
IMA Journal of Numerical Analysis(2010)30, 898–916
doi:10.1093/imanum/drp008
Advance Access publication on July 28, 2009

Piecewise-smoothchebfuns

RICARDO PACHÓN†, RODRIGO B. PLATTE‡ AND LLOYD N. TREFETHEN§

Oxford Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK

[Received on 12 September 2008; revised on 2 February 2009]

Algorithmsare described that make it possible to manipulate piecewise-smooth functions on real intervals
numerically with close to machine precision. Break points are introduced in some such calculations at
points determined by numerical root finding and in others by recursive subdivision or automatic edge
detection. Functions are represented on each smooth subinterval by Chebyshev series or interpolants.
The algorithms are implemented in object-oriented Matlab in an extension of the chebfun system, which
was previously limited to smooth functions on [−1,1].

Keywords: edge detection; chebfun system; Chebyshev series; barycentric interpolation.

1. Chebyshev calculations on[−1,1]

The mathematics of the approximation of smooth functions on [−1,1] by Chebyshev series and in-
terpolants goes back about a century, and landmarks in the algorithmic side of this subject include
Salzer’s (1972) barycentric interpolation formula and the determination of Chebyshev coefficients via
FFT (Geddes,1978). Recently, a software system in object-oriented Matlab was developed by Zachary
Battles and the third author, thechebfunsystem, that aims to exploit these tools to compute with func-
tions in a manner combining the speed of floating-point numerics with the ‘feel’ of symbolic computing
(Battles & Trefethen, 2004; Battles,2006). A chebfun is a Matlab representation of a function of a
continuous variable following Matlab syntax for vectors, with Matlab’s vector operations overloaded
by appropriate analogues. The vision of the project is that, iff is one chebfun defined on the interval
[−1,1], for example, andg is another, then the Matlab commandh = f. * g should compute a new
chebfunh with the property that, for eachx ∈ [−1,1], h(x) is equal to f (x)g(x) up to a relative error
no greater than about machine precision (relative to the maximum of| f g| on [−1,1], not its value at the
point x) (Trefethen, 2007). To achieve thisf andg are represented by polynomial interpolants through
data at sufficiently many Chebyshev points, with this number determined automatically, or equivalently
by polynomials in the form of finite Chebyshev series. The number of data points can be anything from
1 for a constant function to tens or hundreds of thousands, and function evaluation is rapidly and stably
carried out by barycentric interpolation (Salzer,1972;Berrut & Trefethen, 2004;Higham,2004).

For example, the commands

>> x = chebfun(@(x) x);
>> f = sin(10 * x);
>> g = 1./sqrt(2-x);

†Email: ricp@comlab.ox.ac.uk
‡Email: rodp@comlab.ox.ac.uk
§Correspondingauthor. Email: lnt@comlab.ox.ac.uk

c© Theauthor 2009. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

 at R
adcliffe Science L

ibrary, B
odleian L

ibrary on A
pril 18, 2012

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from

http://imajna.oxfordjournals.org/

PIECEWISE-SMOOTH CHEBFUNS 899

>> [length(x) length(f) length(g)]
ans = 2 36 27

construct chebfunsx, f andg corresponding tox and two other simple functions on [−1,1], and the
‘lengths’ reported indicate that 2, 36 and 27 points, respectively, are needed to represent these functions
to machine precision, that is,f and g amount to polynomials of degrees 35 and 26. Algebraically
speaking, the productf g is of degree 61, but after truncating to machine precision the system finds only
degree 34:

>> h = f. * g;
>> length(h)
ans = 35

The sequence

>> x = rand
x = 0.814723686393179
>> h(x)
ans = 0.879309706420458
>> sin(10 * x)/sqrt(2-x)
ans = 0.879309706420459

confirms (at least for one value ofx) that the accuracy is nevertheless close to the level of machine
precision. Similarly,f/g is not a polynomial at all, mathematically speaking, but in the chebfun system
it is a polynomial of degree 35:

>> length(f./g)
ans = 36

Other calculations with similar precision can also be carried out with these functions. For example, the
following sequence involving overloads of Matlab’ssumandroots commands determines the integral
of f g from −1 to 1 and the roots off +g in [−1,1], yielding results in each case that are correct except
sometimes in the final digit:

>> sum(h)
ans = 0.031767660431063
>> roots(f+g)
ans =

-0.879457197419040
-0.693833354191292
-0.241007073210693
-0.076692881584451

0.405558247388803
0.531272924965241

All this works excellently so long as the functions of interest are smooth. In applications, however,
many functions that arise are not smooth, though they are often piecewise smooth. In this article we pro-
pose numerical algorithms for calculating with piecewise-smooth functions that have been implemented
in an extension of the chebfun system. For example, the command

 at R
adcliffe Science L

ibrary, B
odleian L

ibrary on A
pril 18, 2012

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from

http://imajna.oxfordjournals.org/

900 R. PACHÓN ET AL.

>> h = max(f,g);
>> plot(h)

produces the result shown in Fig.1. In the original chebfun system such a computation was not possible
because max(f, g) cannot be represented to machine precision by a single polynomial unless it is of
degree of the order of 1015.

Figure2 shows another example in which six points of discontinuity of a function defined on the
interval [0, 20] have been located adaptively by the execution of the commandf = chebfun(@(x)
sqrt(abs(besselj(0,x))),[0 20]) .

