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ROBUST RATIONAL INTERPOLATION AND LEAST-SQUARES *

PEDRO GONNET, RICARDO PACHONT, AND LLOYD N. TREFETHEN'

Abstract. An efficient and robust algorithm and a Matlab cedtlisk  are presented for rational interpolation
or linearized least-squares approximation of a functiomtam its values at points equally spaced on a circle. The
use of the singular value decomposition enables the detestid elimination of spurious poles or Froissart doublets
that commonly complicate such fits without contributing to tiialdy of the approximation. As an application, the
algorithm leads to a method for the stable computation of iceréadial basis function interpolants in the difficult
case of smoothness paramet@lose to zero.
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1. Introduction. Polynomial interpolants and least-squares fits are uséigeatime, ra-
tional ones more rarely. The potential advantage of ratiapproximations is that they may
behave better in the presence of singularities, and, incp#at, may be used to extrapolate
or interpolate a function beyond poles that would block tbhavergence of a polynomial.
The disadvantage is that they are more fragile. Certaincaqapants do not exist, or are
nonunique, or depend discontinuously on the data, issaesth not just of theoretical im-
portance as they tend to arise whenever one approximatesctoiu that is even or odd.
More challenging in practice is the fact that even when awm@and well-posed approximant
exists in theory, especially for higher degree numeratndsdenominators, it may be diffi-
cult to compute numerically in finite precision arithmet#icsymptom of this situation is the
common appearance of poles with residues close to machéeésjom—"spurious poles” or
“Froissart doublets”—which contribute negligibly to theatjty of the approximation while
still causing difficulty in its application. For these reaspdespite many interesting contribu-
tions going back to Cauchy and Jacobi in the first half of thia £@ntury, rational interpola-
tion and least-squares fitting have not become a robust fonlroerical computation that is
widely relied upon.

In this article we propose an algorithm that we hope is a steghé right direction,
together with an implementation in the form of a 58-line Mhtlcoderatdisk . This al-
gorithm is an outgrowth of the “PGV method” described relyeimt [19], but goes further
in removing spurious poles and in producing linearizedtisgsares approximants as well
as interpolants. A wide range of computed examples are miesbéo illustrate some of the
properties of the algorithm.

The application to radial basis functions (Sect®)ris what originally led to the writing
of this paper, especially through discussions of the thirthar with Bengt Fornberg of the
University of Colorado and Grady Wright of Boise State Unsit

For an excellent presentation of rational interpolatiod approximation we recommend
Chapter 5 of §].

2. Notation. Throughout this paper we use the following notation. The lsyin®,,
denotes the set of polynomials of degreen, and R,,,, is the set of rational functions of
type (m, n), that is, functions that can be written as the quotient oflgrmomial in 7, and a
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polynomial in P,,. Our purpose is to use functions R,,, to approximate a functiorf
defined on the unit circlé¢z € C : |z] = 1}. The approximations will be based on the values
taken byf at the(N + 1)st roots of unity on the unit circle, whef€ > m + n. We define
the roots of unity byz; = exp(27ij/(N + 1)), 0 < j < N, wherei = /-1, and the
corresponding values gf by f; = f(z;). (Our algorithms can also be applied to arbitrary
data{ f;}, which may not come from an underlying functignbut the applications we are
concerned with involve such functions.) Finally, we defjné| to be the usual 2-norm of a
vectorv, and||p|| 5 to be the root-mean-square norm of a functicsfefined at thé N + 1) st
roots of unity. That s, ip is the(N + 1)-vector with entriep; = p(z;), then

lplly = (N +1)72[p].

Note that for the particular case of the functighfor somek we havel|z¥|| ; = 1, and since
different powers ot are orthogonal over the roots of unity, this implies

IPlly = llall

whenevep € Py anda is its vector of coefficients, i.en(z) = S0 axz".
We summarize these notations as follows:
P,,: setof polynomials of degree at most
R..»: setof rational functions of typen,n)
f+ function defined on the unit circle
N: number of sample points, minus 1
{#;}: (N +1)stroots of unity
{f;}: values off at these points
|lv||: 2-norm of a vectox
[lplly: root-mean-square norm of a functiprover the roots of unity.

Note that we have not yet prescribed which approximatienkR,,,, to f we are looking
for. That is because several ideas are in play here, andtrasssof the algorithm requires
clarity about the different possibilities. A first possityi] in the caseV = m + n, is to look
for an interpolant satisfying

(2.1) r(z) = fj, 0<j<N,

but such a function does not always exist. For example, tisemer € R, that takes the
same value at two of th&rd roots of unity and a different value at the other. Insteael may
linearize the problem and look for polynomials P,, andq € P, such that

(2.2) p(25) = fia(z;), 0<j<N.

Obviously, at least one solution to this problem existshwit= ¢ = 0; to make the problem
meaningful, some kind of normalization is needed. The ntimatgon we shall employ is the
condition

(2.3) lallx = 1.

Existence of polynomials satisfying.Q) and @.3) is guaranteed, as follows from the linear
algebra discussed in the next section. Generically, sugmpmials will correspond to a
rational functionr = p/q satisfying @.1), but not always. A potentially more robust approach
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is to takeN > m + n and find polynomialp € P,, andq € P, that solve the least-squares
problem

(2.4) lp — fa|l; = minimum

again normalized by 3). As before, existence of polynomialsandq is guaranteed (though
not, as we shall see, uniqueness). This problem, which weheslinearized least-squares
problemfor rational interpolation, is the starting point of the alghm we recommend in
this article, and we describe the mathematical basis of hevselve it in the next section.
In Section4 we show that this basic approach to rational interpolatiod kast-squares,
however, is susceptible to difficulties in machine compatatSectiors is then the heart of
the article, where we present a more practical algorithmsghey feature is the removal of
contributions from minimal singular values that lie belowetative tolerancet¢l = 10~'4
works well in many applications), or that match the next eigsingular value to within such
a tolerance.

In the discussion of Sectidhwe comment on an iterative algorithm for solving the true
nonlinear least-squares problem

(2.5) |r = f]l 5 = minimum.

3. Linearized interpolation and least-squares.Following [19], we now describe a
method for computing a solution to the least-squares prolie3)—(2.4); Figure3.1provides
a helpful reference. Lébh be an(n + 1)-vector with|/b|| = 1

b()
b= |,

bﬂ,

defining coefficients of a polynomial€ P, satisfying .3), i.e.,q(z) = Y j_, bx2". Letz
be the(N + 1)-vector of the( NV + 1)st roots of unity

and let powers such &3, z* be defined componentwise. Then the vector
Jo
h 0| ... [gn
In
is the(N + 1)-vector with entries
pj = fja(z), 0<j<N.

