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Abstract. It is well known that degeneracies in the form of repeated
entries always occupy square blocks in the Padé table, and likewise in
the Walsh table of real rational Chebyshev approximants on an interval.
The same is true in complex CF (Carathéodory-Fejér) approximation orn a
circle, We show that these block structure results have a common ori-
gin in the existence of eguicscillation-type characterization thzorsams
£0> ecach 0f these three apprcximation problems. Consideration of pcsi-
tion within a block is then shown to be a fruitful guide to variocus

juestions whose answers are affected by degeneracy.

0. Introduction

Consider the following three problems in rational approximation.
In each case m and n are nonnegative integers, except that m may

be regative in the CF case.

CHEBYSHEV ("T"). Let £ be real and continuous on I = [-~1,1],

and iet R;n be the set of rational functions of type (m,n) with

. real coefficients. Problem: find xr* ¢ P;n such that

(1.7) le-r*lip < l€-xll; Vre Ro,

‘where ||-{|; is the supremum normon I .

PADE ("p")., Let f Dbe a complex formal powef series in z , and
let Ry, be the set of rational functions of type (m,n) with complex
coefficients. Problem: find P e Ry, Such that

(1.P) (£-2P} (z) = O((f-r)(2)) as z ~ 0 Vre Ry -

£
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CF ("K"). Let f .be a continuous function on § = {z: |z|=1}
whose Fourier series converges absolutely. 'Let ﬁmn pe the set of
"extended rational" functions representable in the form

~ ' m n
(2) Cf(z) = 2L -y akzi/ 5 b, 28

q(z) k=t OJKE

where q has all of its zeros in |z| > 1 , and the series for P
converges there and is bounded except possibly near 2z = « , Problem:
find ¥* € Ry, such that

(1.X) fe-2xllg < £l V¥ e Ry
where || - lg is the L normon S .

See [12] for information on Chebyshev approximation, ({1,6] for
pPadé, and [7,14,15] for CF. (The CF approximant defined above is act-
ually the "extended CF approximant”;.in practice it would be projected
onto a function r°f ¢ Ryn, to yield a near-best Chebyshev approximant
on a disk.) All three problems have unique solutions, and these can be
constructed numerically: P by solving a finite Hankel system of
linear equations, r* by a procedure such as the Remes algorithm, and
¥* wvia a singular value decémposition of an infinite Hankel matrix of
Laurent series coefficients. We will not go into this.

The Padé table is the array obtained by arranging the various ap-
proximants P for a giveh £ in seguence in the lower-right gquadrant
of the plane, with m as the column index and n as the row index.
{Sometimes these indices are reversed [6].) The corresponding array of
Chebyshev approximants r* 1is called the Walsh table. The (extended)
CF table is the analogous array of CF approximants T* , except that
since m < 0 is permitted, it fills the entire lower half plane in-
stead of a quadrant.

The first purpose of this.paper is to publicize the connection
" between equioscillation theorems and block structure in approximation
~tables (Secs. 1,2). We will show by example; that the equioscillation/
square blocks point of view is of mnemonic and heuristic value in in-
vestigating problems whose answers are affected by degeneracy (Secs.
2,3). '

The second purpose is to elucidate the close analogy between the
Chebyshev, Padé, and CF problems. Many aspects of thesé problems de--
pend only on the superficial structure imposed.by an equioscillation
theorem, not on the details of the type of approximation. Pursuing
this analogy gives insight into how things are different in related
problems where there is no equioscillation principle (Sec. 4). It also

raises an interesting question of whether the Walsh, Padé, and CF
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tables all admit the same set of possible block configurations (Sec. 5).

1. Equioscillation characterizations

The word "equioscillation" comes from the Chebyshev problem, where
it describes an error curve (£f-r*)(I) that oscillates sufficiently
many times between positive and negative extrema with equal magnitude.
In CF approximation, the analogous object is an error curve (f-¥*)(S)
that is a perfect circle of sufficiently large winding number. In Padé
-approximation, it is an error function £f-rP  that is zero to suffi-
ciently high order at the origin. One can think of this as a circular
error curve condition too, for as e + 0 , (f-rP) (es) . approaches a
circle with winding number equal to the degree of the first nonzerc
coefficient in f£-rFP |, ‘

The question of how great an equioscillation number is "sufficient"
depends on the defect § . Given r ( ¥ ), let it be expressed as a
quotient p/q ( B/g ) in lowest terms, i.e. in which the numerator and

denominator have no common zeros. Let uysm and v<n be the exact

|

degrees of p (P ) and g , with pu = -=» if p=0 (P 0 ). Then
§ 1is defined by

(3) § = min{m-u,n-v}.

THEOREM 1T, If 1 € R;n has defect § , then r = r*(f) if and
only if the error curve (f-r)(I) oscillates between =+ "f-r{[I on

some sequence of points -1 < X, RS Xy <1 with N > m+n+l-§ .