Capabilities for dealing with piecewise functions defined symbolically have existed for a number of
years in the symbolic computing systems Maple and Mathematica, which, in fact, both have commands
with the name ‘piecewise’ (Wolfram, 2003;Maplesoft,2005–2008). As always, the symbolic approach
brings great power in certain cases but a great cost in others when the quantities of interest cannot
be determined symbolically or when expressions grow combinatorially in length (Trefethen, 2007).
Concerning numerical computation with piecewise functions, we do not know of any other projects
closely related to the present one. A more distant relative is the fascinating work ofCurtis & Powell
(1967) forty years ago, in which the aim was to determine spline fits to given functions automatically to
a specified accuracy (Powell,1970). (Curtis and Powell insisted onC2-continuity but pointed out that

FIG. 1. A piecewise-smooth chebfun constructed by themax operator from break points determined by zero finding.

FIG. 2. An example in which the break points have been located by automatic edge detection.

 at R
adcliffe Science L

ibrary, B
odleian L

ibrary on A
pril 18, 2012

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from

http://imajna.oxfordjournals.org/

PIECEWISE-SMOOTH CHEBFUNS 901

this condition could be relaxed.) It is marvellous to see in this work how fundamental mathematical
ideas have lasted through the generations, while the computational environment has changed beyond
recognition. The numerical example discussed at some length inPowell (1970), for example, is the
function f (x) = 1/(0.01+ (x − 0.3)2), which the chebfun system approximates to 15-digit accuracy
in less than 0.1 s on a desktop computer.

2. Piecewise-smooth chebfuns

‘Classic’ smooth chebfuns still exist—they have been renamedfuns and are now a separate Matlab
class used to represent each of the pieces of a chebfun. A chebfun is now an object with six fields:

funs, nfuns, scl, trans, ends, imps.

The fieldfuns is a vector containingn funs for some positive integern, which is stored asnfuns. The
field scl is a scalar equal to the largest of the absolute values of all the data defining a chebfun. The
field trans is a flag set to 0 for a column chebfun, and 1 for a row chebfun. This makes it possible
to compute an inner product, for example, with the syntaxf’ * g. The fieldends is a vector ofn + 1
floating-point numbers in monotonically increasing order indicating subintervals:

a = ends(1) < ends(2) < ∙ ∙ ∙ < ends(n + 1) = b.

The system scalesfuns(i) to the interval [ends(i), ends(i +1)]. The fieldimps contains the function
values at the break points themselves, which, if the function is discontinuous, may match the fun on
the left, the fun on the right or neither. Thus, in mathematical terms, we may think of a chebfun at
a discontinuity as (to floating-point approximation) lower semicontinuous, upper semicontinuous or
neither. In general,imps may be a matrix rather than just a vector, including data associated with
Dirac delta functions at the break points, which are introduced, for example, if one differentiates a
step function. In this article we do not mention delta functions further, since their proper treatment is a
substantial topic in its own right and still under investigation.

The chebfun constructor can make a chebfun in various ways, and we give a partial list here. The
simplest is based on an explicit list of functions and end points, with the functions specified by any
combination of constants, strings, anonymous functions or other chebfuns. For example, the following
sequence constructs a chebfun with a single piece corresponding to the Bessel functionJ0(x) on the
interval [0, 1000], computes its zeros and reports their number. This executes in a few hundredths of a
second on a laptop, and additional checks show that the chebfun differs from the exact Bessel function
on [0,1000] by no more than 1.5 × 10−14:

>> f = chebfun(@(x) besselj(0,x),[0,1000]);
>> length(f)
ans = 581
>> length(roots(f))
ans = 318

For another example, consider the command

>> f = chebfun(’x. * cos(8 * pi * x)’,1,’4-1.5 * x’,’abs(0.15./(t-4+.1i))’,[0:3 5])

Thisgenerates a chebfun defined on the interval [0, 5] with four explicitly defined pieces on the intervals
[0, 1], [1,2], [2,3] and [3,5], andplot(f) produces the image shown in Fig.3. The default behaviour

 at R
adcliffe Science L

ibrary, B
odleian L

ibrary on A
pril 18, 2012

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from

http://imajna.oxfordjournals.org/

902 R. PACHÓN ET AL.

FIG. 3. A chebfun with four pieces.

is that, at each break point, the chebfun takes the value of the piece on the right. The commandsum(f)
reveals that the integral off from 0 to 5 is 2.149466885089391 andlength(f) shows that the total
number of data points on all four intervals is 195. To find the integral off from 1 to 3 we can construct
the indefinite integral

∫ x
0 f (s) ds with g = cumsum(f) and then evaluateg(3)- g(1) . The result

is reported as 1.250000000000000.
This example introduces points of discontinuity explicitly. More interesting are cases where cheb-

funs are constructed from other chebfuns in such a way that new break points appear implicitly. This
may happen when one of the commands

abs, sign, floor, ceil, round, fix, mod, rem

is applied to a chebfun, or when one of the commands

min, max, conv

is applied to a pair of chebfuns. In the case ofabs(f) or sign(f), for example, the zeros of f on its
interval of definition are first determined by theroots command, which uses the method described in
Battles & Trefethen(2004) in which the chebfun is recursively reduced to problems of length not greater
than about 100 that are solved by finding eigenvalues of suitable colleague (or ‘Chebyshev companion’)
matrices (Specht,1960; Good,1961; Boyd,2002;Battles & Trefethen, 2004;Day & Romero, 2005).
At each such zero a new break point in the chebfun is introduced, in addition to any break points that
may already be there. Similarly, formin(f,g) or max(f,g), where f andg are chebfuns defined on
the same interval, the system first finds the roots off − g and introduces new break points accordingly.
This is how the chebfun of Fig.1 was constructed.

