STABILITY OF BARYCENTRIC INTERPOLATION FORMULAS
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Abstract. The barycentric interpolation formula defines a stable algorithm for evaluation at
points in [—1,1] of polynomial interpolants through data on Chebyshev grids. Here it is shown
that for evaluation at points in the complex plane outside [—1, 1], the algorithm becomes unstable
and should be replaced by the alternative modified Lagrange or “first barycentric” formula dating
to Jacobi in 1825. This difference in stability confirms the theory published by N. J. Higham in
2004 (IMA J. Numer. Anal., v. 24) and has practical consequences for computation with rational
functions.
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1. The effect. In experiments involving numerical analytic continuation in the
complex plane, we encountered an instability that surprised us [18]. On investigation
it proved to have an elegant explanation, and the effect is worth knowing about for
those who compute with polynomials or rational functions. It has led to a significant
correction in Chebfun [17].
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Fig. 1.1. Numerically computed values Rep(x) in the complex x-plane, where p is the
polynomial interpolant in 42 Chebyshev points in [—1, 1] to f(x) = tanh(wxz/2). Since the aim
1s to show both sign and magnitude of Rep(x), the precise quantity plotted is sign(Rep(zx)) -
log(1 + |Rep(z)|). On the left, the computation uses the formula (2.1) and the picture is
correct, with oscillatory behavior outside a certain ellipse enclosing [—1,1]. On the right,
the computation is based on the more usual formula (2.6) and the picture is entirely wrong
outside approximately the same ellipse, showing seemingly random values that fail to grow in
magnitude as |x| — oco. The errors are significant inside the ellipse, too, though this is not
apparent in the plot.

Figure 1.1 illustrates the effect. The function f(xz) = tanh(mwa/2) has been ap-
proximated to 16 digit accuracy on [—1,1] by interpolation by a polynomial p(z) of
degree n in n+1 Chebyshev points 2; = cos(nj/n), 0 < j < n; the value that achieves
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the prescribed accuracy is n = 41. The figure shows contour plots of the numerically
computed function Rep(z) in the complex z-plane. The result labeled “first barycen-
tric formula” is correct, but the result labeled “second barycentric formula” is entirely
wrong outside an ellipse enclosing [—1, 1], and also quite inaccurate for values of z
inside the ellipse. The ellipse in question is a Bernstein ellipse, that is, with foci £1,
the largest such ellipse inside of which f is analytic.

2. Two variants of the barycentric formula. By the first barycentric for-
mula, we mean the modified Lagrange interpolation formula
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where ¢(x) is the node polynomial
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and the numbers \; are the barycentric weights
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For the Chebyshev points, the weights turn out to be

(2.3) A =
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and half these values for j = 0 and n. For derivations, see [1] or [16]. Formulas (2.1)-
(2.3) originate with Jacobi in 1825, and (2.4) is due to Marcel Riesz in 1916 [6, 11].
We are grateful to Folkmar Bornemann of the Technical University of Munich for
drawing our attention to these early papers.

The second barycentric formula is obtained as follows. If we represent the constant
function f(x) =1 by (2.1), we get
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and dividing (2.1) by (2.5) gives
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Equation (2.6) originates with Taylor and Dupuy in the 1940s, and the special case
of Chebyshev points was first treated by Salzer in 1972 [2, 13, 15]. The terms “first”
and “second” come from Rutishauser [12]. Formula (2.6) has a special elegance about
it, since the factor ¢(x) of (2.1) has dropped out, and this feature has practical con-
sequences. That factor has size approximately 27" for x € [—1,1], making (2.2)
susceptible to underflow in floating point arithmetic for large n; similarly (2.4) shows
that the weights A\; have size approximately 2", leading to a risk of overflow when \;
is defined by (2.4). Moreover, all these numbers change with nth powers if [—1,1] is
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rescaled to a general interval [a,b]; the number 2 arises for [—1,1] because the log-
arithmic capacity of this interval is 1/2. With the formula (2.6), however, we can
cancel the common factor 2"~!/n from (2.4), taking the weights in both numerator
and denominator to be simply £1 in the interior and :I:% at the endpoints. This makes
(2.6) scale-invariant and circumvents all problems of underflow and overflow.

