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L.N. TREFETHEN

DISPERSION, DISSIPATION, AND STABILITY.

1. INTRODUCTION

Finite difference models are useful only when they are stable. If the von
Neumann condition is violated, i.e., some Fourier mode has an amplification
factor greater than 1, then the nature of the instability is obvious. But
sometimes the von Neumann condition is satisfied and still the model is un-
stable because of the interaction of distinct Fourier modes — dispersion.
The purpose of this paper is to describe such effects. A recurring theme
will be the contest between dispersion, which destabilizes, and dissipation,
which stabilizes but at some cost in accuracy.

This introductory section will review the basics of dispersion and dissi-
pation, and the remaining sections will present several applications to
stability.

Consider the model hyperbolic equation

and the leap frog (LF) approximation
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where A=k/h=At/Ax . 1In Fourier analysis, we insert in (2) a mode
;,1 = ei(u)t+£x), x=jh, t=nk, (3)
where &e¢ [-1/h,7/h] is the wave number and we [-w/k,n/k] is the fre-

v

quency, and obtain
LF: sinwk = Asin&h, (4)

the dispersion relation for LF. Analogously, the Crank-Nicolson (CN), Lax-

Wendroff (LW), and backward Euler (BE) models of (1) have dispersion

relations
CN: 2 tan%]i = Asinkh, (5)
mi: -i(e™®¥-1) = Asinth + 2iA%sin® E& (6)
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BE: -i(l-e ) = Asinéh. (7)



All of these equations approximate the ideal relationship w=& for &,w 0.

LF CN LW BE

Figure 1. Dispersion relations for four models of wu,.=u, .

The relations (4)-(7) are plotted in Figure 1 for A=3. 1In each plot
the horizontal and vertical ranges are £&c¢ [~n/h,7/h] and we [-n/k,n/k] ,
respectively, and thus the domains are rectangles of aspect ratio 2. Alter-
natively, one could take £ and w to be arbitrary and continue the plots
periodically in both directions. For LF and CN, ® is real when £ is
real, and the solid curves shown tell the whole story. For LW and BE, ® is
real only for isolated values of £ at the centers of the dashed lines,
which are inclined at angles to indicate the (real) values of the derivative
dw/dE there. Elsewhere, ww assumes complex values that are not indicated.

Dissipation is the decay of a Fourier mode as n-=+« that comes about if
Imw >0 . For a constant—coefficient model of (1), by Parseval's equality,
the 22 norm of {v"} changes with n at a rate precisely determined by

the decay of the individual Fourier components (except that the behavior of

LF and other multi-level formulas is slightly more complicated). Since

Imw=0 for all £&e¢ [-v/h,7/h] , LF and CN are nondissipative models, while
since Imw>0 for all nonzero &e [-m/h,m/h], LW is dissipative. BE, since
it dissipates most nonzero modes but not £=1%1/h, is neither dissipative
nor nondissipative.

Dispersion is the interference of Fourier modes that comes about if & and
w are related nonlinearly —which they always are, except in unimportant

special cases. To quantify this, one can consider the group velocity of a
ei(&x-Fmt)

wave packet that consists locally of an oscillation times a

smooth envelope, defined by




c - -5 (8)
For LF, implicit differentiation of (4) leads to the formula

clg,w) = -S54 (9)
C 1is the velocity at which energy propagates, as can be made precise by
various asymptotic arguments [11]. This is true whenever &, w, and %%

are all real, even though w(§) may not be real at neighboring values of

£, as with BE at £=0 or ¢g=zn/h [19].

(a) ”¢NMN“ t=0

(b) " — ~Awe t=1, CN
(c) t=1, LW
(a) MWW t=1, BE

Figure 2. Separation of a wave packet into physical and parasitic
components with C= -1, C=+l1.

Some dispersive phenomena involve sawtoothed Fourier modes with &= *m/h
and/or w=® #m/k . Figure 2 shows an example computed on the interval [0,3]
with h=.02 and A=.5. At t=0, Figure 2a, the initial signal contains
equal amounts of energy at &=0 and &% tw/h . Figures 2b-d show the
results at t=1 under CN, LW, and BE. In each case about half of the energy
has propagated leftward at the correct velocity Cz -l. Under CN and BE, an
additional spurious wave packet has also propagated rightward with C=® +1 .,

Such parasitic waves are often generated at boundaries and interfaces, and in

nondissipative or weakly dissipative models it is common for them to survive
and move in the wrong direction like this. See [5,16,22] for further

examples.