Once a piecewise-smooth chebfun has been constructed, about 100 overloaded Matlab commands
can be applied to it. In each case these commands are executed by performing the appropriate operations
on the component funs. For example, if a function likesin, exp or tanh is applied to a chebfunf
then the system applies the indicated operation to each component fun, adjusts the length adaptively to
achieve the usual precision and concatenates the resulting funs into the desired chebfun output. The com-
mandsum returns an integral computed by Clenshaw–Curtis quadrature on each piece, andcumsum
returns an indefinite integral chebfun constructed from the indefinite integral funs of each piece. The
commandroots returns a vector of roots of each fun as well as roots at break points, for example,
if a real function discontinuously passes from negative to positive. The commandnorm(f) depends

 at R
adcliffe Science L

ibrary, B
odleian L

ibrary on A
pril 18, 2012

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from

http://imajna.oxfordjournals.org/

PIECEWISE-SMOOTH CHEBFUNS 903

only on integration, since it returns a 2-norm, whereasnorm(f,inf) andnorm(f,1) utilize root
finding to find local extrema and zeros off , respectively. The commanddiff performs differentiation
piecewise with delta functions introduced at points of discontinuity, as mentioned earlier. The command
length(f) reports the total number of data points defining the chebfunf , and one can extract its ends
and funs withf.ends andf.funs.

3. Automatic subdivision

In addition to these processes, the chebfun constructor itself may automatically introduce break points
if it is presented with a difficult function. It does this by an algorithm combining two features:

• edge detectionfor functions with discontinuous values or derivatives,

• recursive subdivisionfor functions without clear discontinuities but nonetheless having complicated
behaviour.

The user has an option of enabling or disabling these processes via the commands

splitting on and splitting off .

The former choice is necessary when dealing with functions that are far from smooth. The latter, which
was used in the examples given so far, except that of Fig.3, is useful for exploratory work, for example, if
one wants to examine the properties of Chebyshev interpolants of high orders, and it also has advantages
for applications in differential equations, where the introduction of break points may lead to difficulties.

Before presenting the algorithm we give illustrative examples. First, are three examples of the edge-
detection kind.1 The commandchebfun(@(x)abs(x-0.1)) produces a chebfun consisting of
two funs, each linear, with a break point atx = 0.1 (up to an error of 2−56 ≈ 1.4 × 10−17). Since
the construction process only samples the function at various pointsx (in contrast to the command
abs(chebfun(@(x)x)-0.1) that would take advantage of the root finder), the result of this com-
putation illustrates the edge detector successfully at work. Similarly, the commandchebfun(@(t)
sign(sin(t)), [0 10 * pi]), while again only sampling the function at various points in [0, 10π],
succeeds in producing a chebfun with 10 pieces, each constant. The break points are now atπ, 2π, . . . ,9π
or, more precisely, at their correctly rounded approximations in the floating-point number system. A
third example is the following:

>> nodes = 0:8;
>> vals = sin(nodes);
>> f = chebfun(@(x) spline(nodes,vals,x),[0 8]);
>> f.ends
ans = 0 1.999948 2.999928 3.999992 5.000029 5.999874 8.000000

In this sequence the chebfun constructor is asked to produce a chebfun by sampling the function
spline(nodes,vals,x). Now Matlab’s spline command produces a cubic spline interpolant
through the given nodes and values, so the function being sampled, while appearing smooth to the eye,
is actually justC2, with jumps in the third derivative at the integers. The chebfun constructor has duly
located these discontinuities. It is interesting to note that the located break points match the true ones

1Thesubject of edge detection is a big one, with connections to many mathematical and engineering problems, and we shall
make no attempt to review the literature. One reference we have found useful isGelb & Tadmor(2006). Our situation is unlike
the usual edge-detection problem in engineering as we are aiming for machine precision and are able to sample the function as
necessary to achieve this.

 at R
adcliffe Science L

ibrary, B
odleian L

ibrary on A
pril 18, 2012

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from

http://imajna.oxfordjournals.org/

904 R. PACHÓN ET AL.

only to an accuracy of the order of the cube root of machine precision, a result that is reasonable since
this is all that is needed to capture the function to machine precision. We were puzzled when we first saw
this output—why were there no discontinuities at 1 and 7? A review of the documentation forspline
informed us that, by default, it imposes ‘not-a-knot’ boundary conditions, in which the first and last
interior points in the list of nodes are not actually taken as discontinuities.

Next we give two examples of recursive subdivision in the absence of clear point discontinuities.
First, consider the result ofchebfun(@(x)sin(x),[0 1e4]) . With splitting off , the out-
put is a single global chebfun of length 5165. Withsplitting on , the interval is broken into 128
equal pieces, on each of which the function is represented by between 71 and 89 points, for a total of
9834 data values. Second, consider the function

f (x) =
√

x, x ∈ [0, 1].

