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Abstract. The pseudospectra of banded finite dimensional Toeplitz matrices rapidly converge to
the pseudospectra of the corresponding infinite dimensional operator. This exponential convergence
makes a compelling case for analyzing pseudospectra of such Toeplitz matrices—not just eigenvalues.
What if the matrix is dense and its symbol has a jump discontinuity? The pseudospectra of the
finite matrices still converge, but it is shown here that the rate is no longer exponential in the matrix
dimension—only algebraic.

Key words. Toeplitz matrix, piecewise continuous symbol, pseudospectra

AMS subject classifications. 47B35, 15A60

PII. S0895479800376971

Let T be a Toeplitz operator (singly infinite matrix) on �2(N) with symbol
a ∈ L∞(T), where T is the unit circle. Thus T = (aj−k)

∞
j,k=0, where {an}∞n=−∞ is

the sequence of Fourier coefficients for a, a complex-valued function on T. If a is con-
tinuous, then the spectrum spT is the curve a(T) together with all of the points this
curve encloses with nonzero winding number [6]. This result generalizes to piecewise
continuous a: If a#(T) is the curve consisting of the components of a(T) connected
by straight segments at points of discontinuity, then spT is a#(T) together with all
of the points it encloses with nonzero winding number; see [5, section 1.8].

A long-recognized anomaly is that the spectra of Toeplitz matrices TN of finite
dimension N look very different, typically consisting of points distributed along curves
rather than across regions, even asN → ∞ [1, 5, 11, 12, 17]. Some kind of resolution of
this anomaly was obtained with the discovery that, although the spectra of the matrix
and the operator do not agree, the ε-pseudospectra may agree very closely [9, 10].
(The ε-pseudospectrum spε A of a matrix or operator A is the set of points z ∈ C
satisfying ‖(zI−A)−1‖ ≥ ε−1, where we write ‖(zI−A)−1‖ =∞ when z ∈ spA; see,
e.g., [13, 14].) In particular, if TN is banded, then for each point z enclosed by a(T)
with nonzero winding number, ‖(zI −TN )

−1‖ grows exponentially as N → ∞ [3, 10];
the condition number ‖VN‖‖V −1

N ‖ of any matrix VN of eigenvectors of TN is likewise
exponentially large. As illustrated by numerical examples in [10], the result is that
for small ε, the ε-pseudospectra of TN typically look much like the spectrum of T for
values of N on the order of hundreds.

A more general convergence result for spε TN has been proved in [2]. If a ∈ L∞(T)
is piecewise continuous, then, for each ε > 0, spε TN converges to spε T as N → ∞.
The following question arises: If a is discontinuous, is the convergence still fast enough
to be compelling for modest values of N?
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Fig. 1. Eigenvalues and ε-pseudospectra for the Toeplitz matrices TN given by (1) for three
values of N with ε = 10−1, 10−2, and 10−3 (from the outside in). The cross (+) marks the origin.
Except in the first image, the eigenvalues are so numerous that they appear fused into a curve. The
thickness of this curve is actually due to the boundaries of the 10−2- and 10−3-pseudospectra; the
boundary of the 10−3-pseudospectrum also affects the thickness of the middle eigenvalues in the first
plot. We believe these images are correct to plotting accuracy.

We have found that the answer is no. If the symbol is discontinuous, the rate at
which ‖(zI−TN )

−1‖ and ‖VN‖‖V −1
N ‖ increase as N → ∞ may drop from exponential

to algebraic, changing the qualitative nature of the pseudospectra strikingly.
We consider the following simple example. Take a such that a(T) is the right half

of the unit circle, specifically, a(eiθ) = ie−iθ/2 for θ ∈ [0, 2π). Then spT is the closed
right half of the unit disk, and TN is a dense Toeplitz matrix whose entries are given
by the Fourier coefficients of the symbol

(TN )jk :=
1

π(j − k + 1
2 )

, j, k = 1, . . . , N.(1)

