ 3(A). Now this establishes
that any fixedz ∈ �II ∪ �III is in 3(A) with probability 1, but the assertion of
the theorem is stronger: that with probability 1all suchz are in3(A). As in the
proof of the last theorem, the argument can be expanded to establish this by the use
of compactness. Because this case is slightly more complicated than that one, we
spell out the details.

Since supp(X) is compact, so is�II ∪ �III , and it follows that for anyε > 0,
there exists a finite set of valueszj ∈ �II ∪ �III such that the union of theε-balls
around{zj } covers�II ∪�III . Our argument implies that with probability 1, none of
the inverses(zj − A)−1 exist as bounded operators. The nonexistence of(zj − A)−1

implies that for|z− zj | < ε, if (z− A)−1 exists, then‖(z− A)−1‖ > ε−1. Thus we
see that for anyε > 0, ‖(z − A)−1‖ > ε−1 uniformly for all z ∈ �II ∪ �III , with
probability 1. Sinceε is arbitrary, this implies3(A) ⊇ �II ∪�III with probability 1.
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Now considerz ∈ �IV , i.e., dmin(z) > 1. In this case we can use (3.1) to
construct an infinite matrix(z − A)−1. Regardless of what numbersxj ∈ supp(X)

appear on the diagonal ofA, (3.8) implies that the entries of the matrix decrease
exponentially away from the diagonal, and thus it is indeed a bounded inverse of
z − A. The bound (5.2) can be verified by the same geometric series argument
as in the proof of Theorem 4.2; a weak rather than strict inequality now appears
because the series is infinite. Since arbitrarily long stretches of entries arbitrarily
close to somex ∈ supp(X) with |z − x| = dmin(z) must almost surely appear on
the diagonal ofA, the inequality is almost surely an equality (cf. [12]).

Finally, the assertion aboutW(A) follows essentially as in Theorem 4.2. �

6 Localized and Delocalized Resolvents

To physicists interested in random matrices related to the Hatano-Nelson ex-
ample, a crucial phenomenon is that of adelocalization transition. In all previous
articles on the subject that we know of, this phenomenon has been approached via
the eigenvectors of random matrices of periodic structure, i.e., withaN1 6= 0. It is
found that when an eigenvalueλ is real, the corresponding eigenvector is exponen-
tially localized in the sense that for somej0, its entries decay exponentially with
| j − j0|; this is a non-Hermitian generalization of the phenomenon of Anderson lo-
calization [1]. As one moves along the curve of eigenvalues or changes a parameter
so thatλ becomes complex, on the other hand, the exponential decay is lost and
the eigenvectors become global. Questions of localization and delocalization of
eigenvectors have been a central topic in condensed matter physics for many years,
because they are related to quantum mechanical phenomena such as transparency
to light and conductivity of electricity. Hatano, Nelson, and Shnerb have proposed
a number of possible physical implications of the delocalization transition for their
matrices [27, 28, 40].

For nonperiodic matrices withaN1 = 0, the eigenvalues are trivial, and no one
has suggested that the eigenvectors corresponding to eigenvalues inside the bubble
are physically meaningful. (They are “gauge-transformed Anderson modes,” lo-
calized at one end, and their exponential growth with the vector index implies that
the corresponding eigenvalues are exponentially ill-conditioned; we shall say more
about this at the end of the next section.) However, the delocalization phenomenon
can still be seen in the resolvent matrix(z − A)−1. Mathematically speaking, if a
linear system generated by a matrixA is driven at a complex frequencyz,

dφ

dt
= Aφ + eztv

for some vectorv, the solution is

φ(t) = eztu , u = (z − A)−1v .

In particular, if we takev to be the discrete delta functionej , thenu is the j th

column of(z − A)−1. Thus each column of(z − A)−1 represents the response of
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the system to spatially localized input at frequencyz, and it is natural to regard
(z − A)−1 as localized if the entries of these columns decay exponentially with
distance from the diagonal, delocalized if they do not.

Our Lemma 3.1 implies that according to this criterion,(z − A)−1 has the fol-
lowing properties asN → ∞ for z in each of the four regions:

�I : delocalized (surely),

�II : delocalized almost surely,

�III : localized almost surely,

�IV : localized (surely).