Thoughmathematicallyf has ‘just one piece’, being analytic throughout(0,1], it has a singularity at
x = 0 and cannot be represented to machine precision by a polynomial of reasonable order. In this
case the constructor returns a chebfun consisting of seven funs on exponentially graded subintervals, as
revealed by the following sequence:

>> f = chebfun(@(x) sqrt(x),[0 1]);
>> f.ends’
ans =

0
0.000000000100000
0.000000010000000
0.000001000000000
0.000100000000000
0.010000000000000
0.505000000000000
1.000000000000000

>> length(f)
ans = 566

Each subinterval is 100 times smaller than the last, and the lengths of the corresponding funs are between
18 and 126. With 566 data points altogether, one could regard this as an absurdly complicated represen-
tation of

√
x, but, on the other hand, the process is a general one that will be equally effective for much

more complicated functions. For example, if we changesqrt(x) to sqrt(x). * cos(100 * x) then
the length of the chebfun actually shrinks to 546. Even withsqrt(x). * cos(1000 * x) , it increases
only to 1285. And, though the underlying representation is complicated, the commandsum(f) applied
to this chebfun for

√
x gives an answer that differs from the correctly rounded value of 2/3 by just

2−53 ≈ 1.1 × 10−16.
We now describe the algorithm that achieves these effects. For this we introduce the termnaf , which

stands for ‘not-a-fun’. In this algorithm a fun is a subinterval with a successful representation of the
given function by a polynomial of degree less than 128. By anaf , we mean a subinterval on which
this polynomial degree has been found insufficient for the required accuracy. During the construction
process the chebfunF consists of a sequence offuns and naf s, and the process is finished when these
are allfuns.

 at R
adcliffe Science L

ibrary, B
odleian L

ibrary on A
pril 18, 2012

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from

http://imajna.oxfordjournals.org/

PIECEWISE-SMOOTH CHEBFUNS 905

Thealgorithm to construct a chebfunF from a functionf is as follows:

Try to construct F as a singlefun. The result may be afun or a naf .
while F has somenaf s in it

for i = 1 to the number ofnaf s
Let [a, b] be the interval associated with the i thnaf .
Call detectedge(a, b, f) (see below) to find an edge c∈ [a, b], if any.
if an edge c is found at distance> 10−14(b − a) from endpoints a and b

Mark c as a genuine edge.
elseifan edge c is found at distance< 10−14(b − a) from endpoint a or b

Set c equal to the number at distance0.01(b − a) from that endpoint
and mark c as a removable edge.

else(i.e. if no edge is found)
Set c= (a + b)/2 and mark it as a removable edge.

end if
Split thisnaf at c, and try to construct afun on each side.

The result may befun+ fun, naf +fun, fun+ naf , or naf +naf .
end for

end while
for i = 1 to the number of removable edges introduced above

Merge the funs adjacent to edge(i) into a single fun if possible.
end for

It remains to describedetectedge. The purpose of this procedure is to speed up the calculation
by looking quickly for discontinuities inf , f ′, f ′′ or f ′′′ in the interval of interest, using a simple
finite-difference scheme rather than the more general Chebyshev interpolation. Ifdetectedgefinds no
discontinuity then little harm is done, since the algorithm then falls back upon the general procedure
without having wasted too much effort. If it does find a discontinuity then the improvement in function
evaluations per edge may be as great as (very roughly)

from 129 log2(2
−52) ≈ 7000to 15 log7(2

−52) ≈ 300.

Thefirst number corresponds to sampling on 129-point Chebyshev grids at each of 52 levels of binary
recursion down to machine precision, and the second to sampling on 15-point equispaced grids at each
of 19 levels of recursion.

Specificallydetectedgeworks by calculating estimates of| f ′|, | f ′′|, | f ′′′| and | f ′′′′| from finite
differences of sampled values off of orders 1, 2, 3 and 4 on 15-point equally-spaced grids. If any
of these estimates grows as the grid is refined then a singularity appears to be present, and the grid is
repeatedly shortened by a factor of 7, all the way down to machine precision. If it is the estimate of| f ′|
thatblows up then this case is treated specially by a programfindjump that uses bisection to locate the
discontinuity, normally down to the very last bit in floating-point arithmetic. Thedetectedgefunction
operates as follows.

function edge =detectedge(f,a,c) % Find singularity of f in[a, c]
edge =NaN
On a50-point equispaced grid in[a, c], compute estimates of| f ′|, | f ′′|, | f ′′′|, | f ′′′′|.
Setb = the gridpoint associated with the maximum estimate of| f ′′′′|.

 at R
adcliffe Science L

ibrary, B
odleian L

ibrary on A
pril 18, 2012

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from

http://imajna.oxfordjournals.org/

906 R. PACHÓN ET AL.

Setdmax = 4.
while thecurrent interval[a, c] is larger than machine precision

Set a and c to the gridpoints left and right of b, respectively.
Refine7-fold to a15-point grid in[a, c], and find the gridpoints

associated there with the maximum estimates of| f ′|, . . . , | f (dmax)|.
if refinement has increased none of the estimates by a factor of1.5 or more

return (i.e., no edge has been detected)
end if
Set dmax = order of lowest derivative that has increased by such a factor.
Set b = gridpoint associated with maximum value of| f (dmax)|.
if dmax = 1

b = findjump(f,a,c)
return

end if
end while
edge = b

The above descriptions are slightly simplified accounts of what goes on in our actual program. In
particular, our treatment of vertical and horizontal scales is more complicated than is suggested above by
the term ‘machine precision’. In fact, all convergence criteria are relative, making chebfun construction
scale invariant in the usual manner associated with IEEE floating-point arithmetic. Thus, for example,
if f is the chebfun constructed fromf (x) on [0, 1] andf2 is the chebfun constructed froms f(t x) on
[0, t−1] then, so long as underflow and overflow limits are not reached,f2(x) will match sf(t x)
closely, and the two will be identical ifs andt are powers of 2.