Other dispersive phenomena involve Fourier modes with £xwx0. To
analyze these it is convenient to expand the numerical dispersion relation in
a Taylor series in & about &=w=0, In the Lax-Wendroff case (6), for

example, one has

-A? i (A=)\° 3
w = E’-l~u—(€h)2 + —J:-('-—-—)—(Eh) +”.j|,
! 6 8
which corresponds formally to a partial differential equation of infinite
order:
-2 -3
a, = u 4 * A h u -2\—5——h3u + eeen (10)
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Odd~-oxder derivatives in such an expansion introduce dispersion, and the

order of the first nonzero odd derivative of order 23 is a, the order of

disgersion of the difference model. Even-order derivatives introduce dissi-—

pation, and the order of the first one is B8, the order of dissipation

(possibly «). The order of accuracy is p = min{a,8} -1, and is even if

@ < B (dispersion dominates dissipation at low wave numbers) and odd if a > B

(dissipation dominates dispersion). For LF, CN, LW, and BE we have

CN: =3, B=w=, p=2, BE: a=3, 8=2, p=1.

(a)

(c) _——'/\, t=1, LW

(d) t=1, BE

Figure 3. Oscillations around a discontinuity reveal that energy at
different wave numbers travels at different group velocities,




To illustrate dispersion and dissipation for E£=zw=x 0, Figure 3 repeats
Figure 2 with new initial data consisting of a step function. At t=1,
spurious numerical oscillations have developed around the discontinuity under
CN and LW, An explanation for this is that energy at various wave numbers
£#0 has traveled at corresponding group velocities that are different from
the ideal value C=-1, Half-way from the origin to the discontinuity, for
example, one sees a local wave number under CN corresponding to C=-.5.
Under LW, such waves have dissipated to nearly zero amplitude, and one has to
consider C= -1 to observe oscillations. Under BE, with B8 <o, the dissi-
pation of all modes with C#-1 is so strong that no oscillations at all are
present.

The modified equation for a difference model is the differential equation

obtained by deleting from (10) all terms except those of order 1, o, and

B, i.e.
o _ B
u = u + Aha—lg—}-l- + BhB 13y (11)
t X o B
9% 9x

for some A, B [3,23]. This equation suggests that the energy density at

wave number & will dissipate with time approximately according to
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For an analogous estimate of dispersion, in the case of even-order schemes,

we can simplify (11) by dropping the last term. From (8) we then get

to-3

ClE) % -1 - (1) oa(En &t (13)

Though strictly applicable for dissipative models only if £ =0, this formula
will make good predictions so long as & 1is small enough for the dissipation

to be much weaker than the dispersion.

2. STABILITY IN 2;) NORMS

2
Usually stability is measured in the & norm, which is naturally related to
amplification factors by Parseval's equality. But for some purposes it is
useful to look at other 2P norms, especially gl and lw, and the situ-

ation here is surprising. Any finite difference model of (1) with even order

of accuracy is unstable in all &E_ norms with p:t2 . This result was

proved by Thomée in 1964 (unpublished), and is mentioned on p. 100 of the




book by Richtmyer and Morton [14]., By the Lax equivalence theorem, it fol-
lows that convergence in 2P cannot occur for arbitrary initial data,

although it will still occur if the data are sufficiently smooth.

A
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Figure 4. Dispersion of a narrow spike into a train of oscillations
explains Zp-instability for p<2., Reversing time

explains Qp—instability for p>2,

The explanation is dispersion. To begin with, consider a nondissipative
finite difference model (B =) and initial data consisting of a narrow spike
of width 0O(h) (Figure 4a). Aas t increases, the wave numbers will separ-

ate according to their various group velocities, as they did in Figure 3,

resulting in a train of oscillations of width 0(t) (Figure 4b). Since

Ilvnuz is consexrved in this process, clearly anHp will increase for each
1

p<2. In fact anHl can grow as fast as n?¢, and an“p at the rate

nl’ =% | gince n+w as h>0 for a fixed time t , this is a mild
instability.