Figure 6.1 confirms these predictions for a random matrix withN = 400. For
largerN, of course, the distinction between localized and delocalized cases would
grow steadily more pronounced. Note that aszapproaches the bubble from outside,
though the resolvent remains localized, the “correlation lengths” become larger, a
familiar phenomenon near critical points in condensed matter.

7 Random Bidiagonal Periodic Matrices

We have considered nonperiodic bidiagonal matrices and shown that they ex-
hibit a Hatano-Nelson bubble and an associated localization-delocalization effect,
provided that one looks at pseudospectra and resolvents rather than eigenvalues
and eigenvectors. If one looks at eigenvalues and eigenvectors for these matrices,
one sees little.

As mentioned previously, the usual approach in the literature has been to inves-
tigate eigenvalues and eigenvectors but for matrices of periodic structure, where
the pattern of the superdiagonal entry is continued in the bottom-left corner of the
matrix by settingaN1 = 1. Some authors call a matrix of this structure “peri-
odic bidiagonal.” We might also continue the usage of Section 5 and call it “sto-
chastic circulant.” In this periodic case it is found that eigenvalues appear that lie
along the “bubble” boundary between regions�II and�III . Goldsheid and Kho-
ruzhenko [24, 25] and Feinberg and Zee [18] have made this precise, and the details
of their mathematical arguments are close to ours; also see [8, 31].

An upper bidiagonal matrix and its periodic variant are closely related, differing
only in the(N, 1) position. Since the difference there in our case is 1, one might
think that one problem cannot be regarded as a perturbation of the other that is
small in norm. In fact, however, one can interpret a great deal in the light of small
perturbations. Ifd > 1 is arbitrary, then

(7.1) D




x1 1
. . .

. . .

xN−1 1
1 xN


 D−1 =




x1 d
. . .

. . .

xN−1 d
d−N xN


 ,
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FIGURE 6.1. Localization and delocalization as seen in the resolvents
(z − A)−1 for a fixed choice ofA ∈ bidiagN{[−2, 2], 1}, N = 400,
for the same five values ofz as in Figure 3.1. A dot is printed at each
position of the matrix with|ri j | > 0.5. For z outside the bubble (first
three plots), the resolvent is concentrated on the diagonal, while forz
inside the bubble (last two plots), it is not concentrated. Asz approaches
the bubble, local exceptions of larger and larger scale appear.
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whereD = diag(d, d2, . . . , dN). Mathematicians call this a diagonal similarity
transformation; physicists call it a gauge transformation. For largeN, the corner
entry d−N is exponentially small, so the latter matrix is an exponentially small
perturbation of a bidiagonal matrix (1.2) with the eigenvaluesx1, . . . , xN and a
slightly enlarged diagonal.

Can this exponentially small perturbation change the eigenvalues very much?
The following theorem shows that the answer is resoundingly no for some of the
eigenvalues, and yes for others (those withd−1 < dmean(xj ) < 1). Though not
stated in exactly this form before, the statement in the theorem about convergence
of the eigenvalues to the “bubble” plus the “wings” is essentially contained in the
papers of Brézin, Feinberg, and Zee, Goldsheid and Khoruzhenko, and Brouwer et
al. We define these two sets precisely, for generalX, as follows:

Sbubble≡ {z ∈ C : dmean(z) = 1} , Swings ≡ {z ∈ supp(X) : dmean(z) > 1} .

The setSwings may contain curves and regions with interior, but it cannot contain
isolated points, for if an isolated pointz0 belonged to supp(X), then the measure
µ(z0) would have to be positive, implyingdmean(z0) = 0. In the unbounded region
exterior to supp(X), Sbubblecan consist only of closed curves withdmean(z) > 1 on
one side anddmean(z) < 1 on the other, for it is a level set of the harmonic function
E(log |z − X|), which satisfies the maximum principle, yet is not constant since
it increases to∞ asz → ∞. Within and interior to supp(X), Sbubble can be more
complicated. For example, ifX is the uniform distribution on the unit circle, then
Sbubble is the closed unit disk.