Here is one more example of automatic edge detection in action. The following code sequence
constructs chebfuns for ex + cos(7x) + 0.1sign(x − x0), wherex0 takes three random values in [0, 1],
and comparesx0 with the automatically determined break point:

for j = 1:3
x0 = rand;
f = chebfun(@(x) exp(x)+cos(7 * x)+0.1 * sign(x-x0));
fends = f.ends;
disp([x0 fends(2) x0-fends(2)])

end

The results, delivered in 0.1 s on a workstation, are as follows:

0.594896074008614 0.594896074008614 0
0.262211747780845 0.262211747780845 0
0.602843089382083 0.602843089382083 0

The final column shows that the differences are exactly zero, confirming that the edge detector locates
jump discontinuities down to the last bit.

4. Applications

The algorithms and software we have presented may be useful in education, for example, in courses
on calculus, statistics, numerical analysis or approximation theory, and also in practical computing. We

 at R
adcliffe Science L

ibrary, B
odleian L

ibrary on A
pril 18, 2012

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from

http://imajna.oxfordjournals.org/

PIECEWISE-SMOOTH CHEBFUNS 907

shall not attempt to distinguish between educational and practical applications, but just present eight
examples that may be of some interest.

EXAMPLE 4.1 (Riemann approximation to an integral) In calculus we learn to approximate a continuous
function by a Riemann sum. In the chebfun system the Riemann sum can be realized as a function.
For example, here is a sequence that plots a smooth functionf on [0, 1] and a piecewise-constant
approximation fh. The corresponding plot appears in Fig.4. Here and in our other examples most
details associated with labels, line widths and other formatting matters are omitted from the Matlab
listing:

f = chebfun(@(x) cos(exp(2 * x)),[0 1]);
h = 0.1; ends = 0:h:1; midpts = h/2:h:1;
fh = chebfun(num2cell(f(midpts)),ends);
plot(f), hold on, plot(fh)

Once f and fh have been constructed, we can compute with them. The right-hand side of Fig.4 plots
their difference, and the accuracy of the approximation can be explored numerically with commands like
the following:

>> sum(f)
ans = -0.113851287074054
>> sum(fh)
ans = -0.108779592055534
>> norm(f-fh,inf)
ans = 0.471646386553596

One could extend the experiment in a number of ways, for example, to investigate convergence as
h → 0.

EXAMPLE 4.2 (Convolution, B-splines and the central limit theorem) Matlab’sconv command has
been overloaded for chebfuns, performing convolution of continuous or piecewise-continuous functions.
By repeatedly convolving a step function with itself, we can use this command to illustrate the mathe-
matics of B-splines. For our purposes thenth B-splineBn is a piecewise polynomial of degreen with

FIG. 4. On the left a smooth function and its Riemann approximation realized as a chebfun. On the right the chebfun obtained by
taking the difference between the two.

 at R
adcliffe Science L

ibrary, B
odleian L

ibrary on A
pril 18, 2012

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from

http://imajna.oxfordjournals.org/

908 R. PACHÓN ET AL.

support [−n − 1,n + 1], break points at−n + 1,−n + 3, . . . ,n − 1 andn − 1 continuous derivatives
(de Boor,1978). The following command sequence constructs such functions by convolution, using
B.ends to track the break points. The resulting plot is shown in Fig.5.

step = chebfun(0.5); B = step;
for n = 1:4

B = conv(B,step);
subplot(2,2,n)
plot(B), hold on, plot(B.ends,B(B.ends),’.’)

end

As n increases these curves converge to Gaussians. This follows from the central limit theorem,
since thenth B-spline is the probability distribution for the sum ofn + 1 random numbers uniformly
distributed in [−1,1]. The central limit theorem also implies that the limit will be Gaussian if we start
with some other initial curve. Figure6 shows the example in whichstep has been replaced by the
initial function 0.5 + 0.6x − x3, these coefficients having been chosen so that the function again has
integral 1 and first moment 0. The figure also displays the second moment or variance computed from
sum(chebfun(@(x) B(x). * x.ˆ2,[-n-1 n+1])) .

The Gaussian of integral 1 and varianceσ 2 is (2πσ2)−1/2 exp(−(x/σ)2/2). Settingσ 2 = 4/3 at the
end of the computation above, we find the following deviation from a Gaussian:

>> x = chebfun(@(x) x,[-n-1 n+1]);
>> sigma = sqrt(4/3);
>> gaussian = exp(-(x/sigma).ˆ2/2)/(sigma * sqrt(2 * pi));
>> norm(B-gaussian,inf)
ans = 0.018338990457137

FIG. 5. The first four B-splines, constructed by convolution.

 at R
adcliffe Science L

ibrary, B
odleian L

ibrary on A
pril 18, 2012

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from

http://imajna.oxfordjournals.org/

PIECEWISE-SMOOTH CHEBFUNS 909

FIG. 6. The same construction but starting from a different initial function. According to the central limit theorem, the limit is still
Gaussian.

FIG. 7. The Gibbs phenomenon for polynomial interpolation in Chebyshev points.

One can readily modify these commands to investigate the (slow) convergence to Gaussian form asn
increases further.