Figure 1 shows numerically computed ε-pseudospectra of TN for N = 100, 1000, and
10 000, with ε = 10−1, 10−2, and 10−3. Note how far they are from spT for the
smaller values of ε and how the interior arcs approximate circles passing through
±i. Figure 2 shows resolvent norms as a function of N for points on the real axis.
For z = 1

2 , the bound ‖(zI − TN )
−1‖ grows roughly like 3.8N0.30. At this rate, the

resolvent norm will not exceed 105 until N ≈ 1015. For z = 0, ‖(zI − TN )
−1‖ grows

roughly like 0.4 logN+1.5; it will not exceed 105 until N ≈ 10108572. This behavior is
related to the “Moler phenomenon,” the observation that the norm of the matrix (1)
approaches 1 spectacularly fast as N → ∞, while the smallest singular value decays
to 0 very slowly [5, section 4.5], [16].

Here is a mathematical foundation for these observations. Let a be a piecewise
C2 function with at most one jump discontinuity, say, at eiθ0 ∈ T. For z outside
a(T), let arg(a − z) be any continuous argument of a − z on T \ {eiθ0}. Define αz,
the Cauchy index of a with respect to z, by

αz =
1

2π
(arg(a(ei(θ0+2π−0))− z)− arg(a(ei(θ0+0))− z)),
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Fig. 2. The resolvent norm as a function of N for the class of matrices (1). The growth is
algebraic for z = 1

4
, 1
2
, and 3

4
and logarithmic for z = 0. For z = − 1

4
, ‖(zI − TN )−1‖ is bounded

by 4 (see Theorem 3.19 of [5]).

and put βz = |αz|. If βz < 1
2 , then zI − TN is invertible for all sufficiently large N ,

and it is well known that ‖(zI − TN )
−1‖ = O(1) in this case [7]. If βz ≥ 1, then

‖(zI − TN )
−1‖ may grow exponentially, as trigonometric polynomials (i.e., banded

matrices) with nonzero winding number about z show. The following result tells us
that, for 1

2 ≤ βz < 1, we have just algebraic growth at a known rate.
Theorem. If 1

2 ≤ βz < 1, then, for every δ > 0, there exist positive constants Cz

and Dz,δ such that

CzN
2βz−1 ≤ ‖(zI − TN )

−1‖ ≤ Dz,δN
2βz−1+δ(2)

for all sufficiently large N .
In the example (1), we have βz < 1

2 for all z outside spT and βz =
1
2 for z ∈ (−i, i).

For z in the interior of spT , we have

βz = 1− 1

π
arctan

1

x
,(3)

where x ∈ (0, 1) is the point at which the circular arc through −i, z, i intersects
the real line. In particular, 1

2 < βz < 3
4 , and hence, by our theorem, the resolvent

norm increases at most like O(N1/2) for z in the interior of spT , explaining the slow
convergence seen in Figure 1. Moreover, formula (3) also reveals why the interior arcs
of Figure 1 are close to circles passing through −i and i. Finally, our theorem explains
Figure 2. For z = 1

2 , for example, we have 2βz − 1 = 0.295 . . . , in good agreement
with the growth 3.8N0.30 estimated numerically.

Sketch of the proof of the theorem. The proof of the upper bound in (2) can be
based on the argument used to prove Theorem 6.1(c) of [4]: A theorem by Verbitsky
and Krupnik (see, e.g., Theorem 7.20 of [5]) states that the resolvent norm is uni-
formly bounded on certain weighted �p spaces, and appropriate choice of these spaces,
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together with Hölder’s inequality, gives the �2 estimate O(N2βz−1+δ). To prove the
lower bound in (2), assume that 1

2 ≤ αz < 1. (The case −1 < αz ≤ − 1
2 can be

reduced to this case by passing to adjoints.) We can write a − z = czϕγz , where cz
is a continuous and piecewise C2 function with no zeros on T and with zero winding
number and where ϕγz is a certain canonical piecewise continuous function with a sin-
gle jump (see, e.g., pp. 170–171 and 182 of [5]). Here γz is a complex number whose
real part equals αz. By Cramer’s rule, the (N, 1) entry of (zI − TN )