Multiplying on the left by (IV + 1)~! times the(IV + 1) x (N + 1) matrix of conjugate
transposes of vectors gives the( N + 1)-vector

(3.1) a= b,
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Fic. 3.1. Structure of the Toeplitz matrix equatién= Zb of (3.1), summarizing the notation of Sectién
In terms of function values rather than coefficients, thigesponds to equatiof3.4), p(z;) = f;q(z;) for all
0 < j < N. The least-squares problem is to minimjizg| subject to the constrairjtb|| = 1. The minimum value
of ||a|| is o'min, the smallest singular value &f.

as shown in Figur&.1, whereZ is the(N + 1) x (n + 1) matrix

(%) fo ;
A 1 . 1 "
G2 -5 : 5 O,
(z™)* In

We can interpret this product of three matrices as follovestiid the polynomial coefficients
of the productfq, we could convolve the coefficients gfwith those of f. Equation 8.2)
takes a discrete Fourier transform to convert this coniaiub a multiplication by values of
f, then returns to coefficient space by the inverse discrateéraransform.

Explicitly, the entries oZ are given by

N
1 i
(33) Zik = Ni—kl ZZE Jf[.
(=0
Thus, we see thaf is a honsymmetric Toeplitz matrix whose first column is thectéte
Fourier transform of the datff;}. The vectora is the vector of coefficients of the unique
polynomialp € Py taking the values

(3.4) P(z;) = fia(z;), 0<j<N.

Let us now define to be the best approximation foin P,, with respect to the norm
Il -1l 5, that is, the truncation g to degreen, and leta be its vector of coefficients, that is,
the truncation of to lengthm + 1. Thenp — p is the polynomial inPy with coefficients
ma1,-- - an, iMplying

1/2
N /

lp=bln=llp—faly={ D la;

Jj=m+1
In other wordd|p — fq|lx = ||all, where

(3.5) a=27b,
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andZ is the(N —m) x (n + 1) matrix consisting of the las¥ — m rows of Z, as shown in
Figure3.1 The norml|a|| will be as small as possible if and onlykfis a minimal singular
vector ofZ. The corresponding vectearis then

a=/Zb,

whereZ is the(m + 1) x (n + 1) matrix consisting of the first 4 1 rows of Z. Notice that
since the minimal singular value of a matrix may be multighere is no reason to expect that
b will always be unique. We shall return to this matter in Sac.

CaseN = m + n: interpolation. The matrixZ is of dimension N —m) x (n+1). An
important special case is that in whidh= m +n, corresponding to interpolation rather than
least squares. In this cagehas dimensiom x (n+1), so it must have a nonzero null vector
for which the approximation error igp — f¢|| v = 0. In other words, the linearized rational
interpolation problem3.4) is guaranteed to have a nontrivial solution in this case, wea
can compute a null vectds numerically with the singular value decomposition (SVDheT
amount of work isO(n?).

CaseN > m + n: least-squares.For largerN, Z will be square or more usually
rectangular with more rows than columns. We now have a tragdgquares problem, which
again can be solved with the SVD. The amount of wor{%?N).

Idealized Matlab code segmerih Matlab, supposen,n, N are given together with a
column(N + 1)-vectorfj of data valueq f;}. The following code segment produces the
coefficient vectora andb of the polynomialg andgq. (In Section5 we shall improve this

in many ways.) The roots af can be found afterward byoots(b(end:-1:1)) , and
similarly for p.

col = fft(fj)/(N+1); % column of Toeplitz matrix

row = conj(fft(conj(fj)))/(N+1); % row of Toeplitz matrix

Z = toeplitz(col,row(1:n+1)); % the Toeplitz matrix

[U,S,V] = svd(Z(m+2:N+1,:),0); % singular value decomposi tion

b = V(,n+1); % coefficients of q

qj = ifft(b,N+1); % values of q at zj

ah = fft(qj. *fj); % coefficients of p-hat

a = ah(l:m+1); % coefficients of p

pj = ifft(a,N+1); % values of p at zj

Evaluation of the rational function.Once the coefficient vectors and b have been
determined, there are two good methods for evaluating = p(z)/q(z): direct use of the
coefficients, or barycentric interpolation. Suppose aaext of numbers: is given and we
wish to find the vectotr of corresponding valuesz). The following command computes
them in the direct fashion:

rr = polyval(a(end:-1:1),zz)./polyval(b(end:-1:1),zz)

Alternatively, they can be computed without transformiogoefficient space by the follow-
ing process of rational barycentric interpolation dessuliin [19].

rr = zeros(size(zz));
for i = lilength(zz)

dzinv = 1./(zz(i)-zj(?));

ij = find(Tisfinite(dzinv));

it length(ij)>0, rr(i) = pi(ij)/ai(i);

else rr(i) = ((pj. *zj).  *dzinv)/((qgj. *zj).”  *dzinv); end
end
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For our purposes both of these evaluation methods are fdsitahle, and in the remainder
of this paper, the experiments and discussion are baseceairtipler direct method. (The
advantages of barycentric interpolation become impoftargpproximations in sets of points
other than roots of unity.)

4. Spurious poles or Froissart doublets.To illustrate various approximations, this pa-
per presents a number of figures in a uniform format. Eachqaotsponds to the approxi-
mation of a functionf in the (N + 1)st roots of unity by a rational function of tygen, n)
computed in standard IEEE double precision arithmetic. tiecircle is marked, with the
roots of unity shown as black dots. The triplet, n, N) is listed on the upper-right, and a
label on the upper-left reads “Interpolation’Sf = m+n and “Least-squares” iV > m+n.
Our standard choice in the latter caséVis= 4(m + n) + 1. The advantage of haviny odd
is discussed in the next section.

The lower-left of each plot lists the exact tyfye ), to be explained in the next section,
and the elapsed time for computing this approximation onl®2i&sktop computer.