THEOREM 7.1 (Random bidiagonal periodic matrices)Let A be an N× N matrix
(“stochastic bidiagonal circulant matrix”) of the form(1.2) except with aN1 = 1,
and let z∈ C be given. If z∈ �I , then‖(z − A)−1‖ ≤ 1/(1 − dmax(z)), and if z∈
�IV , then‖(z− A)−1‖ ≤ 1/(dmin(z)−1). If z ∈ �II ∪�III , then‖(z− A)−1‖ → ∞
a.s. as N→ ∞, and if in addition z6∈ Sbubble∪ Swings, then‖(z − A)−1‖1/N → 1
a.s. as N→ ∞. Moreover,

(7.2) W(A) → conv(�III )

almost surely as N→ ∞, and, provided that Sbubbleconsists only of curves disjoint
fromsupp(X) except at isolated points,

(7.3) 3(A) → Sbubble∪ Swings

almost surely as N→ ∞.

PROOF: First, considerz ∈ �I , i.e., dmax(z) < 1. Let S denote the circulant
shift matrix withsi j = 1 for j ≡ (i + 1)(modN), 0 otherwise. Then we have

(7.4) z − A = D − S,

whereD is the diagonal matrix with entriesz− xj . Thus we can regardz− A as a
perturbation of norm‖D‖ ≤ dmax(z) of −S. It follows thatz − A has an inverse,
and it satisfies‖(z − A)−1‖ ≤ 1/(1 − dmax(z)).
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Next, supposez ∈ �II ∪ �III . An argument to establish‖(z− A)−1‖ → ∞ a.s.
can be made that is essentially the same as in the proof of the corresponding part of
Theorem 8.1 in the next section; we give details there. Conversely, we must show
that if z 6∈ Sbubble∪ Swings, the growth is not exponential. We return to this at the
end of the proof.

If z ∈ �IV , again we make use of (7.4), but now it is‖D−1‖ rather than‖D‖
that is small. Sincedmin(z) > 1, we now have‖D−1‖ ≤ 1/dmin(z) < 1, hence
‖SD−1‖ < 1 also, giving a convergent series representation

(7.5) (z − A)−1 = (D − S)−1 = D−1 + D−1(SD−1) + D−1(SD−1)2 + · · ·
and the required bound.

The assertions concerningW(A) are corollaries of the facts that‖(z− A)−1‖ →
∞ a.s. asN → ∞ for z ∈ �II ∪ �III and that‖(z− A)−1‖ ≤ 1/(dmin(z) − 1) for z
outside this region, as in the proofs of the last two theorems.

The claim (7.3) regarding the spectrum is essentially as in the papers by Gold-
sheid and Khoruzhenko and Feinberg and Zee. A proof can be based on the char-
acteristic equation ofA, which is easily seen to be

(7.6) p(z) =
N∏

j =1

(xj − z) = 1 .

We sketch the argument without giving details and without repeating in each
clause the qualification “almost surely asN → ∞.” By methods akin to those
of earlier proofs in this paper, it can be seen that ifdmean(z) < 1, i.e., for z ∈
�I ∪ �II , (7.6) cannot hold:p(z) is exponentially smaller in magnitude than 1.
For dmean(z) > 1, we similarly have thatp(z) is exponentially larger than 1 except
that if z ∈ supp(X), then equality may be achieved by takingz exceptionally close
to somexj . (A physicist might say that an eigenvalue is pinned to an impurity.)
Thus any limit points of3(A) as N → ∞ must be confined toSbubble ∪ Swings.
Conversely, we must show that everyz ∈ Sbubble ∪ Swings is such a limit point.
This can be done with the aid of the principle of the argument of complex analysis,
which asserts that ifp(z) maps a closed loop0 onto a curve that windsν times
counterclockwise around the point 1, then the equationp(z) = 1 hasν roots in-
terior to0, counted with multiplicity. Forz ∈ Swings, sincedmean(z) > 1, we can
construct arbitrarily small loops0 nearz that enclose one or more pointsxj but
satisfy | p(ζ )| > 1 for all ζ ∈ 0; by the argument principle, there are as many
eigenvaluesλ inside such a loop as there are pointsxj . Note that this shows not
only that the eigenvalues cluster on supp(X) for dmean(z) > 1, but that the densities
of the eigenvalues match those of the samples from supp(X).