THEOREM 1P, If r € Run has defect 6 , then r = rp(f) if and
only if '
- (4) (f-r)(z) = 0(zY) as z + 0 with N » mn+l-s .

THEOREM 1K. If ¥ e R, has defect § , then ¥ = £*(f) if and

if ¥ is continuous in |z| > 1 and the error curve (f-%)(S)

- |0
L:
[

I'
|m

circle of winding number N > m+n+l-§ in the positive sense.

Remark. 1In each case we will assume N is chosen as large as
possible (possibly = ), and refer to it as "the equioscillation num-
ber". ' ’

Proofs. These assertions have two halves, namely "equioscillation
implies best" and "best implies equioscillation". The result-in the
first direction is easily obtained by counting zeros. For ekample if

r e Ry, satisfies (4), then by (1.P) one has also £-rP = O(zN) .
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Therefore r-rP has at least N 2 m+n+l-8 zeros at the origin. But
since r—r? € Rm+n-6,2n—d , this implies r = P . (This argument also
shows that =P is unique.)} Analogous proofs work for Chebyshev and CF.
Showing "best implies equioscillation” is less trivial, but the
threefold analogy can be maintained by arguing in the following way.
Suppose r ( ¥ ) does not equioscillate sufficiently many times. Then
it can be perturbed slightly to a new function =r' = r+Ar ( ' ) which
is a better approximant. The method of constructing this perturbation
- depends on which approximation problem is being considered. See [12]
‘for the Chebyshev case (quite straightforward) and [8] for CF (trick-
ier). For Padé approximation one could also write down a perturbation
argument, but it is unnecessary since the problem of determining coef-
ficients is actually linear. Therefore it is as well to obtain Thm. 1P
as a corollary of the usual Padé table derivation via linear algebra.

See [1l] or [6].

2. Square blocks

The following arguments run the same way for Chebyshev, Pad&, or
CF; we consider the Padé case for definiteness. Given f , suppose a

function r of exact type (u,v) with u > -= happens to satisfy

N+l)

(5) (f-r) (z) = O(zN), # 0(z as z + 0 with N = u+v+l+a

for some A 2 0 (possibly <« , in which case the # O(zN+l) clause is

dropped). For which (m,n) , if any, is r the Padé approximant rP ?
The answer is, for precisely those (m,n) that lie in any of the posi-
tions of the following (A+1) x (A+1l) block:

H,V utd, v

: ‘ Figure 1

U,v+A » U+A, v+A

To verify this claim, combine (4) and (5) to obtain the following
condition: r = rP if and only if m2u , n> v , and

u+v+A > m+n-§ ,

or by (3),
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p+v+A 2 mtn-min{m-p,n-v} .

If m-p £ n-v , this becomes v+A 2 n , which gives the lower-left half
of the sqguare block of Fig. 1. The alternative n-v £ m-p leads to
u+A > m , which gives the upper-right half of the block.

- This argument carries over directly to Chebyshev and CF approxi-
mation. We can summarize the situation for all three problems as fol-
lows: if f-r equioscillates the "normal"” number of times N = p+v+l ,
then r is the desired approximant in the (u,v) position but nowhere
else. With each "extra" oscillation, the size of the block in which «r
is the approximant increases by 1 .

In (5) we have excluded the possibility p = -= , i.e. r =0
(£=0). Here (3) gives 6 =n , and so 0 1is the desired approxi-
mant if and only if £ itself equioscillates with N > m+l . That is,
the zero fﬁnction £ills all columns of the table with m < N-1 , if
any. This is the only situation in which non-square blocks occur.

Here is a general block structure statement.

THEOREM 2. The Walsh, Padé, and CF tables all break down into

precisely sguare blocks containing identical entries. (One of these

may be infinite in extent, if f can be approximated exactly for large

1 0=

enough (m,n) .) The only exception is that if apn entry r =90 (I =
0 ) appears in the table, then it fills all of the columns to the left

of some fixed index m = N .

To make these conclusions vivid, Fig. 2 shows how m , n , 8 , and

N are distributed within a square block.