Each plot also lists a numbérr , equal to the maximum off(z) — r(z)| over the
discrete grid of 7860 points in the unit disk whose real andgimary coordinates are odd
multiples of0.01. How to choose a single scalar like this to measure the acgwfa: as an
approximation tof is notin the least bit clear. Different rational function#l e constructed
for different purposes and can be expected to have veryréiffeapproximation properties.
If fis meromorphic in the disk, for example, then one may hoperthell approximate it
closely throughout the disk, at least away from a small regi@und each pole. (A function
is meromorphic if it is analytic apart from poles.) For type n) approximation there is no
difference in principle between the interior and the exteof the disk however, so one could
also measure error outside the disk, or in an annulus cehterehe unit circle. Another
issue is that if there are branch points as opposed to polesssential singularities, one
cannot expect close approximation near them. We have dettiehe quantityerr defined
above as a simple indicator that makes sense for many prepkemd have added comments
in the captions of figures where this measure does not workedb(kRigures6.6 and 6.8).
Interestingly,Err is meaningful even in many cases wherbas poles in the disk, though it
would diverge toxo in such cases if the grid were infinitely fine.

Finally, each plot also shows poles or essential singidardf f, marked by crosses, and
poles ofr, marked by dots. The absolute value of the residue at eaehgbe) evaluated by
a finite difference, is indicated by a color code (a schemgesigd to us by Grady Wright):

[1073,00) blue

[1076,1073) light blue

_ [1072,1075)  green
[residue € 2o i
[10712,1077) light green
[10714,10712) pink
(0,10~ 1) red.

Thus, a blue or green pole has a good chance of being genudngsaful for approximation,
whereas pink and red poles are likely to be artifacts intcediby rounding errors.
In this section we consider just one example function,

F(2) = tan(42),

with poles at odd multiples of /8; many more examples are presented in Sedioifrig-
ure 4.1 shows rational interpolants and least-squares fit§ tf type (8,8), (80,8), and
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tan(4z)

Interpolation (8,8,16) Least-squares (8,8,65)

&
&

838) 838)
0.002 secs. Err = 1.24e-01 0.001 secs. Err = 3.19e-05

Interpolation (80,8,88) Least-squares (80,8,353)

©
@

(80,8} (80,8
0.001 secs. Err = 4.46e-12 0.002 secs. Err=5.23e-12

Interpolation (80,80,160) Least-squares (80,80,641)

)

-

)¢
»
—
»
»
»

C

(80,80) ° (80,80)
0.021 secs. Err = 6.26e-12 0.040 secs. Err=1.86e-11

FiG. 4.1. Approximations taan(4z) by the algorithm of SectioB. For the type(8, 8) approximations of the
top row, both approximations successfully place four palkesre one would expect them, and least-squares improves
the quality of the fit by orders of magnitude. For tyi3®, 8), in the second row, some spurious poles have appeared,
and least-squares no longer makes much difference. Wig{&fp 80), there are dozens of spurious poles clustering
along the unit circle. In both the second and third rows, therous poles would make tl&r measure infinite if
the grid on which|f(z) — r(z)| was measured were infinitely fine, but the grid has &0 points and poles at
arbitrary points with residues below0—12 usually slip through undetected.

(80,80). The type(8,8) fits are trouble-free, with four poles efclosely matching poles
of f. In the type(80, 8) fits, however, a few pink and red dots have appeared at seBming
arbitrary locations. With typ€80, 80), the pink and red dots have become numerous, and
most are located near the unit circle. These poles with vegllsresidues, introduced by
rounding errors, are what we calpurious poler Froissart doublet§11, 12]. The word
doublet alludes to the fact that near each pole one will nbyrfiad an associated zero, the
pole and zero effectively cancelling each other exceptipca

One can explain the appearance of spurious poles as folleevdow degreesn andn,
all the available parameters may be needed to achieve a gpooxémation, and thus poles
tend to be placed in a manner well adapted to the functiorgtegproximated. As» andn
increase, on the other hand, or evemiincreases witln held fixed, we begin to have more
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parameters available than are needed to approxightdenachine precision. In this regime
we are fitting the rounding errors rather than the data, aisdghvhen spurious poles appear.
Note that the pink and red dots in Figutd show neither of the symmetries one would expect
for this function, namely up-down (sing&z) = f(z)) or left-right (sincef (—z) = — f(2)).
These losses of symmetry are further evidence of the depeadd these approximations on
rounding error (symmetries are discussed further in thé sention).

In the literature of rational approximation, spurious pdiave been investigated mainly
in two contexts. One are situations like our own, where fipitecision effects or other per-
turbations introduce poles that in an exact analysis shoatdbe there. Authors on this
topic include Bessis, Fournier, Froissart, Gammel, GitlewKryakin, Pindor, and Truong-
Van; see, for examplelP]. The other is in more theoretical studies on convergendeacé
and Paé-like approximants to functions in the complex plane, especially the case of type
(n,n) approximants withh — oco. In such cases it has been known at least since Perron in the
1920s that poles with small residues may appear at seenarigjlyary places, preventing the
Pace approximantgr,,, } from approaching/ pointwise as: — oco. Instead, the standard
theorem of convergence of diagonal Bapproximants, thBluttall-Pommerenke Theorem,
asserts thafr,,, } converges to a meromorphic functiomcapacity which means away from
exceptional sets that may vary from one valuex@b the next and whose capacities decrease
exponentially td) asn — oo [1, 18, 20, 25]. (The capacity of a set is a standard notion of
potential theory, and is greater than or equattd times the area measure, so convergence
in capacity also implies convergence in measure.f i§ not meromorphic but has branch
points, a theorem of Stahl makes an analogous statemert@ioergence in capacity away
from certain arcs in the complex plar&d].

Simpler than the Nuttall-Pommerenke theorem is an eahisorem of de Montessus
de Ballore, concerning rows of the Rathble rather than diagonals, which asserts that as
m — oo With fixed n, the poles of approximants,,,, must approach those of a meromorphic
function like tan(4z) [1, 17]. (The original theorem applies to Ragpproximation, but
rational interpolation in roots of unity is closely relateahd indeed rational inpterpolation
also goes by the name of multipoint BadpproximationZ2].) This theorem asserts true
pointwise convergence, not just convergence in capacityinithe second row of Figuré.1
we can see that this convergence is evidently not takingepdacwe go from typés, 8) to
type (80, 8); it is undone by the rounding errors.