On the other hand, suppose we now take as data the wave train of Figure
4b, and integrate further to t =2 with the sign of (1) changed — or equi-
valently, reverse time and go back to t=0. The result will be an exact
recurrence of Figure 4a. In such a process |[v?]] increases for p>2 (up
to a limited time), and the rate can be as high as n%'_l/p. This again is a

mild instability.




The same phenomenon causes Zp—instability for dissipative finite differ-
ence models of even order (0 <B). If the order of dissipation is B, then
by (12), energy at wave number £ will attenuate on a time scale of order
t= h(Eh)—B, i.e. n z(Eh)—B. Conversely, significant energy will still be
present at step n for wave numbers of order gh::n—l/B and less. By (13),
these wave numbers represent a range of group velocities of order n(l_a)/BF

and therefore at step n, the train of oscillations will extend over an

interval of length on the order of (hn)n<l—a)/8, i.e.

B+1l-c

APPROXIMATE WIDTH OF REGION OF OSCILLATIONS: hn B (14)

(This formula predicts oscillations in Figure 3c extending over about 14 grid
points, which is about right.) Now suppose the initial pulse was as narrow
as possible consistent with containing only wave numbers of order at most

th xn~1/B — that is, it has width of order hnl/B. Comparing this with (14)
o (B-a) /B

gives a broadening by a factor from step O to step n , and
since the 22 norm will be approximately conserved, we expect growth in
|IVnHl by a factor of order n(B_a)/ZB. More generally, for arbitrary p,

with a time reversal as before to carry out the argument for p>2, we get

B-a

APPROXIMATE UNSTABLE GROWTH RATE IN ,Q,p NORM: n B

2 p

11'
(15)

These heuristic arguments, which were given originally in [18], reproduce
the results have have been established over the years by rigorous methods of
Fourier multipliers and saddle point analysis by Apelkrans, Brenner, Chin,
Hedstrom, Serdyukova, Stetter, Strang, Thomée, Wahlbin, and others. 1In
various forms the estimates (14) and (15) have been the subjects of many
research papers. For (14), see for example [3,8], and for (15), see the
monograph by Brenner, Thomée, and Wahlbin [2]. These authors prove that up
to a constant factor, (15) gives precisely the rate of growth of powers of
the discrete finite difference solution operator in (A

The instability of (15) is weak and will rarely have much practical
importance. BAmong our four examples, with p=1 or «, the growth is of
order nl/2 for LF and CN, nl/8 for LW, and nO (stability) for BE.

Analogous weak Zp—ill—posedness occurs for hyperbolic partial differen-

tial equations in several space dimensions, where geometric focusing effects




take the place of the dispersion introduced by discretization. Multidimen-
sional finite difference models are capable of growth in 2P from both

sources.

3. STABILITY OF THE INITIAL BOUNDARY VALUE PROBLEM

The last section showed that &P-instability of finite difference models is
caused by dispersion of wave modes with &=z w=x 0. This section will show
that instability of finite difference models containing boundaries is also
a matter of dispersion. This kind of instability is a more serious matter,
which causes trouble frequently in practical computations. This time it is
the parasitic wave modes with & X#w/h and/or w=*w/k that are usually
responsible.

Consider (1) on the semi-infinite domain x20, tz20. Mathematically,
no boundary condition at x=0 is called for, but a finite differénce model
will generally require one or more numerical boundary conditions. For
example, each of the models LF, CN, LW, énd BE requires one numerical bound-
ary condition to determine V8+l. The three candidates we will consider are

the first-order extrapolation formulas
v =v ’ v =v . (16a,b,c)

(The last of these is unrealistic and is included for illustration only.)
The question is, which combinations of our four difference models with these
three boundary conditions are stable, hence will give accurate answers?