For z 6∈ supp(X) lying on an arc ofSbubble, as noted above, we havedmean(ζ ) >

1 on one side of the arc anddmean(ζ ) < 1 on the other. It follows that the same holds
for | p(ζ )|, implying that a small loop0 can be constructed nearz such thatp(0)

winds counterclockwise around the outside of the unit disk a number of times, cuts
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inside without passing through the point 1, winds around inside, then cuts back out
again. Such a curve has positive winding number about 1, and thus again there are
eigenvalues nearz.

Finally, we return to the proof that forz 6∈ Sbubble∪ Swings, though‖(z − A)−1‖
may diverge to∞ as N → ∞, the growth is almost surely not exponential. For
this, as in the proof of Theorem 4.2, it is convenient to use an explicit formula for
(z − A)−1. From Cramer’s rule we find, in analogy to (3.1),

(7.7) ri j =




∏
k<i or k> j (z − xk)(−1 + ∏

all k(z − xk)
) , i ≤ j ,

∏
k<i andk> j (z − xk)(−1 + ∏

all k(z − xk)
) , i > j .

For z 6∈ Sbubble ∪ Swings, as argued above,
∏

all k(z − xk) is almost surely expo-
nentially smaller (inside the bubble) or larger than 1 (outside). In the former case
the denominators in (7.7) are≈ −1 and the numerators areO(1), sori j is O(1).
In the latter case the denominators are exponentially large and the numerators are
exponentially large too, but as there are fewer factors(z − xk) in the numerators,
the ratio is againO(1). Thus in either caseri j is O(1), and a complete proof that
this gives the required behavior a.s. asN → ∞ can be based on Lemma 3.2, as in
the proof of Theorem 4.2. �

The papers by Feinberg and Zee and Goldsheid and Khoruzhenko carry argu-
ments like these further to obtain estimates not just of where the eigenvalues lie,
but of their density. These are essentially arguments of potential theory. If an
eigenvalueλ of A is thought of as a point charge with potentialN−1 log |z − λ|,
then in the limitN → ∞, Sbubble is an equipotential surface of potential zero, and
the eigenvalues lie along it in an equilibrium configuration subject to the external
field applied by the other eigenvalues, if any, pinned to the valuesxj in Swings.

In this article we have hardly mentioned condition numbers of eigenvalues,
which measure sensitivity of individual eigenvalues to perturbations [13], but they
are implicit in any discussion of pseudospectra, and Davies has investigated eigen-
value condition numbers for his random tridiagonal matrices [12]. Ifxj is a sim-
ple eigenvalue of a bidiagonal matrixA, the condition number ofxj is κ(xj ) =
1/|w∗v|, wherew∗ andv are normalized left and right eigenvectors ofA asso-
ciated withxj , respectively. Ifxj is in Swings, both w∗ and v are localized and
κ(xj ) = O(1), whereas ifdmean(xj ) < 1, κ(xj ) is of orderdmean(xj )

−N . This huge
condition number gives another perspective on how it is possible that introducing
a corner entry can move all the eigenvalues withdmean(xj ) < 1 out to the bubble.
For xj ∈ Swings, the condition number can also be used to give an alternative proof
that introducing the corner entry has negligible effect on this eigenvalue. At first
one might think, sinceaN1 = 1 andκ(xj ) = O(1), that introducing the corner
entry could move the eigenvalue by a distanceO(1), but with the help of (7.1) we
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see that nothing like that can happen. Ifd is chosen slightly less thandmean(xj ),
the bidiagonal part of the right-hand matrix of (7.1) still has localized left and right
eigenvectors andκ(xj ) = O(1), but it is only a distanced−N ≈ dmean(xj )

−N from
the periodic matrix. Thus introducing the corner entry in fact perturbs the eigen-
valuexj at most on the order ofdmean(xj )

−N .