Figure4.2 plots the singular values ¢f for the same six cases as in Figdrd. Below
aboutl0~ !4, these are clearly artifacts of rounding error, which idtroes effectively random
contributions of order machine epsilon in the coefficierithe numerator and denominator
polynomials. This observation explains why the spuriougp Figure4.1tend to cluster
near the unit circle: it is because the roots of random patyiats tend to cluster near the unit
circle [13, 16, 23, 24]. Figure4.3illustrates this effect by comparing the roots of a random
polynomial of degred 00 with the poles of a typ€100, 100) rational interpolant to random
data in201 roots of unity.

5. A more robust algorithm and code. We now propose a collection of modifications
to the algorithm and code segment of Sect®bto make rational interpolation and least-
squares fitting more robust and useful for applications. meist code is listed with line
numbers in Figur®.1, and our algorithmic proposals can be summarized as follows

1. Checkiif{f;} is real symmetric,

2. If N is odd, checkif{ f;} is even or odd,

3. Remove contributions from negligible singular valueof

4. Remove the degeneracy if the smallest singular valugisfmultiple.
5. Discard negligible trailing coefficients pfandgq.
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0

(8,8,16) o Least-squares (8,8,65)
10
107°
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107"
0 2 4 6 8 0 2 4 8
Interpolation (80,8,88) o Least-squares (80,8,353)
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T
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FIG. 4.2. Nonzero singular values &f for the same six problems as in Figutel. In the top row, rounding

errors have little effect and the singular values are all gere. The second row shows four genuine singular values

but the rest of orded0—15 rather than decreasing toward zero as would happen in exatiraetic. The bottom

row shows about5 singular values that could contribute to the quality of thegpeoximation, plus dozens more at
the level of machine precision.

Roots of a random polynomial

Poles of a random rational interpolant

FIG. 4.3. On the left, the roots of a random polynomjalof degree100 with coefficients from a complex
normal distribution of meaf. The black line marks the unit circle. On the right, the paléa rational interpolant
of type (100, 100) to random data from the same distribution24t1 roots of unity. The close match of the images

illustrates that the appearance of spurious poles near thieaircle in numerical rational approximation is related
to randomness in the computed denominators.
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All of these ideas involve a tolerandel , which by default we set a0~'4. This is an
effective choice for many problems in which the only peraiitns are the rounding errors
of floating-point arithmetic. If other perturbations aregent, for example if one is approx-
imating a functionf that is only known to a certain precision, thest can be increased
accordingly.

1. Check if{ f;} is real symmetricOur first improvement involves the common case in
which f is real symmetric, by which we mean thét:) = f(Z) for eachf,. Such a function
should have a real discrete Fourier transform, a real matriand approximationg andg
with real coefficient vectora andb. However, rounding errors will typically break this sym-
metry, e.g., if one computes the roots of unityzis= exp(2i *pi * (0:N)/(N+1))

The resulting approximations will be complex, typicallytivpoles and zeros located non-
symmetrically with respect to the real axis, as in Figlire

One could insist that a user wishing to approximate a realnsgtric function should
supply a data vectdrf; } which is itself exactly real symmetric. Such a requirembatyever,
is likely to confuse users. Instead our algorithm checksfif} is symmetric up to relative
tolerancetol  (lines 8-10). If it passes this test, then the imaginaryspairentries ofZ are
discarded as well as the imaginary parts of the computearacivhich are introduced by
the FFT (lines 16-17).

2. If N is odd, check if f; } is even or oddA similar issue arises whefiis even or odd.
In these cases one might expeathould be even, whilg should have the same parity As
In fact, however, this expectation is only valid whéhis odd, so thatV + 1 is even. On
the 3-point grid associated with' = 2, for example, one could hardly expect that an even
function f must have an even interpolant.

Accordingly, we take no steps to enforce even or odd symnvelign N is even, but if
N is odd, we follow a procedure similar to the the one beforee @hta vectof f;} is tested
for even or odd symmetry up to a relative toleranake (lines 12-13), and if it passes the
test, the appropriate structure is forced ugfras follows from 8.3): if {f;} is even, then
odd diagonals o/ are zero, and if f;} is odd, then even diagonals are zero (lines 25-26
and 34-35). In both of these cases the row and column dimenei can be cut in half.

For many practical applications the user will want a leagtages fit withNV > m + n,
and here the loss of symmetry would be disturbing even thaugiinciple, { f;} can only
be truly symmetric wheV is odd. We address this issue by including a recommendation i
the comment lines of the code thaiNf > m + n, thenN should be chosen to be odd.

3. Remove contributions from negligible singular valuesZofFor larger values ofn
andn, the matrixZ of (3.5) often has a number of singular values at a level close to imach
precision. We make this notion precise by defining a singedére of Z to benegligibleif it
is smaller thartol timesmax; | f;|, wheretol is a number set by default t®~'4. Letr
be the number of negligible singular valuesbflines 28 and 40). If = 0, then the minimal
singular vector defines a denominator polynomiand then a numerator polynomialffor
which the erroi|p — fql| 5 of (2.4) is equal to the smallest singular value and thus minimal,
and we have solved the linearized least-squares problem.=f1, then the same solution
has a negligible errofp — fql|y, and we have solved the interpolation problemr ¥ 2,
then there are different linearly independent denominator polynomigfer which the error
llp — fqll; can be made negligible. By considering linear combinatioressee that in this
case there must exist a denominator polynomial of degreér — 1) with the same property,
and for robustness it is a good idea to find such a solution $o g®event the appearance of
spurious poles.
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function [r,a,b,mu,nu,poles,residues] = ratdisk(f,m,n, N,tol)
% Input: Function f or vector of data at zj = exp(2i *pi * (0:N)/(N+1))
% for some N>=m+m. If N>>m+n, it is best to choose N odd.
% Maximal numerator, denominator degrees m,n.
% An optional 5th argument specifies relative tolerance tol
% If omitted, tol = 1e-14. Use tol=0 to turn off robustness.
% Output: function handle r of exact type (mu,nu) approximan ttof
% with coeff vectors a and b and optional poles and residues.