A theory of how to answer this question was developed in the period 1960-
1972. Naturally one first tries to adapt Fourier analysis, despite the
bounded domain, to get a stability criterion analogous to the von Neumann

test. The result is known as the Godunov-Ryabenkii stability criterion [14],

and amounts to the following for scalar, three-point models of (1): a neces-

sary condition for stability is that the finite difference model — both

interior formula and boundary condition — admit no solutions (3) with

Imw <0< ImE. It is clear why a solution of this kind causes instability:
it will grow exponentially with the number of time steps. The difference
from the von Neumann test is that on the one hand, an unstable mode has to
satisfy two equations rather than one, while on the other, the candidates
include all waves with Im& >0 rather than just ImE=0., For our twelve

difference models, one can verify with a little algebra that there are no




unstable modes of this type. So far, so good.

The extension of the Godunov-Ryabenkii criterion to a necessary and suffi-
cient condition for stability was accomplished by Osher and by Kreiss and his
colleagues around 1970, and is described in the well-known but difficult
"GKS" paper of Gustafsson, Kreiss, and Sundstrdm [7,12]. The essence of the
Kreiss-Osher theory is the recognition that there is a second mechanism of
instability to worry about: dispersive wave radiation from the boundary.

For our scalar problem, the GKS stability criterion is as follows: a neces-

sary and sufficient condition for stability is that the finite difference

mocdel admit no solutions {3) with Imw£0<ImE or with £ ,weR and group

velocity €20 . '"Stability" refers here to the rather complicated Defin-

ition 3.3 of [7], now commonly called "GKS-stability," but the same criterion

2—stability too except in certain borderline

gives the right answer for 1%
cases (mainly C=0 or Imw=0<Im&).
The GKS criterion reveals that some of our twelve difference models are

unstable after all. For example, the wave

vy = (-1)7 (E=7/h, w=0)

satisfies formulas LF, CN, and BE (not LW) and boundary condition (léc).
Moreover, for each of LF, CN, and BE, Figure 1 reveals that the corresponding
group velocity is C=1>0. Therefore LF, CN, and BE are unstable with this
boundary condition. To see which of the nine remaining combinations may be
stable, if any, we have to check all other admissible combinations of & and
w also. For this simple example, that is not as hard as it sounds, and the
results are listed in Table 1. Evidently four of the twelve combinations are

unstable, and in one case there are two distinct unstable modes.

LrF CN LW BE
(16a) stable stable stable stable
unstable
(16b) G- (_1)n stable stable stable
j
unstable unstable unstable
j j tabl i
(16c) v’j‘= (-1)? or (-1)" vg‘ = (-1)7 stab-e vg_‘ = (-1)7

Table 1. Stable and unstable combinations of four interior formulas
with three boundary conditions. For the unstable combina-
tions, the unstable normal modes are listed.
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(a)

(b) t=2, (l6b)

e I c=2, 6o

Figure 5. Two computations with formula BE — boundary condition (16b)
(stable) and (1l6c) (unstable).

It is easy to see physically why the modes we have called unstable are
troublesome. Figure 5 shows a BE computation with h= .02 on the usual
interval [0,3] in which the initial distribution is a step function. (At
the right-hand boundary the condition is v=1.) For the stable boundary
condition (16b), the plot at t=2 reveals that some oscillations have
reflected from x=0 into the interior with group velocity C= 1, but the
solution is still approximately right. But with the unstable condition
(16c), a spurious wave has been generated at x=0 that will radiate right-
wards into the interior forever; nor would decreasing h eliminate it.
Convergence to the correct solution will not occur.

It is no coincidence that our only dissipative finite difference model,
LW, turned out to be stable with all three boundary conditions. The reason
is that dissipation extinguishes the parasitic waves that most often cause
instability. For certain classes of problems, dissipativity actually guaran-
tees stability — see [6]. Unfortunately, the guarantee does not extend to
many problems of realistic complexity, especially when there are several
space dimensions ([21]. Also, the weak levels of dissipation used in many
practical calculations may prevent instability in theory, but still permit
behavior near enough to that of Figure5c¢ to be troublesome.

Further examples of stable and dnstable computations can be found in
{17,19,20,21]1. The dispersive waves interpretation of the Kreiss-Osher
theory is presented rigorously in [19]. Stability of models of initial

boundary value problems is a complicated matter, however, especially when
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systems of equations are involved. Wave radiation from the boundary is still
the general mechanism of instability, but testing for the existence of modes

of this kind can be very difficult.