1
n=v
1
b
= <
n—'\)+l a :—I + :
. -1 .. 4 ‘:ll-_ﬁx— Figure 2
' & =]
—
D=V+A
N = m+n+l1+A
: 4 TN = mtntl
§=0
§=1 )
! 7N = mtntl-A
§=A
i
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Here is a summary of the notation we have introduced:

f - function to be approximated
m,n - nonnegative integers ( m may be negative in CF case)
R;n’Rmn’ﬁmn - spaces of real, complex, extended ratiocnal functions
r*,rp,f* - Chebyshev, Padé, CF approximants of type (m,n)
usm,vsn - exact degrees of approximant
§ = min{m-p,n-v} - defect
A+1 - dimension of square block

N = p+v+1+A - equioscillation number

3. Continuity of the Chebyshev, Padé, and CF operators

Cbmplications often arise when one deals with degenerate approxi-
mants. For this reason we say that a Walsh, Padé, or CF table is
normal if no entry appears twice, that is, if every block has size
1 x 1 . The word "normal" has also been applied to individual entries
in a table, but unfortunately its uses in the Chebyshev and Padé liter-
ature have been inconsistent. Perhaps the following problem-independent

definitions make the most sense: an approximant is nondeaenerate if

m=u or n=v (i.e, if 6 =0 ), and normal if m=pu , n=v , and
A = 0 . (This use of "normal" follows the Padé convention [6]; in
Chebyshev approximation "normal" has meant what we call "nondegenerate"

[12,17].) Figure 3 illustrates the two definitions.

N
P

/

7

// R V4 .
4 - Figure 3
/]

normal
(1 x1)

/

nondegenerate

B Various approximation results can be stated in terms of hypotheses
on position within the square block. For example: (1) Walsh showed in
1974 th;t if ,rp is nondegenerate, then r;I - rp as € =+ 0 , where

_r;i is the Chebyshev épproximant on [-e£,e]l ; on the other hand if P
" is degenerate, this need not hold {16]. (2) The analogous result for

CF-approximation appears to be that rgs >rP as e >0 is guaranteed
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if rP lies in the upper-right or lower-left corner of its block
(Gutknecht and Tréfethen, forthcoming). (3) A theorem of Ruttan stateg
that if the Chebyshev appreximant r* of a real function £ lies in
the strict lower~right subtriangle of its square block, then f can be
better approximated irn Ry, than R;n {13]. (4) In the corresponding
strict lower-right subtriangle of a square block in the Padé table, the
so-called Padé equations are inconsistent, and according to the "Baker
definition" of the Padé approximant (different from ours), P does
not exist [11].

We will now describe a particularly appealing application of block
structure arguments. Let the Chebyshev, Padé, and CF approximation

operators be defined by
T: £ o ¥, P: £w» P, K: £ » % |

The guestion is, when are these operators continuous? We omit details
concerning the precise definitions of continuity -- see [8,16].

For T and P the answers turn out to be the same, and were ob-
tained by Werner [12,17] and by Werner and Wuytack [16,18], respect-

ively:

A

THEOREMS 3T, 3P. The operator T ( P ) 1is continuous at £ if
and only if T(£f) ( P(f) ) is nondegenerate.

In ceontrast, the forthcoming paper [8] will establish the following

result for K :

Hy

TEEOREM 3K. The operator K is continuous at £ if and only if
R(f) is nondegenerate and in addition has equioscillation pumber

exactly N = m+n+l .

vFigure 4 summarizes these results:

%
// // // /]

Figure 4

NANANN

%

continuous K continuous

o

T,

The interesting thing is that despité the apparent discrepancy
between Thms. 3T,3P and Thm. 3K, all of these results actually have a
single explanation in terms of block structure. The underlying
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principle is this: small perﬁurbations can break square blocks, but not
make them (cf. [10]). ' 7

THEOREM 4. Suppose (m,,n;) and (mz,n2) lie in distinct square
blocks of the Walsh, Padé, or CF table for the function £ . Then the

same is true for all sufficiently small perturbations £f'' = £ + Af .

Proof. Without loss of generality we can assume m; < W and

1 2
n; S n, . (Otherwise, an easy argument based on block structure shows
we can replace either (ml,nl) or (mz,pz) by (min{ml,mz},min{nl,
n2}) .) In the Chebyshev case, the hypotheses imply Hf-r’zfllI <

Il f—rj‘_[]I , and by the definition of r* , the inequality will persist

. . 1

under perturbations with JAf[; < 3( N e-x3ll; - Hf—r;ll ). The same
argument (with || - [|g ) works in the CF case.  For pPadé approximation
an analogous proof can also be constructed, or one can appeal to known
results about the linear algebra of the Padé table and use the fact

that a small perturbation of a nonsingular matrix is nonsingular.

Theorem 4 now suggests the following idea for the proofs of Thms.
3T,3P,3K, though it is quite disguised in the original papers: assuming
that perturbations of £ can be constructed to fracture a square block
in any desired way, what does this imply about discontinuity? As it
"happens, the following single fracture pattern is the only one needed,
and it turns out that a perturbation can always be found that accomp-—
lishes it. Of course, constructing this perturbation requires consid-

eration of problem-dependent details.

-3 -2 ||~-1 0

| Figure 5
- +
2 1 |+1 |+1
-1 H+1 {+1 | +1
f 0 ||+1 |+1 {+1 £

From Fig. 2 we know that in any square block, the equioscillation
number N is determined by the position of the main cross-diagonal.
Therefore under the perturbation of Fig. 5, the value of N in each
position must change by exactly the quantity indicated. 1In particular,
it increases in the lower-right subblock, stays constant in two cor-
ners, and decreases in the remaining positions on the upper—-left bor-
der.