8 Random Bidiagonal Doubly Infinite Matrices

Finally, we turn to the doubly infinite, or Laurent, case. Questions of spectra
have been considered for a class of tridiagonal doubly infinite random operators by
Davies [12], and our arguments are close to his. Some results on such spectra are
also mentioned by Goldsheid and Khoruzhenko [24, 25].

It is well-known that whereas the spectrum of a Toeplitz operator is a certain
curve in the complex plane (the image of the unit circle under the function known
as thesymbolof the operator) together with the points it encloses with nonzero
winding number [6, 21, 60], the spectrum of the corresponding Laurent operator is
just the curve itself [6, 14, 60]. The simplest example is the shift operatorS with
si,i+1 = 1 for eachi butsi j = 0 otherwise, which has spectrum equal to the closed
unit disk if it is singly infinite, but just the unit circle if it is doubly infinite. Part of
the explanation is that in the doubly infinite case, the inverse of an upper triangular
operator need not be upper triangular. Indeed, for this example the inverse is the
lower triangular reverse-shift operator defined by(S−1)i+1,i = 1.

For us, the shift operator is more than just an example, for as in the proof
of Theorem 7.1, our infinite matrixA can be regarded as a diagonal perturbation
of the doubly infinite shift operatorS, which is a normal operator (SS∗ = S∗S).
Therefore, introducing the diagonal entries can only perturb the spectrum—the unit
circle—by at most supj |xj | [33].

THEOREM 8.1 (Random bidiagonal doubly infinite matrices)Let A be a doubly
infinite matrix (“stochastic Laurent operator”) of the form(1.2). Then3(A) ⊆
�II ∪ �III , and with probability1,

3(A) = �II ∪ �III .

For z ∈ �I we have‖(z − A)−1‖ ≤ 1/(1 − dmax(z)), for z ∈ �IV we have‖(z −
A)−1‖ ≤ 1/(dmin(z) − 1), and with probability1, both of these inequalities are
equalities. Also with probability1, W(A) = conv(�III ).

PROOF: First, considerz ∈ �I , i.e., dmax(z) < 1. As in the proof of Theo-
rem 7.1, we make use of equation (7.4), where nowS denotes the doubly infinite
shift operator. As in that proof, sincez − A is a perturbation of−S of norm
≤ dmax(z), it has an inverse satisfying‖(z − A)−1‖ ≤ 1/(1 − dmax(z)). Since
arbitrarily long stretches of entries arbitrarily close to somex ∈ supp(X) with
|z− x| = dmax(z) must almost surely appear on the diagonal ofA, the inequality is
almost surely an equality.
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Next, supposez ∈ �II ∪ �III . Suppose the diagonal entries ofA happen to
consist of a fixed finite set of numbersx1, . . . , xJ ∈ supp(X) repeating period-
ically. Then by standard theory of spectra of block Laurent operators [22, 37],
it is known that the spectrum ofA is {λ ∈ C : |(λ − x1) · · · (λ − xJ)| = 1},
and that for eachλ ∈ 3(A) there is a corresponding eigenvector in`∞(Z), finite
sections of which give arbitrarily good approximate eigenvectors in`2(Z). Now
sincedmin(z) ≤ 1 ≤ dmax(z), we can pick such a setx1, . . . , xJ whose geomet-
ric mean distance toz is as close as we wish to 1, implying that there are values
λ ∈ 3(A) as close as we wish toz. SinceA is an infinite matrix, arbitrarily large
finite sections must almost surely appear that come arbitrarily close to this particu-
lar periodic structure. Therefore the random matrix must also have arbitrarily good
approximate eigenvectors iǹ2(Z).

If z ∈ �IV , we repeat the argument of Theorem 5.1 or Theorem 7.1: Construct
an upper triangular operator(z − A)−1 by (3.1) or (7.5) and verify that it is a
bounded inverse with the necessary properties.