4. MULTIPLE BOUNDARIES AND TIME-STABILITY

In finite difference models with several boundaries, waves may bounce back
and forth between them, and to understand how this affects stability we must
look at reflection coefficients. To begin with, let us return to LF on xz20
with boundary condition (16b) of the last section. For any frequency u,

(4) and (9) (or Figure la) show that there are two wave numbers, a "left-

going" value g&; with C£0 and a "rightgoing" value €R==ﬂ/h-£L with

Ccz0. Let us look for a constant-frequency solution of the form
my iERx iELx
v;l = o™ (ae + Be Y x=jh, t=nk. (L7
iERh iELh
Inserting (17) in (l6b) leads to the equation o+ 8 =ce + Be , and
: ig. h -i& h
since e ER = -e EL for ER==ﬂ/h-—€L , this reduces to
i€ h
L _
R R 2
e L +1

This is the numerical reflection coefficient for the finite difference model.

Numerical experiments confirm that if a leftgoing wave at wave number &
hits the boundary x=0, it generates a rightgoing reflection with ampli-
tude given by (18).

Table 1 predicted an unstable mode with w=w/k, &g=0, & =7/h. 1In

(18) this mode gives a zero denominator and an infinite reflection coeffi-

cient. The existence of an infinite reflection coefficient for some w
always implies GKS-instability, but the converse does not hold, for a zero in
the numerator may cancel the zero in the denominator. In fact this happens
for the other unstable models of Table 1. In [19] it is shown that under
reasonable assumptions, GKS-unstable models exhibit unstable growth in 22
at a rate at least Ilvnnz = 0(/n) in general, but at a rate at least
IIVnH2==O(n) if an infinite reflection coefficient is present.

In this section I want to mention two instability phenomena associated

not with infinite reflection coefficients, but with finite reflection

coefficients greater than 1 in magnitude. It should be emphasized that in a




- 12 -

finite difference model with a single boundary, a large finite reflection
coefficient (equal to 10, say) will in general not cause instability. The
reason is that although a wave that hits the boundary may be amplified by
reflection, this happens to it only once, so the resulting growth is bounded.
Tf the model is consistent and GKS-stable, the amount of energy in the
incident wave that excites the large reflection will decrease as h+0, and
convergence to the correct solution will occur.

The first multiple-boundary instability phenomenon pertains to hyperbolic

equations on a bounded interval. Consider the following example from a
recent paper of Beam, Warming, and Yee [1] (see also [5,21]1). Let (1) be
modeled by BE on the usual interval [0,3] . At x=3 we impose the boundary
condition v§==0 , where J=3/h. Inserting the ansatz (17) with x

replaced by x-3 gives a corresponding reflection coefficient

=8 - _
A, = o = -1, (19)

independent of w. At x=0 we consider both boundary conditions (16a) and

{(16b). The reflection coefficients AL = a/B are

ifrh  iwk i€ h
(16a): A, = = - e (16b): & == -1 (20a,b)
L T Tifgn . _iwk L - <it.h ’
e +te e L+1

Neither of these denominators is ever zero for waves admitted by BE (unlike
LF), so =ach boundary is individually GKS-stable and has finite reflection
coefficients. By Theorem 5.4 of [7], it follows that the two-boundary model
is GKS-stable too.

Nevertheless, only (16b) is usable in practice for large A . The
attraction of an implicit formula like BE is its applicability to simulations
of the steady-state limit t‘¥m , because according to von Neumann analysis,
the time step can be taken arbitrarily large without causing instability.

But Beam, et al. found that when BE is applied with J even and A large

to (1), or to a more realistic problem in transonic gas dynamics, the
solutions with (16b) converge as t-%m but those with (l6a) grow exponen-
tially.in t . To illustrate this, Figure 6 shows the solution obtained undex
BE and (16a) with initial data as in Figure 4, but computed with the large
Courant number A =300 (k=6) and plotted at large time intervals At =24
(4 times steps each). At first, the energy nearly dies away, as it should
for the mathematical problem. But a small sawtoothed signal remains that

begins to grow unboundedly. Obviously, the steady-state solution v=0 will
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not be approached as t-—>«.