−1 is (−1)N+1

times the quotient of two Toeplitz determinants,

[
(zI − TN )

−1
]
N,1
= (−1)N+1DN−1(czϕγz−1)

DN (czϕγz
)

,

and, since |Re γz| < 1 and |Re γz−1| < 1, we can invoke Refinement 5.46 of [5] (which
proves an important special case of the Fisher–Hartwig conjecture) to conclude that
the absolute value of [(zI − TN )

−1]N,1 is asymptotically equal to a nonzero constant
times

∣
∣
∣
∣
∣
N−(γz−1)2

N−γ2
z

∣
∣
∣
∣
∣
=

∣
∣N2γz−1

∣
∣ = N2 Re γz−1 = N2βz−1.

As the norm of (zI − TN )
−1 is greater than the modulus of its (N, 1) entry, we arrive

at the lower bound of (2).
For the matrix (1) at z = 0, the estimate (2) asserts that C ≤ ‖T−1

N ‖ ≤ DδN
δ

for arbitrary δ > 0. Using the Cauchy–Toeplitz structure of (1), Tyrtyshnikov [16]
showed that we actually have

C logN ≤ ‖T−1
N ‖ ≤ D logN.

We may summarize our observations as follows. Since the pseudospectra, or
resolvent norms, converge, TN must “behave” as if spTN = spT for sufficiently large
N . However, it is worth bearing in mind that a typical macroscopic physical system
has on the order of 108 or 1010 atoms or molecules in each direction (on the order
of the cube root of Avogadro’s number or somewhat more). Thus, for TN to behave
like T , the dimension N will have to be larger than the numbers that usually pass for
infinity in the physics of gases, liquids, and solids. Said another way, if one found a
physical application governed by a matrix of the form (1), even if the dimension were
very large, it is unlikely to be large enough to make approximation by the operator
limit N =∞ physically appropriate for spectral analysis of the system.

As a further example, Figure 3 presents the Toeplitz matrices associated with
the symbol a(eiθ) = θeiθ. The eigenvalues of these finite Toeplitz matrices have been
studied by Basor and Morrison [1]. Our theorem provides us with the growth rate of
the resolvent norm as N → ∞ in the regions where βz < 1. Computational evidence
suggests that the same rate is valid throughout the interior of the spectrum, although
the values of βz range up to

3
2 .

One could attempt to generalize our theorem and to raise conjectures suggested
by our computations, but we will not pursue this here as our purpose is to point out
the slow convergence phenomenon as briefly as possible.

Note added in proof. We wish to point out another class of problems where
there exists a gap between algebraically and exponentially growing resolvent norms:
certain nonsymmetric matrices related to the nonsymmetric Anderson models devel-
oped by Hatano and Nelson in the field sometimes known as nonhermitian quantum
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Fig. 3. Slow growth for the symbol a(eiθ) = θeiθ. On the left are computed eigenvalues and
ε-pseudospectra for the Toeplitz matrix of dimension N = 1000 for ε = 10−1, 10−2, 10−3, 10−4.
(The eigenvalues appear fused into a curve near the essential range of a.) The shaded region shows
the spectrum of the corresponding infinite dimensional operator. On the right are contour lines of
constant βz for βz = 0.5, 0.55, . . . , 1.45 (clockwise from right).

mechanics [8]. In [15], it is shown that, for such matrices, the resolvent norm may
grow algebraically in one part of the complex plane and exponentially in another.
(An example is shown for a matrix of dimension one million, where the discrepancy
in norms is between a few thousand and 1099698.) In these problems, as for Toeplitz
matrices, it is likely that regions of exponentially large resolvent norm would “act like
spectrum” in a physical application whereas other regions would not.
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