EXAMPLE 4.3 (The Gibbs phenomenon) The Gibbs phenomenon refers to the fact that Fourier or
Chebyshev interpolants or truncated series oscillate near (and also not so near!) points of discontinuity.
With piecewise-smooth chebfuns, we can conveniently examine this effect not only for the usual step
function, but also for more general functions with discontinuities. Here is an example with the result-
ing plot shown in Fig.7. The second line explicitly constructs an interpolant of degree 39 rather than
attempting to determine the degree adaptively.

 at R
adcliffe Science L

ibrary, B
odleian L

ibrary on A
pril 18, 2012

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from

http://imajna.oxfordjournals.org/

910 R. PACHÓN ET AL.

f = chebfun(’-exp(x)’,’2 * abs(x-0.5)’,-1:1);
fn = chebfun(@(x) f(x),40);
plot(f), hold on, plot(fn,’.-’)

How big is the overshoot? We can measure it by usingmax. The following code computes the
overshoot and compares it to the limiting value asn → ∞ reported inHelmberg & Wagner(1997):

exact = 0.282283455775;
for n = 2.ˆ(1:9)

fn = chebfun(@(x) f(x),n);
overshoot = max(abs(fn)-abs(f));
err = overshoot - exact;
fprintf(’%5d %14.8f %12.6f\n’, n, overshoot, err)

end

2 0.65803014 0.375747
4 0.05097072 -0.227424
8 0.40693660 0.124653

16 0.31523215 0.032949
32 0.28221031 -0.000073
64 0.28468454 0.002401

128 0.28271534 0.000432
256 0.28265007 0.000367
512 0.28242243 0.000139

EXAMPLE 4.4 (Analytic functions) Piecewise-smooth chebfuns offer a convenient means to visualize
analytic functions in the complex plane. (Another approach, which we shall not discuss, would be to use
quasi-matrices, i.e., chebfuns containing multiple columns;Trefethen, 2009.) For example, the following
sequence constructs a chebfunSwith 22 pieces consisting of various horizontal and vertical lines in the
unit square [−1,1] × [−1,1]. It then plotsS and its images exp(S) and tan(S) (Fig. 8). The manner in
which this chebfun is constructed, by successively appending new intervals to an initial interval [−1,1],
leads to it being defined on the interval [−1,43], but for this application we care only about its range,
not its domain. The data plotted in these curves will be accurate to the usual 14 or 15 decimal places.

x = chebfun(@(x) x);
S = chebfun; % make an empty chebfun
for d = -1:.2:1

S = [S; d+1i * x; 1i * d+x]; % add 2 more lines to the collection
end
plot(S), plot(exp(S)), plot(tan(S))

EXAMPLE 4.5 (Complex contour integrals) Complex analysis is full of contour integrals of analytic
functions, as in the Cauchy integral formula. Sometimes the contours are circles, and by using the
chain rule we can reduce a circular contour to an interval by a change of variables. Other times more
complicated contours are useful, but almost always these are piecewise smooth. These can be reduced
to intervals too, and now the integrands are continuous and piecewise analytic.

For example, this code constructs a chebfun on [0, 4] corresponding to a contourΓ of a familiar
‘keyhole’ form (Fig.9):

 at R
adcliffe Science L

ibrary, B
odleian L

ibrary on A
pril 18, 2012

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from

http://imajna.oxfordjournals.org/

PIECEWISE-SMOOTH CHEBFUNS 911

FIG. 8. A grid corresponding to the unit square [−1,1] × [−1,1] in the complex plane represented as a piecewise-linear chebfun
S, and its images exp(S) and tan(S).

FIG. 9. A keyhole contour for a complex integral.

s = chebfun(@(s) s,[0 1]);
c = [-2+.05i -.2+.05i -.2-.05i -2-.05i];
z = [c(1)+s * (c(2)-c(1))

c(2) * c(3).ˆs./c(2).ˆs
c(3)+s * (c(4)-c(3))
c(4) * c(1).ˆs./c(4).ˆs]

plot(z)

Integrals over such contours usually appear in theoretical arguments, not computer programs, but in the
chebfun system we can work with them numerically. The chain rule gives

∫

Γ
f (z)dz =

∫ b

a
f (z(s))z′(s)ds, (4.1)

 at R
adcliffe Science L

ibrary, B
odleian L

ibrary on A
pril 18, 2012

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from

http://imajna.oxfordjournals.org/

912 R. PACHÓN ET AL.

and the integral becomessum in the chebfun system. Note thatz′(s) will be a piecewise-smooth function
with jumps corresponding to corners in the contour, but this poses no difficulties for the integral. For
example, the following code segment integratesf (z) = log(z) tanh(z) around the contour:

>> f = log(z). * tanh(z);
>> I = sum(f. * diff(z))
I = 0.000000000000003 + 5.674755637702227i

The exact solution, which is 2πi times the sum of the residues at the poles off at ±π i/2, is
4πi log(π/2) ≈ 5.674755637702224 i.

EXAMPLE 4.6 (Green functions) Green functions are solutions to linear differential equations with
homogeneous boundary conditions and inhomogeneous forcing data consisting of a Dirac function. For
a one-dimensional problem they typically take the form of a continuous function that is smooth except
for a jump in the derivative at a point. In the chebfun system such a function can be realized numerically.

For example, the operatorLu = u′′ + u on [0, π/2] has the Green function

g(x, y) =

{
− sin(x) cos(y) if x 6 y,

− cos(x) sin(y) if x > y.
(4.2)

In Matlab the following anonymous function takes as input a value ofy and produces as output the
chebfun function ofx corresponding tog(x, y):

green = @(y) chebfun(@(x)-sin(x) * cos(y), @(x)-cos(x) * sin(y), [0 y pi/2]);

The left-hand side of Fig.10 shows some of these functions as plotted by the sequencefor y =
.2:.2:1, plot(green(y)), hold on, end .