(a)

()  MWWWMWAWMAAMAMAAMAAAMAAMAAMAAMMAMA A T = 48

Figure 6. Exponential growth in t caused by repeated reflection
between boundaries with a reflection coefficient greater
than 1.

This behavior can be explained by reflection coefficients. For A>» 1,

inserting (3) in (7) gives

g, =00/, £ =m/m+o(l/N),

‘independently of w. In particular, these formulas hold for w=w/k. But

for that frequency, (20a) gives a large reflection coefficient
= . ’ 2
AL O(A) (21)

Now from (19) and (21), we see that a wave may potentially bounce back and
forth between the two boundaries, increasing in amplitude by a factor O(A)
with each circuit. This will cause growth in any norm at a rate constt.
In Figure 6d, the solution shown is very nearly an eigenmode of the form (17)
of the finite difference model with two boundaries. The sawtoothed compon-
ent, which dominates, is a rightgoing wave that dissipates somewhat as it
travels from x=0 to x=3. The fact that the sawtooth is centered below
the axis reveals that there is also a nonzero smooth leftgoing component
predicted by (19).

ig_h
By contrast, it can be shown that Ref(e Lyz0 for all ®w with Imws0
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under BE, and so (20b) implies [ALlé.l. Together with (19), this shows
that the two-boundary model with boundary condition (16b) does not admit any
solutions consisting of waves that bounce back and forth and increase in
amplitude,

Both of these finite difference models are GKS-stable, and will converge
to the correct solution as h-+0 for any fixed t . However, the model
based on (l6a) will fail to converge to anything for fixed h,k as t>w,
It may also give poor results for finite t with the nonzero values of h
used in practice. A finite difference model that admits no exponentially

growing solutions as t -+« 1is said to exhibit time-stability (= "practical

stability" = "P-stability"). We have illustrated that at least in some
cases, time-stability is determined by numerical reflection coefficients.

These arguments can be generalized. Beam, Warming, and Yee consider not
just BE but any A-stable time-~discretization (including CN) of the usual
3-point difference operator in space, and also space and space-time extrap-
olation boundary conditions of higher order. For a rigorous analysis of
general two-boundary problems by reflection coefficients, see [21]. It is
proved there that any two-boundary model with reflection coefficients satis-
fying {|AL]||IARH < 1 must be time-stable. It is also proved that in the
case of a dissipative model, it is enough for an estimate analogous to
HALH HAR|I< 1 to hold for the differential equation. We write norms rather
than absolute values for these results since in general, a hyperbolic system
or a finite difference model admits several leftgoing and rightgoing modes,
and the reflection coefficients imposed by the boundary conditions then give
way to reflection matrices.

The second multiple-boundary instability phenomenon of this section is a
more speculative idea that I want to mention quite briefly, having to do with

hyperbolic equations in a two-dimensional domain with a corner. Suppose a

hyperbolic equation is given on x,y,t 2 0O subject to boundary conditions
along x=0 and y=0, each of which would yield a well-posed problem on a
half-plane. (The criterion for well-posedness on a half-plane, due to Kreiss
in 1970 [10], is closely analogous to the GKS criterion for stability of a
difference model on an interval: the general mechanism of ill-posedness is
wave radiation from the boundary, and a problem is always ill-posed if there
exists an infinite reflection coefficient at some freguency [9].) Will the

problem with the corner be well-posed? This question was first considered by
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Osher, and he gave several examples showing that in general the answer is no

[13]. The reason is that in some circumstances, a trapped wave packet may
bounce back and forth between the two boundaries near the corner, and if its
amplitude increases by some finite factor greater than 1 with each reflec-
tion, the result will be exponential growth. This may sound like "practical
ill-posedness" rather than true ill-posedness. But what makes this problem
interesting is that since the wave packet might be arbitrarily close to the
corner, the travel time between reflections might be arbitrarily small, and
therefore the time constant of such exponential growth cannot be bounded.