The assertions concerning3(A) andW(A) follow as in the previous theorems.
�

In the proof just given we have noted that forz ∈ �IV , (z − A)−1 is upper
triangular, whereas fordmax(z) < 1, it is lower triangular. This difference in struc-
ture from one region to another is a familiar phenomenon in the theory of Toeplitz
operators, where the crucial quantity is the winding number about a pointz in the
complex plane of the image of the unit circle under the symbol [6, 14]. Here, be-
cause of randomness, the curve broadens to a belt of finite thickness. Actually, our
hypotheses do not requireX to be random. If it is constant, we just have bidiagonal
Toeplitz matrices, and Theorems 5.1 and 8.1 reduce to the familiar result that3(A)

is a closed disk and a circle, respectively.

9 Summary and Discussion

In this article we have not discussed the Hatano-Nelson model explicitly, but
those familiar with this area will recognize that it has been a motivating force
throughout. The Hatano-Nelson model is a tridiagonal analogue of (1.2) in which
both the sub- and superdiagonal entries are nonzero but distinct. Their analogous
notation to that of (1.1) would be

tridiagN

{
t

2
e−g, X,

t

2
e+g

}
,

wheret andg ≥ 0 are real parameters. The papers [8, 17, 18, 24, 25, 27, 28, 31, 40]
all deal with the eigenvalues of such matrices in the periodic caseaN1 = t

2e+g,
a1N = t

2e−g, and there are many more we have not cited.
We developed the observations of this paper originally for Hatano-Nelson ma-

trices. In particular, in the nonperiodic tridiagonal case one has an exponentially
growing resolvent norm inside the bubble and a subexponentially growing norm in
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THEOREM 4.2 THEOREM 5.1 THEOREM 7.1 THEOREM 8.1
“stochastic “stochastic “stochastic “stochastic
bidiagonal bidiagonal bidiagonal bidiagonal
Toeplitz Toeplitz circulant Laurent
matrix” operator” matrix” operator”

nonperiodic nonperiodic periodic periodic

N < ∞ N = ∞ N < ∞ N = ∞
RESOLVENT NORMS

�I
≥ 1

(dmax(z))N ∞ ≤ 1
1−dmax(z)

≤ 1
1−dmax(z)

(equality a.s.)

→ ∞ a.s.
∞ a.s.

→ ∞ a.s. ∞ a.s.�II
N
√· → 1

dmean(z)
a.s. N

√· → 1 a.s.
if z 6∈ supp(X)

→ ∞ a.s.
∞ a.s.

→ ∞ a.s.
∞ a.s.�III

N
√· → 1 a.s. N

√· → 1 a.s.
if z 6∈ supp(X) if z 6∈ Sbubble∪ Swings

�IV < 1
dmin(z)−1

≤ 1
dmin(z)−1 ≤ 1

dmin(z)−1
≤ 1

dmin(z)−1
(equality a.s.) (equality a.s.)

SPECTRUM AND NUMERICAL RANGE

3(A) → supp(X) a.s. �I ∪ �II ∪ �III a.s. → Sbubble∪ Swings a.s. �II ∪ �III a.s.

W(A) → conv(�III ) a.s. conv(�III ) a.s. → conv(�III ) a.s. conv(�III ) a.s.

TABLE 9.1. Summary of results.

a bounded region outside. We have confined our treatment here to the bidiagonal
case because it captures the essence of the matter and yet is essentially simple. Ta-
ble 9.1 summarizes the facts about these matrices established in our four theorems.
It would probably not be a big step to work out analogues of most of these results
for tridiagonal matrices. Much of the work has already been done in the papers
of Brézin, Feinberg, and Zee [7, 17, 18], Goldsheid and Khoruzhenko [24, 25],
Brouwer et al. [8], Janik et al. [31], and Davies [12].

Speaking as mathematicians, we propose that it would be interesting to see
how far the theorems summarized in Table 9.1 can be generalized to more general
“stochastic Toeplitz and circulant/Laurent matrices and operators.”

Speaking as physicists, we note that in a wide range of applications involving
strongly nonnormal matrices and operators, as listed in the introduction, pseudo-
spectra have been found to have greater physical significance than spectra. It
will be interesting to see what happens when physical systems are eventually con-
structed in the laboratory that are governed by matrices of the Hatano-Nelson type.
We expect that for nonperiodic systems of this kind, it may once again be the pseu-
dospectra that match the experiments.
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