% P. Gonnet, R. Pachon, L. N. Trefethen, January 2011

1 if nargin<4, if isfloat(f), N=length(f)-1;

2 else N=m+n; end, end % do interpolation if no N given

3 N1 = N+1; % no. of roots of unity

4 if nargin<5, tol = 1le-14; end % default rel tolerance le-14

5 if isfloat(f), fj = f(); % allow for either function

6 else fj = f(exp(2i *pi * (0:N)'/(N1))); end % handle or data vector

7 ts = tol *norm(fj,inf); % absolute tolerance

8 M = floor(N/2); % no. of pts in upper half-plane

9 f1 = fj(2:M+1); f2 = fj(N+2-M:N1); % fj in upper, lower half- plane
10 realf = norm(f1(M:-1:1)-conj(f2),inf)<ts; % true if fj i s real symmetric
11 oddN = mod(N,2)==1,; % true if N is odd

12 evenf = oddN & norm(f1-f2,inf)<ts; % true if fj is even

13 oddf = oddN & norm(f1+f2,inf)<ts; % true if fj is odd

14 row = conj(fft(conj(fj)))/N1; % 1st row of Toeplitz matri X
15 col = fft(fj)/N1; col(1) = row(l); % 1st column of Toeplitz matrix
16 if realf, row = real(row); % discard negligible imag parts

17 col = real(col); end

18 d = xor(evenf,mod(m,2)==1); % either 0 or 1

19  while true % main stabilization loop

20 Z = toeplitz(col,row(1:n+1)); % Toeplitz matrix

21 if “oddf & “evenf % fj is neither even nor odd

22 [U,S,V] = svd(Z(m+2:N1,:),0); % singular value decompos ition
23 b = V(,n+1); % coeffs of q

24 else % fj is even or odd

25 [U,S,V] = svd(Z(m+2+d:2:N1,1:2:n+1),0); % special trea tment for symmetry
26 b = zeros(n+1,1); b(1:2:end) = V(.,end); % coeffs of q

27 end

28 if N > m+n && n>0, ssv = S(end,end); % smallest singular valu e

29 else ssv = 0; end % or 0 in case of interpolation

30 qj = ifft(b,N1); aqi = qj); % values of g at zj

31 ah = fft(qj. *fj); % coeffs of p-hat

32 a = ah(l:m+1); % coeffs of p

33 if realf a = real(a); end % discard imag. rounding errors

34 if evenf a(2:2:end) = 0; end % enforce even symmetry of coef fs
35 if oddf a(l:2:end) = O; end % enforce odd symmetry of coeffs

36 if tol>0 % tol=0 means no stabilization

37 ns = n; % no. of singular values

38 if oddflevenf, ns = floor(n/2); end

39 s = diag(S(1:ns,1:ns)); % extract singular values

40 nz = sum(s-ssv<=ts); % no. of sing. values to discard

41 if nz == 0, break % if no discards, we are done

42 else n=n-nz; end

43 else break % no iteration if tol=0.

44 end

45 end % end of main loop

46  nna = abs(a)>ts; nnb = abs(b)>tol; % nonnegligible a and b c oeffs
47 kk = 1:min(m+1,n+1); % indices a and b have in common
48 a = a(l:find(nna,1,’last)); % discard trailing zeros of a
49 b = b(1:find(nnb,1,’last)); % discard trailing zeros of b
50 if length(a)==0 a=0; b=1; end % special case of zero functi on
51 mu = length(a)-1; nu = length(b)-1; % exact numer, denom de grees
52 r = @(z) polyval(a(end:-1:1),z)... % function handle for r

53 JIpolyval(b(end:-1:1),z);

54  if nargout>5 % only compute poles if necessary
55 poles = roots(b(end:-1:1)); % poles

56 t = max(tol,1le-7); % perturbation for residue estimate

57 residues = t  *(r(poles+t)-r(poles-t))/2; % estimate of residues

58 end

FIG. 5.1.Matlab coderatdisk  for robust rational interpolation and linearized least syas.
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To achieve this, our strategy in cases with> 2 is to reduce the denominator degree
fromn ton — (7 — 1) and start the approximation process again, now inevitably keast-
squares problem rather than interpolation sintés unchanged (line 42). The shrinking of
the denominator degree can be justified quantitatively kyngahat the contribution of a
singular value of size can only affect the error norn2(4) by . Consequently, discarding
such a contribution can at worse increase the errar, yith the great benefit of eliminating
a probably spurious pole.

As the examples of the next section will show, the effect stdrding these negligible
singular values is an elimination of most of the Froissanlidets that otherwise appear in
plots such as those of Figudel

4. Remove the degeneracy if the smallest singular valugisfmultiple. In approxima-
tion cases where the errfpp — fq|| ;- of (2.4) cannot be brought down to machine precision,
the smallest singular value &f will not be negligible. Nevertheless, it may be multipledan
in this case the choice qfis again nonunique. Such a case correspongstalg potentially
sharing a common factor. For example, if the best tfjpd ) approximation to a functiorf
on the(N + 1)st roots of unity is the constant thenp = ¢ = 1 andp = ¢ = z are both
solutions to the least-squares problem. Some situatikaghis are avoided by the special
steps described above that are takehig even or odd, but other degeneracies are not caught
by those tests, such as a function like(z) + 27 (not even, but its low-order approximations
should be even iV is odd) orlog(2+ z3) (Taylor series containing only powers oflivisible
by 3).

To remove such degeneracies we apply a procedure just kkertd desribed above for
negligible singular values. If the smallest singular vatiieZ has multiplicity - > 2, we
reduce the denominator degree franto n — (7 — 1) and start the approximation process
again (lines 28, 40, and 42).

5. Discard negligible trailing coefficients pfandg. Sometimes the numerator or denom-
inator polynomials generated by the methods we have desthibve one or more highest-
order coefficients that are zero or negligible. For examiplis, will be true if f is even and
(m,n) is not of the form (even, even), or jfis odd and'm, n) is not of the form (odd, even).
In this case it is appropriate to delete the negligible coieffit(s) and return polynomials of
lower order (lines 46—49).

As we have seen, Figuellists our robust Matlab programatdisk . The user pro-
vides a functionf vector of dataff and nonnegative integers andn, and optionally a
tolerancetol to override the default value db—'4. Settingtol = 0 leads to a pure in-
terpolation calculation as in the code segment of Se@jarith no robustness features. The
program computes a rational approximargnd returns a function handieto evaluate this
function together with its coefficient vectossandb and exact numerator and denominator
degrees: < m andr < n. We say that the rational functiorreturned is obxact type p, v).
The poles and residues are also optionally returned fos plath as those of this paper. Com-
puting poles take®(3) operations, so one would normally not request this output.

The style ofratdisk  is very compressed, with fewer comments and tests than one
would expect in fully developed software, but this prograuciudes all our robustness strate-
gies and should work in many applications.