Now suppose we want to solveLu = f using these Green functions for some functionf defined on
[0, π/2]. The solution is given by the formula

u(y) =
∫ π/2

0
f (x)g(x, y)dx, (4.3)

which we can realize in the chebfun system. For example, the following sequence produces the plot
shown on the right-hand side of Fig.10:

FIG. 10. On the left, Green functionsg(x, y) for y = 0,0.2, . . . ,1 for the operatorLu = u′′ + u with homogeneous Dirichlet
boundary conditions on [0, π/2]. On the right, the solution to a problemLy = f computed via these Green functions.

 at R
adcliffe Science L

ibrary, B
odleian L

ibrary on A
pril 18, 2012

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from

http://imajna.oxfordjournals.org/

PIECEWISE-SMOOTH CHEBFUNS 913

f = chebfun(@(x) exp(x). * sin(10 * x.ˆ2),[0 pi/2]);
u = chebfun(@(y) sum(f. * green(y)),[0 pi/2]);
plot(u)

Here is a verification that the required equation has been solved:

>> err = diff(u,2) + u - f;
>> norm(err)
ans = 1.228647822329242e-12

Note the extraordinary compactness of this solution: one line to define the Green function, one line to
define the right-hand side and one line to compute the integral of the product of the two.

Although the use of Green functions to solve boundary-value problems is a fundamental mathemati-
cal idea, it is not usually the best approach numerically. Within the chebfun system there are better ways
to solve an equation likeu′′ + u = f , discussed in another work with Bornemann and Driscoll (Driscoll
et al.,2008).

EXAMPLE 4.7 (Global optimization in two dimensions) In the chebfun system the global minimization
of a function of one variable, whether globally smooth or just piecewise smooth, is routine. Now suppose
we have a function of two variables defined on a rectangle, like this one:

f (x, y) = sin(6x) + sin(5y) + sin(8x + 3y), −16 x, y 6 1. (4.4)

The left-hand side of Fig.11 plots contours of the function, and it is clear that there are several local
minima. One way to find the global minimum is to minimize in one direction at a time. The following
code segment defines an anonymous functionfx(x) whose value for eachx is a chebfun iny corre-
sponding to that value ofx. The functiong is then constructed as the chebfun inx of the minima of these
functionsfx(x) (right-hand side of Fig.11). It is continuous but only piecewise differentiable, and the
break points apparent in the right-hand plot of Fig.11have been found by automatic edge detection. By
minimizing this piecewise-smooth univariate functiong, one obtains the global minimum of the original
bivariate function, all with just three lines of Matlab code. The position (xmin, ymin) of the minimum
is also calculated and is marked by a dot in the figure.

>> fx = @(x) chebfun(@(y) sin(6 * x)+sin(5 * y)+sin(8 * x+3 * y));
>> g = chebfun(@(x) min(fx(x)));
>> [minval,xmin] = min(g)

minval = -2.937379284008478
xmin = 0.740775338910084

>> [minval2,ymin] = min(fx(xmin))
minval2 = -2.937379284008477
ymin = 0.338025338316668

The computation is successful, but this is not the best example of an application of piecewise-smooth
chebfuns. The difficulty is that a good deal of time is spent locating break points so thatg can be
represented globally to machine precision. But all that care with break points is not so relevant to the
problem of interest, for the minimum ofg lies away from the break points in the middle of one of its
smooth pieces. For this relatively simple function the computation takes a few seconds, but, for the more
complicated function given as Problem 4 of the SIAM 100-dollar, 100-digit challenge (Bornemannet al.,

 at R
adcliffe Science L

ibrary, B
odleian L

ibrary on A
pril 18, 2012

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from

http://imajna.oxfordjournals.org/

914 R. PACHÓN ET AL.

FIG. 11. On the left, contours of the functionf of (4.4) at levels−2.75,−2.5, . . . ,0. On the right, the piecewise-smooth chebfun
g(x) whose value for eachx is miny f (x, y). The global minimum is marked on the left.

2005), getting the answer takes about 10 min on our workstations. (That answer is correct to 14 digits,
more than the 10 digits needed to win full points in the challenge.)

EXAMPLE 4.8 (Approximation of the Runge function) Our final example can be regarded as a use of
the piecewise-smooth chebfun system to illustrate principles of approximation theory or, alternatively,
as an exploration of some of the mathematical principles relevant to the numerical representation of
complicated functions. Letf be the familiar Runge function

f (x) =
1

1 + 25x2
, x ∈ [−1,1], (4.5)

with poles at±i/5. Since f is analytic on [−1,1], its polynomial interpolants in Chebyshev points will
converge geometrically (at the rateO(ρ−n) with ρ = 1/5 +

√
26/25 ≈ 1.22). On the other hand, what

if we approximatef separately on the two intervals [−1,0] and [0, 1] with the same total number of
points? The following code sequence explores this idea, producing the plot of Fig.12 that shows that
the convergence rate improves by a constant factor. One could pursue the mathematics of such effects to
attempt to derive more nearly optimal splitting strategies for piecewise-smooth chebfuns, but we have
not done this.

runge = @(x) 1./(1+25 * x.ˆ2);
exact = chebfun(runge);
errp = []; errq = []; nn = 2:2:200;
for n = nn

p = chebfun(runge,n);
errp = [errp; norm(p-exact,inf)];
q = chebfun(runge,runge,[-1 0 1],[n/2 n/2]);
errq = [errq; norm(q-exact,inf)];

end

 at R
adcliffe Science L

ibrary, B
odleian L

ibrary on A
pril 18, 2012

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from

http://imajna.oxfordjournals.org/

PIECEWISE-SMOOTH CHEBFUNS 915

FIG. 12. The upper curve shows the convergence ofn-point global Chebyshev interpolants to the Runge function(4.5) and
the lower curve shows the convergence for piecewise approximations involvingn/2 points each on [−1,0] and [0, 1]. Both
approximations converge geometrically, but the splitting into subintervals improves the efficiency by a constant factor.