3. Explanation of the instability. Both formulas (2.1) and (2.6) work beau-
tifully for interpolating a function on a Chebyshev grid in [—1, 1] and evaluating the
interpolant at points in [—1,1] (assuming the underflow/overflow problem of (2.1) is
addressed for large n, which can be done by reformulating it via logarithms). This
numerical stability of (2.6) has been emphasized over the years by Salzer, Rutishauser,
and other authors, including Henrici [4], and it is relied upon by Chebfun for poly-
nomial interpolants even in millions of points. In terms of theoretical support, two
important contributions are a paper by Rack and Reimer in 1982 [10] and a definitive
work by N. J. Higham in 2004 [5].

Yet Higham’s analysis identifies an Achilles heel in (2.6). He shows that (2.1)
has the gold standard property of backward stability: under standard assumptions of
floating point arithmetic, the computed result p(x) delivered by (2.1) is the exactly
correct value for a set of data { fj} that differ from {f;} by relative perturbations no
greater than about 5nu, where u is the unit roundoff (typically u ~ 1071¢). Formula
(2.6), on the other hand, is not backward stable, satisfying only a more restrictive
forward stability bound. For z € [—1, 1] and interpolation in Chebyshev points, which
is the most familiar case from applications such as ordinary Chebfun computations,
there is little difference in the two bounds, and (2.6) is stable. As x moves away from
from [—1, 1], however, the forward stability bound grows rapidly, and (2.6) becomes
unstable.

Like many numerical instabilities, this one is a consequence of cancellation. The
accuracy of (2.6) depends on the accuracy of (2.5), which we can rewrite as

(3.1) > - ijxj - ﬁ

Jj=0

Higham calls this “a mathematical identity that does not necessarily hold in floating
point arithmetic.” The problem is that as  moves farther from [—1, 1], 1/4(x) shrinks
rapidly, so the validity of (3.1) relies increasingly on cancellation. In floating point
arithmetic, the result is rapid loss of accuracy, until soon there are no accurate digits
at all.

Making the argument more quantitative explains why ellipses arise. The weights
A; on the left of (3.1) have size approximately 2", and for « € [—1, 1], the right-hand
side is of the same order since £(z) is approximately of size 27". Thus cancellation
is not an issue. As x moves away from [—1, 1], however, ¢(x) grows to order approx-
imately 27"p", where p is the parameter of the Bernstein ellipse passing through .
(That is, z = (w + w™')/2 for some w with |w| = p [16].) This means that (3.1)
relies on cancellation of magnitude p™ to occur, so we must expect loss of accuracy
by approximately this factor. If p™ is of size u~! or larger, all the accuracy will be
lost. If |z| is increased still further, so that p™ grows beyond u~!, then (3.1) will fail
to decrease any further and the computed p(z) from (2.6) will fail to increase any
further. As is apparent in the second image of Figure 1.1, we find ourselves with a
polynomial p(z) that is bounded as |z| — oo!

Suppose a function f of size approximately 1 is interpolated in Chebyshev points
to machine precision on [—1,1], the basic operation of Chebfun. It is customary to
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second barycentric formula
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Fig. 3.1. Repetition of Figure 1.1 for f(x) = exp(x)sin(15z). Again the erroneous results
appear approximately outside an ellipse, the Chebfun ellipse for this function.
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Fic. 3.2. Contour plot of numerically computed values log,, | f(z) — p(x)| for formulas
(2.1) and (2.6) with f(z) = exp(x)sin(15z). The first plot is unaffected by rounding errors,
so it is a correct picture of interpolation errors only, showing accuracy precisely within the
Chebfun ellipse. The errors in the second image are significantly larger because of rounding
errors amplified by instability.