6. Examples. Figures6.1-6.9 show examples spanning a wide range of functions and
approximation orders. This time, each figure presents ftmis nstead of two. The first row
in each case correspondsraddisk ~ with tol = 0, that is, to the idealized algorithm of
Section3, just as in Figuret.1, while the second row correspondsratdisk  in its robust
mode with the default valuel = 10714,
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Interpolation (80,80,160) Least-squares (80,80,641)
(d
L]
; -
x x x '+ x ( x x ! x
11 ] \
(]
L]
(80,80) Ld (80,80)
0.031 secs. Err = 6.26e-12 0.042 secs. Err = 1.86e-11
Interpolation (80,80,160) Least-squares (80,80,641)
Stabilized Stabilized
. ¢ x x
(47,4) (47.4)
0.004 secs. Err=8.13e-13 0.009 secs. Err = 3.53e-13

FiG. 6.1. Type(80,80) approximation oftan(4z) again, now including robustatdisk  approximation
in the second row. The spurious poles are gone. Note thatxhet éype has shrunk 47, 4), which is of the
(odd, even) form appropriate in the approximation of an aatattion.

The discussion of the examples is given in the captions ofithees. We see that in
almost every case, thatdisk  algorithm removes the spurious poles.

7. The limit N — oo and an analogue of the Pad table. This paper concerns
rational approximation of a functioi in NV 4 1 points on a circle, whose radiuscan of
course be varied. If is analytic atz = 0, then in the limitr — 0 and N — oo one would
expect the approximants to approach&agproximants, at least genericaly/[. Recall that
the type(m,n) Pade approximanto f is the unique functiom € R,,,, whose Taylor series
matches that of as far as possibld:

f(2) = r(z) = O(zm>mum),

Generically the degree of matching is exaaflyz"*"*1), but in special cases it can be
higher or lower. For example, if is even or odd, them will have the same symmetry
regardless ofn andn, so the first nonzero term in the expansiorf¢f) — r(z) will be even
or odd, respectively.

Pack approximation is an elegant and fundamental notion of ema#tics, but for com-
putation, approximation on circles of finite radius may be@xnvenient. To calculate the
coefficients of a Pa& approximation, a straightforward method is to set up a séhear
equations involving the Taylor coefficients pfand ¢, and these equations have a Toeplitz
structure analogous to that &f of (3.2). Instead of the value$f;} at roots of unity that
appear in 8.2), however, such a calculation requires the Taylor coefitsi®f f. If one is
starting from a functiory rather than from Taylor coefficients, then these must be coap
in one way or another, and a standard method is to safplequispaced points on a circle
about0 and then use the FFT7[14, 15]. In this paper, since we are approximating on a
circle rather than at a point, the steps of computing coefiitsi by the FFT and generating
the rational approximation are combined into one.
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log(2+z*)/(1-162"%)

Interpolation (100,4,104) Least-squares (100,4,417)
(100,4) (100,4)

0.002 secs. Err = 8.98e-008 0.002 secs. Err = 4.46e-011
Interpolation (100,4,104) Least-squares (100,4,417)
Stabilized Stabilized

(100,4) (100,4)

0.002 secs. Err = 8.98e-008 0.002 secs. Err = 4.46e-011

FiG. 6.2. Type(100, 4) approximation of the even functidog(2 + z*)/(1 — 16z%). Here, sincen has been
specified as low a4, the robustness features make no significant differencen€kt figure, Figuré.3, shows what
happens if: is increased.

log(2+2*)/(1-162"%)

®nterpolation (100,100,200® Qeast-squares (100,100,8019®

’ &
(10§,100) ° (108,100) °
‘).040 secs. Err = 9.74e-013¢ @.076 secs. Err=1.02e-011g
Interpolation (100,100,200) Least-squares (100,100,801)
Stabilized Stabilized

o

L] L}

[ (4

(100,12) (100,12)
0.009 secs. Err = 7.83e-014 0.027 secs. Err = 6.77e-014

FiG. 6.3. For type (100, 100) approximation oflog(2 + 24)/(1 — 16z%), there are many spurious poles in
addition to the useful poles tracking the fourfold symneeliianch cuts. Note that as in Figurdsl and 6.1, the
spurious poles are not symmetric, even though the funcsievén. In the lower plots the symmetries are enforced
and the type is reduced, with bothand» being divisible byl because of the fourfold symmetry.
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log(1.2+2)
Interpolation (30,30,60) Least-squares (30,30,241)
o
(J
® 08D » o0
°
D) o

(30,30) ° ° (30,30) °
0.003 secs. Err = 3.62e-013 0.004 secs. Err =3.70e-013
Interpolation (30,30,60) Least-squares (30,30,241)
Stabilized Stabilized

- Q ) Q
(29,5) (29,5)
0.002 secs. Err=5.91e-011 0.003 secs. Err =5.14e-011

FiG. 6.4. Type(30,30) approximation of a function with a single branch dutoo, —1.2]. As in the last
figure, we see “green and blue poles” with significant resglliaing up along the branch cut and performing a
useful approximation function.

sqrt(0.7+0.8i-z%)

Interpolation (20,60,80) b4 Least-squares (20,60,321) °
< o L
L]
o ® o
° ) ° L]
® (20,60 ® (20,60
.0,014 secs. Err = 3.54e-007 .0.016 secs. Err = 3.00e-009
Interpolation (20,60,80) Least-squares (20,60,321)
Stabilized Stabilized
L L
o ° L]
L]
. » °
(20,26) (20,32)
0.022 secs. Err =7.97e-007 0.034 secs. Err = 5.77e-009

FIG. 6.5. Type(20, 60) approximation of/0.7 + 0.8; — z2, a complex even function with two branch cuts.
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exp(1/z)

Interpolation

(40,40,80)

ETNA
Kent State University
http://etna.math.kent.edu

161

Least-squares

D

(40,40,321)

(40,40) . (40,40)
0.005 secs. Err = 5.18e+021 0.007 secs. Err = 5.18e+021
Interpolation (40,40,80) Least-squares (40,40,321)
Stabilized Stabilized

@.7) 7.7)

0.002 secs. Err =5.18e+021 0.004 secs. Err = 5.18e+021

FiG. 6.6. Type(40,40) approximation ofexp(1/z), with an essential singularity at the origin. Tlt&r
measures come out nearly infinite.| fi(z) — r(z)| is measured just at the grid points in the disk with > 0.5,

however, they shrink tb.04e—11, 4.26e—11, 3.94e—11, and3.82e¢—11.