semilogy(nn,errp,’.-’), hold on, semilogy(nn,errq,’.-’)
hold on, grid on
semilogy(nn,errq,’.-r’,’linewidth’,.9,’markersize’,8)

5. Conclusion

The computations presented in this paper were carried out with chebfun Version 2, released in 2008.
More recently, they have been confirmed in chebfun v2.0399, released in January 2009. The code is
freely available under a BSD-type software license and can be found together with a user’s guide and
other information at www.comlab.ox.ac.uk/chebfun. This is an evolving software system, not yet stable
enough for backward compatibility of successive versions to be fully achievable. We have attempted in
this paper to discuss a number of algorithmic issues of long-term importance for any system like this,
while at the same time illustrating the power of these methods numerically.

One of the referees of the original version of this paper commented that it might be advanta-
geous for users to have the option of constructing chebfuns to an accuracy weaker than machine pre-
cision. In fact, such an option has been introduced in recent releases of chebfun (via the parameter
chebfunpref(’eps’)), though we do not currently recommend its use in most applications.

Acknowledgements

All of the chebfun project builds on the original version of the system developed by LNT with Zachary
Battles during 2002–2005. In addition, we have benefitted from the discussions with Folkmar Borne-
mann, Anne Gelb, Michael Overton, Simon Scheuring and Jared Tanner. Most importantly, Toby Driscoll
is also one of the authors of the chebfun system and the principal author of the related ‘chebop’ system
for chebfun solution of differential equations (Driscoll et al.,2008).

REFERENCES

BATTLES, Z. (2006) Numerical linear algebra for continuous functions.D.Phil. Thesis, Oxford University Com-
puting Laboratory, Oxford.

BATTLES, Z. & TREFETHEN, L. N. (2004) An extension of MATLAB to continuous functions and operators.SIAM
J. Sci. Comput., 25, 1743–1770.

 at R
adcliffe Science L

ibrary, B
odleian L

ibrary on A
pril 18, 2012

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from

http://imajna.oxfordjournals.org/

916 R. PACHÓN ET AL.

BERRUT, J.-P. & TREFETHEN, L. N. (2004) Barycentric Lagrange interpolation.SIAM Rev., 46, 501–517.
BORNEMANN, F., LAURIE, D., WAGON, S. & WALDVOGEL, J. (2005)The SIAM 100-Digit Challenge: A Study

in High-Accuracy Numerical Computing. Philadelphia, PA: SIAM.
BOYD, J. (2002) Computing zeros on a real interval through Chebyshev expansion and polynomial rootfinding.

SIAM J. Numer. Anal., 40, 1666–1682.
CURTIS, A. R. & POWELL, M. J. D. (1967) Using cubic splines to approximate functions of one variable to

prescribed accuracy.AERE Report No. 5602. Harwell, UK: Harwell Laboratory.
DAY, D. & ROMERO, L. (2005) Roots of polynomials expressed in terms of orthogonal polynomials.SIAM J.

Numer. Anal.,43, 1969–1987.
DE BOOR, C. (1978)A Practical Guide to Splines. New York: Springer.
DRISCOLL, T. A., BORNEMANN, F. & TREFETHEN, L. N. (2008) The chebop system for automatic solution of

differential equations.BIT Numer. Math., 48, 701–723.
GEDDES, K. O. (1978) Near-minimax polynomial approximation in an elliptical region.SIAM J. Numer. Anal., 15,

1225–1233.
GELB, A. & TADMOR, E. (2006) Adaptive edge detectors for piecewise smooth data based on theminmodlimiter.

J. Sci. Comput., 28, 279–306.
GOOD, I. J. (1961) The colleague matrix, a Chebyshev analogue of the companion matrix.Q. J. Math.,12, 61–68.
HELMBERG, G. & WAGNER, P. (1997) Manipulating Gibbs’ phenomenon for Fourier interpolation.J. Approx.

Theory,89, 308–320.
HIGHAM, N. J. (2004) The numerical stability of barycentric Lagrange interpolation.IMA J. Numer. Anal., 24,

547–556.
MAPLESOFT, a division of Waterloo Maple Inc. (2005–2008)Maple User Manual. Toronto.
POWELL, M. J. D. (1970) Curve fitting by splines in one variable.Numerical Approximation of Functions and

Data (J. G. Hayes ed.). London: Athlone, pp. 65–83.
SALZER, H. E. (1972) Lagrangian interpolation at the Chebyshev pointsxn,ν = cos(νπ/n), ν = 0(1)n; some

unnoted advantages.Comput. J.,15, 156–159.
SPECHT, W. (1960) Die Lage der Nullstellen eines Polynoms. IV,Math. Nachr., 21, 201–222.
TREFETHEN, L. N. (2007) Computing numerically with functions instead of numbers.Math. Comput. Sci.,1, 9–19.
TREFETHEN, L. N. (2009) Householder triangularization of a quasimatrix.IMA J. Numer. Anal.(to appear).
WOLFRAM, S. (2003)The Mathematica Book, 5th edn. Champaign, IL: Wolfram Media.

 at R
adcliffe Science L

ibrary, B
odleian L

ibrary on A
pril 18, 2012

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from

http://imajna.oxfordjournals.org/

	Chebyshev calculations on [-1,1]
	Piecewise-smooth chebfuns
	Automatic subdivision
	Applications
	Conclusion