define the Chebfun ellipse for f as that Bernstein ellipse whose parameter p satisfies
p" = u~!, where n is the degree of p, and it is inside this ellipse that p can be
expected to have some accuracy as an approximation to f. Because the Chebfun
ellipse is determined by the factor p™, we can expect the numerical accuracy of the
barycentric formula to be lost entirely, approximately, if = lies outside it. In other
words, for just the values of x for which p(x) has no accuracy as an approximation of
f, the evaluation of p(x) by (2.6) is also completely inaccurate because of numerical
instability.

For many functions, the Chebfun ellipse is approximately the Bernstein ellipse
that passes through the closest singularity of f to [—1, 1], since that singularity con-
trols the value of n needed to represent f to machine precision. However, the Cheb-
fun ellipse may be smaller than this, for example if f is an entire function (analytic
throughout the complex plane). Figure 3.1 shows such a case, repeating Figure 1.1
for the entire function f(z) = exp(z) sin(15z).

Figure 3.2 compares the two barycentric formulas from another angle, looking at
the computed differences |f(x) — p(z)| between the function and its interpolant.
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Fic. 4.1. Contour plots of |r(z)| for type (9,6) rational linearized least-squares fits in 42
Chebyshev points in [—1,1] to tanh(wz/2), based on calling Chebfun’s ratinterp command
with (m,n) = (10,10). The unstable computation on the right uses a rational barycentric
formula, whereas on the left r(x) = p(x)/q(xz) is computed by applying (2.1) separately to
p(z) and g(z).

4. Practical implications. Confirming Higham’s theory of [5], we have shown
that the standard barycentric interpolation formula (2.6) should not be used for eval-
uating a polynomial outside the interval of interpolation. One should use (2.1) in-
stead, after reformulating it via logarithms to avoid over- and underflow. We close by
mentioning two contexts in which this and a related observation may have practical
importance.

First, suppose one wants to evaluate a rational function r in the complex plane.
This task arises frequently, because Padé approximations and their relatives offer the
best known techniques for many problems of extrapolation and analytic continuation.
One of the attractions of the barycentric formula (2.6) is that it generalizes to rational
functions, as pointed out first by Schneider and Werner [1, 14], and this is the method
used by Chebfun up till now to evaluate the rational functions that result from in-
terpolation and least-squares, minimax, Chebyshev—Padé, and Carathéodory—Fejér
approximation (Chebfun commands ratinterp, remez, chebpade, cf). We find that
the instability described in this paper applies to the rational analogues of (2.6) too,
and so it is not a good idea to evaluate r(z) in this way. Since it is not clear that
a rational analogue of (2.1) exists, we recommend evaluating r(z) = p(x)/q(z) by
treating the numerator and denominator separately with (2.1) and then just taking
the quotient. This adjustment was crucial to the success of the explorations reported
in [18]. An example of stable and unstable evaluation of a rational function is shown
in Figure 4.1.

We will not give details for rational approximants in this paper, because this topic
is considerably more involved than the polynomial case and we are currently inves-
tigating how best to treat it. The rational interpolation scheme used for Figure 4.1,
implemented in Chebfun’s ratinterp command, is an analogue for Chebyshev points
in [-1,1], as in [8], of the scheme presented in [3] for robust rational interpolation
and least-squares fitting in roots of unity on the unit disk.

Second, questions arise about evaluation of both polynomial rational functions
even within [—1, 1] when the interpolation points are far from the Chebyshev distri-
bution. For polynomials, this was the example focused on by Higham to illustrate
the possible instability of (2.6). As it happens, barycentric formulas have been used
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apparently to great advantage by Pachén for working with the irregular reference sets
that arise in the Remez algorithm for computing best polynomial and rational ap-
proximations [7, 9]. It would appear that it may be worth revisiting these algorithms
in the light of our new practical experience of the instability of (2.6).
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