exp(3iz*)(z°-14)sqrt(1.7-z*)/(772%+1)

Interpolation

(2345,67,2412)

Interpolation

(2345,67,2412)

Least-squares

IO
[ ° i
[ 4
L] L]
k ) - )
LY / g
. * 4
h -} o °
(2345,67) (2345,67)
0.060 secs. Err = 4.17e-010 0.355 secs. Err = 6.48e-009

x,
o
a
L)

(2345,67,9649)

Least-squares

Stabilized Stabilized
(164,2) (164,2)
0.021 secs. Err = 1.42e-011 0.342 secs. Err = 1.08e-011

(2345,67,9649)

FIG. 6.7. Approximation of typg2345, 67) to a complex function with two poles and four branch cuts. The
polynomial degree is so high that the robust algorithm doeisuse the denominator at all except to capture the

poles.
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sqrt(4—1/22)

Interpolation (30,30,60) Least-squares (30,30,241)
L]
L]
(30,30) (30,30)
0.003 secs. Err = 5.43e+001 0.004 secs. Err = 1.26e+002
Interpolation (30,30,60) Least-squares (30,30,241)
Stabilized Stabilized
(12,12) (12,12)
0.002 secs. Err = 5.45e+001 0.003 secs. Err = 5.45e+001

FiG. 6.8. Type(30, 30) approximation ofy’4 — z—2, which has a branch cyt-1/2, 1/2]. Poles are placed
along the branch cut. In the upper row the poles are far froomyetric, but the lower row shows the expected
symmetries enforced atdisk . If |f(z) — r(z)| is measured just at grid points witlmz| > 0.25, the Err
values shrink td.27e—5, 2.51e—5, 1.36e—5, and1.38e—5.

log(2+2*)

Interpolation (6,6,12) Least-squares (6,6,49)

L] L] L] °
(6,6) (6,6)
0.001 secs. Err = 5.42e-001 0.002 secs. Err = 1.76e-002
Interpolation (6,6,12) Least-squares (6,6,49)
Stabilized Stabilized

L] L] L] L]

L] ()
(6,6) (6,6)
0.002 secs. Err = 5.42e-001 0.001 secs. Err = 1.76e-002

FIG. 6.9.Type(6, 6) approximation olog(2 + z*). Notice that althouglf has four-fold symmetry, the exact
type(u, v) is not divisible byt, even in the least-squares computation of the bottom-righis is becaus&’ = 49
is fairly small. For larger N one gets the expected symmetry, as shown in the final paniglwéF.1
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exp(2) sin(10z)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(2% =3)/(z" —4) log(2 + 2%)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

FiG. 7.1.Tables of linearized least-squares approximants to fooctions, withm on the horizontal axis and
n on the vertical axis. Each color corresponds to the exace yp ) of aratdisk  approximation computed
withtol = 10~'* and N = 1023, so that colors reveal blocks of identical entries or at keastries of identical
exact types. Foexp(z) all the blocks are distinct until the function is resolvednti@chine precision, after which
the denominator degrees are systematically reduced assfapasible. For the odd functieiin(10z), 2 x 2 square
blocks appear in the table; because of the factor this function is never resolved with, n < 20 to machine
precision, so no further degeneracies appear in the tabt. (B3 — 3)/(2* — 4) we get an infinite square block
since the function is rational and thus resolved exactlyfior 3 andn > 4. Finally, for log(2 + 2%) we getd x 4
blocks untilm andn get large enough for the approximations to have accuracgeto machine precision; these
anomalies go away ifol s increased td0—12.

A particularly natural finite-radius analogue of Ragpproximation emerges if we con-
sider the limitV — oo, in which the linearized least-squares problén3f-(2.4) is posed on
the unit circle rather than a discrete set of points:,Jf, is the type(m, n) approximation to a
fixed functionf determined in this way, then we may imagine a table of appmakions tof,
analogous to the usual Rathble, withm displayed horizontally and vertically. This notion
would apply both as a mathematical abstraction, and alsanmenical form as computed in
floating-point arithmetic with a tolerandel > 0.
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Figure 7.1 gives a graphical illustration of these Ralike tables for approximation on
the unit circle ofexp(z), sin(z), (23 — 3)/(z* — 4), andlog(2 + z*). Each square is given
a random color associated not with its allowed type n) but with its exact typdu, v) as
obtained in aatdisk ~ computation withV = 1023. The computation of the whole table
takes less than a second on a desktop computeexipdr) we see distinct approximations in
each square for smallet andn, then numerical degeneracy as machine precision is reached
and further increase ofi andn serves no purpose. Fsin(z) we see an approximagex 2
square block structure caused by the fact that the funcdiodd [L, 26]. The third example is
rational, and this is reflected in the infinite block far> 3, n > 4. Finally, the last function
is fourfold symmetric, and we see ség 4 blocks down to the level where machine precision
begins to be felt.

8. Evaluating radial basis function interpolants. Radial basis functions (RBFs) are a
flexible tool for representing scattered data in multiplaeinsions by smooth interpolants [
6, 28]. When applied to the solution of partial differential eqaas, they offer the prospect
of combining the high accuracy of spectral methods with giregedom with respect to the
geometry. Following ideas of Fornberg and his coauthorsshal show by an example
that robust rational interpolation may play a role in sucledations. The RBFs used in the
example are Gaussians.

Suppose we have alf -vectorg of data valueqg; } at distinct pointau; in a region of
theu-plane. We wish to find aRBF interpolantof the form

M

sEw)y =" A§s)675|\u7uj”27

j=1

wheree > 0 is a fixed number called thehape parametefusually writtens? in the RBF
literature) and\*) is a vector of coefficients. The interpolation conditiorisetzhe form of
anM x M linear system of equations for*,

(81) A(E)}\(E) =g, GEJE) — e—s||u7',—uj|\2-

It was proved by Bochner in 1933 that®) is always nonsingular, so a unique solution to the
interpolation problem exist[ 4, 28].