Now from Thms. 1, it can be seen that in all three cases T, P, K,

an increase in N cannot be obtained through an arbitrarily small
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perturbaticn. For example, the winding number of a circular error
curve with positive radius p cannot increase except by the addition
of a function of norm at least p . Therefore the construction of Fig.
5 proves discontinuity of T , P , and K whenever the apﬁroximant to
f 1is degenerate.

On the other hand, Thms. 1 also imply that N can decrease under
a small perturbation in cases T and P , but not in case X . For
example, a point x; in the alternant set for the error curve (f-r¥*)
(I) may cease to b; extremal in response to arbitrarily small pertur-
bations of f -- whereas a circular CF error curve cannot decrease
smoonthly to another circle of lower winding number. Therefore Fig. 5
proves discontinuity of X , but not of T or P , in the upper-left
border positions away from the corners.

‘These arguments establish discontinuity in all of the unshaded
positions of Fig. 4. A little experimentation gquiclly shows that no
alternative fragmentations of the block produce discontinuity in any
further positions; in fact the shaded positicns of Fig. 4 can be char-
acterized as those locations at which N ° cannot increase through an
arbitrarily small perturbation of £ (cases T , P ), and those where
it cannot change at all (case X ). To complete the proofs of Thms. 3,
all that remains is to verify continuity in these shaded positions.

This is another problem-dependent argument, which we omit.

4. Related problems

The Chebyshev, Padé, and CF problems are unusual irn obeying egui-
oscillation principles. Many related problems have no such simple
characterization theorems, and as a result, do not possess square block
structure. .

Within the realm of Chebyshev Approximation, the conspicuous con-
text where equioscillation fails is in complex Chebyshev approximation.
On either a disk or an interval, complex best approximations have no
simple characterization, need not be unique, and need not lie in square
blocks [7,16]. A circular error curve of high enough winding number is
here still sufficient for best approximation, but no longer necessary.

Both equioscillation and sgquare blocks also vanish in general if
one approxihates in other norms, such as L2 .

The equioscillation principle fails in Padé approximation as soon
as one generalizes from interpolation just at the origin to any kind of
multipoint (or "Newton-Padé&") scheme. In fact in problems of this kind
the interpolaticn table itself requires careful definition, since the
approximation obtained depends not just on the number of interpolation
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conditions specified, but aiso on the order in which they are taken [3,
4].

The analogous multipoint version of CF approximation is the Pick~
Nevanlinna problem, with its extension to the rational case due to
Achieser. The block structure (no: square) in the "PNA table" is cur-
rently being investigated by Gutknecht.

All of these remarks show that the ideas of this paper are far from
universal in application. However, they are not exhausted, either. On
one hand, there are probably other interesting problems besides the
three we have mentioned in which one gets equioscillation and square
blocks. (This appears to be at least nearly true in so-called Chebyshev-
Padé approximation; see [5] and the paper by Bultheel in this volume.)
If so, their analysis will be aided by recognition of the recurring pat-
terns of reasoning illustrated here. On the other hand, the strength
of the analogies between various problems with equioscillation theorems
suggests that useful connections between more complicated problems are
also worth looking for. The multipoint Padé/PNA analogy mentioned above

is a step in this direction.

5. Which block patterns are possible?

We know that the Walsh, Fadé, and CF tables break into square
blocks, but what about the converse? Can an arbitrary tiling of a
quadrant by squares of various sizes, say, be realized as the block
pattern of the Padé table of some formal power series f ? t seems
this question has not appeared in print before, but apparently it was
asked and answered several years ago by A. Magnus [11] (and poésibly
others). ’ V

The answer is no, and a simple example proves it. Suppose that
the top two rows of the Padé (or Walsh or CF) table of f are known
to break precisely into a chain of. 2 x.2 blocks. Then it is easily
seen that £ is even, and this implies that the rest of its table
also divides into 2 x 2 blocks, or larger. Therefore any finer pat-

- terns of subdivision are impossible. Of course one can readily gen-
eralize this example in various directions.

Since arbitrary block patterﬁs are not permitted, one is natur-
ally led to the following .

PROBLEM. Characterize all patterns 9£ square blocks that can

occur in the Walsh, Padé, and CF tables.

One reason this probiem is of interest is that its solution would

help one judge the extent of validity of the theme of this paper --
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that block patterns are mainly a function of superficial structure,
not of problem-dependent details. What is the most one could hope for
in this direction? One possibility is the following, offered here not

with conviction but as a stimulus to further thought.

CONJECTURE. The sets of possible block patterns in the Walsh and

Padé tables are identical.
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