The dependence anis a key point in RBF fits. Whea is large, the basis functions
exp(—¢|lu — u,||?) are narrowly localized and the matri®) is well conditioned. Much
greater interpolating accuracy, however, is potentialiyamed for smaller values af, for
which the RBFs are less localized. The difficulty is that iis tiegime the condition number
of A®) reaches huge values, easily exceeding the inverse of neaepgilon in floating point
arithmetic. The challenge is to evaluaté) (u), which is a well-behaved function of, de-
spite the ill-conditioning of the matrix. With their “Conto-Pacd algorithm,” Fornberg and
his coauthors have proposed that one method for this is trdegas a complex parameter.
For values ot on the unit circle, for example, the matri¥=) may be reasonably well con-
ditioned, whereas perhaps itds= 0.1 that one cares about, corresponding to an impossibly
ill-conditioned matrix. For each fixed point, Cramer’s rule shows that)(u) is a mero-
morphic function ofs, and the idea is to evaluaté®) (u) for values ofz on the unit circle,
then use a rational interpolant or least-squares fit to patate in tos = 0.1. This idea was
first proposed in10].

We give just one example. L¢i1;} be the set of points scattered in the unit disk

luj| = Vj/Me?, 1<j<M



ETNA
Kent State University
http://etna.math.kent.edu

ROBUST RATIONAL INTERPOLATION AND LEAST-SQUARES 165

10° ;
—e— RBF-Direct
O ratdisk

10 : !

value at 0

- (9)

10k 000000 E
0000

: 0000

00

o

10” I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

shape parameter €

Fic. 8.1. Evaluation of an RBF interpolant througB0 data points by direct linear algebra (blue) and
ratdisk  (red circles). Rational least-squares approximation gimovents the ill-conditioning of the matrices in
the linear algebra formulation.

with M = 80. Letg(u) be the function

cos(u™) tanh(u®)
[la— (1, 1)]

g(u) =

whereu® andu(® denote the two components af At u = 0, g takes the valu®, and
we wish to evaluate the RBF interpolant at the same peift(0), for variouse. For smalll
e, the exact value o) is very close tog(0) = 0. Figure8.1 shows values o) by
the “RBF-Direct” method of solving the ill-conditioned sge 8.1) and byratdisk  with
(m,n, N) = (60,20, 127).

As Fornberg and coauthors have pointed out, the range of R&tgms for which ra-
tional interpolation or least-squares is effective maydtaer limited. When the number of
data points is much higher than in the example of Figufeone is faced with meromorphic
functions ofe with so many poles that these techniques may break down.ugarmoblems
an alternative known as the RBF-QR method is sometimesta#gs, 9].

9. Discussion. We have presented a robust numerical method and the Matldé co
ratdisk  for rational approximation on the unit circle, with exanmgplend an application
to the evaluation of radial basis function interpolants. hgéeve the method can be useful
for many practical problems and mathematical exploratidves conclude with some remarks
about various issues.

Increasingtol . In all our experiments, the relative tolerance paramtetier has been
set to0 (for pure interpolation/least-squares)lor-'* (for robust computation with rounding
errors). In applications, users may want to adjust thismpatar. Even when the only per-
turbations are rounding errors, there might be advantageasteasingol in applications
where robustness is more important then very high accutbather perturbations in the data
are present, then a correspondingly larger valumlof will almost certainly be appropriate.
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lll-conditioning. However robust our algorithm, rational approximation remaan ill-
conditioned problem. For example, suppose one usésman) approximant to attempt to
locate some poles of a meromorphic function numerically. vAgous practitioners have
noted over the years, tyge0, 10) approximations will often yield more accurate poles than
type (40, 40), and the reason is simple—as more coefficients become abedtitedchieve a fit,
it becomes less necessary for the approximation to locatpdles exactly right to achieve
optimality. We have seen this effect at several points is ff/aper, such as the imperfect
4 x 4 block structure in the final plot of Figuré1l For another example, it is interesting to
approximate a function likg(z) = (22 —2) /(22 + 3) by rational functions withn, n — oc.
For smallm andn, the denominatog may come out just as expected; for large enough
andn our robustness procedures will reduct a constant; but for in-between valuesmof
andn, g will typically be a cubic with coefficient far from the “corc& ones. Nevertheless
the rational function will be an excellent approximationfto

Nonlinear least-squaresTrue rational approximations defined ¥.%), as opposed to
their linearized analogues defined B:4), are well known to pose difficulties in some cir-
cumstances. Nevertheless they are of interest, and we havessfully experimented with
the computation of nonlinear approximations by a sequehderatively reweighted linear
ones using a variant satdisk  modified to incorporate a weight vector. Such an iteration
is the basis of the differential correction algorithm fotioaal best approximatiorb]. This
work will be reported elsewhere.

Beyond roots of unity.Roots of unity are beautifully convenient: the basis of mono
mials z* is numerically stable, formulas written in this basis havéamiliar appearance,
and function values are linked to coefficients by the FFT. Fational interpolants and
least-squares approximants on an intefuab], however, one would need to use a differ-
ent set of interpolation points, and a good choice would ladesicand translated Chebyshev
pointsz; = a + (b — a)cos(jm/N), 0 < j < N. The monomials would no longer be
a good basis and a good alternative would be scaled anddtadsChebyshev polynomials
Ti(=14 2(z — a)/(b — a)) [21]. These tools of Chebyshev polynomials and Chebyshev
points have the same mathematical advantagds,éhas roots of unity and monomials on
the unit circle, though they are conceptually more compdidaince most scientists and engi-
neers are less familiar with them. The methods we have destalso generalize to arbitrary
point sets, though here one loses the FFT. Also, unless algasid is known, it becomes
crucial to use barycentric interpolation to evaluatas described at the end of Sectiri-or
details seel9].

Availability of code.The Matlab programatdisk is available from the third author at
http://people.maths.ox.ac.uk/trefethen/other.html

A theoretical challengeWe would like to close by proposing a theoretical opportunit
As was mentioned in Sectioh the Nuttall-Pommerenke and Stahl theorems reflect the fact
that asn — oo, type (n,n) Pade approximations to certain functions do not converge ev-
erywhere where one might expect, because Froissart deuhbst appear at wandering loca-
tions [18, 20, 25]. Instead, these theorems only guarantee convergenceatita However,
we have proposed methods for eliminating Froissart dosiitebugh the use of the singular
value decomposition. Our method has involved a fixed totrauch as0~'4, since our fo-
cus is on rounding errors, but from a theoretical point ofwi@ exact arithmetic, one might
consider a similar algorithm with tolerance decreasingeto at a prescribed rate as— co.
Some form of this idea might lead to a precise notion oblaust Pa@& approximatiorthat
might be guaranteed to converge pointwise, not just in dgpactheorem establishing such
a fact would be a beautiful link between rational approxioratheory and practice.
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