In a beautiful paper in 1975, Sarason and Smoller described how to analyze
problems like this by invetigating propagation of wave packets along rays
[15]. PFor each frequency w , the dispersion relation (or characteristic
variety) for a differential equation or difference model consists of one or
more curves in the wave number space (EX,EY) . When a wave packet with

parameters (Ex,gy,w) hits the boundary x=0, will remain constant but

gY
Ex may jump to another position on this curve, and likewise with the roles
of x and y reversed at y=0. On the other hand the velocity of propa-
gation of the wave packet in space is given by the vector group velocity
C==—ng . Given the plot of a dispersion relation, one can apply these
considerations to see readily whether the problem in the corner is suscept-
ible to modes that bounce back and forth endlessly between the two bounda-
ries, in which case ill-posedness will occur if the boundary conditions
happen to impose large reflection coefficients. On the other hand if all
wave packets eventually escape to infinity, the problem is well-posed regard-
less of the boundary conditions.

Sarason and Smoller showed that for any 2% 2 strictly hyperbolic problem
— such as the second-order wave equation — the dispersion curves are simply
ellipses, leading to the conclusion that all wave packets eventually escape
to infinity, so well-posedness i1s assured. But for finite-difference models,
the situation is different, for the dispersion plots are more complicated
(see Figure 7 of [16]). It seems certain that one could devise a finite
difference model of the wave equation in a corner that was unstable because
of repeated reflection at the boundaries. The growth rate would be a
catastrophic const™ , despite the well-posedness of the underlying differ-—
ential equation and the finiteness of all reflection coefficients. This
increase in severity from const® to const® would be a direct result of

the distance between the boundaries becoming vanishingly small at the corner.
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It is unlikely that precisely this kind of corner instability ever appears
in models of practical interest. But analogous one-dimensional instabilities
involving reflections between close together boundaries do occur — see

Section 3 of [21].

5. VARIABLE COEFFICIENTS AND NONLINEARITY

fn this final section I will mention some ways in which dispersion and dissi-
pation enter into stability questions for_problems with variable coefficients
or nonlinearity.

The propagation of wave packets under a finite difference model of a

linear problem with variable coefficients, such as

u, = a(x)uX . (22)

has been investigated by methods of geometrical optics by Giles and Thomp-
kins [5]. 1In this situation, even if there is no dissipation, both the
amplitude and the wave number of a wave packet change continually in accoxd~
ance with formulas that depend on the derivative §%%§L_ These changes are
numerical artifacts, little related to the behavior of the problem being
modeled, and energy is in general not conserved. Giles has made a movie that
illustrates the effects of variable coefficients compellingly. 1In one of its
demonstrations, (22) is modeled on an unbounded domain by a nondissipative
formula with a variable coefficient a(x) £ay<0. A numerical wave packet
is then observed to oscillate left and right forever between two extreme
positions, alternating between smooth and sawtoothed form with each change in
direction, even though the differential equation contains no boundaries and
admits rightward propagation only.

As an application of these ideas to stability, Giles and Thompkins con-
sider the implications for time-stability of finite difference models with
multiple boundaries. In some cases at least, the analysis of the last
section can be adapted in a straightforward way. Now, instead of looking for
a reflection coefficient bound l|ALH HAR!|< 1 to ensure stability, one
requires this product to be less than an appropriate frequency-dependent
constant. The details are given in [5].

The same principles that govern smoothly varying coefficients also apply
to models with smoothly varying mesh spacings. For mesh refinements of a

discontinuous sort, on the other hand, it is more appropriate to treat each

jump as an interface and look at reflection and transmission coefficients [21].
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Another connection of dispersion and dissipation to stability of problems
with variable coefficients concerns differential equations on an unbounded
domain. When can Zz—stability of a finite difference model of a symmetric
hyperbolic system with variable coefficients be inferred from stability of
the "frozen" problems for each x ? This question, of obvious practical
importance, received much attention in the 1960's, and is discussed in Chap-
ter 5 of the book by Richtmyer and Morton [14]. One result, the Lax-Nirenberg
theorem, guarantees stability so.long as the coefficients are twice contin-
wously differentiable and the amplification matrix has norm bounded by 1 for
each x . A different one, due to Kreiss, guarantees stability when the
coefficients are merely Lipschitz continuous provided that the difference
model is dissipative and of odd order — that is, B <a , the same as the
condition for #P-stability in Section 2. Parlett later showed that B < a+l
is good enough in the case of a strictly hyperbolic system such as (22). It
would be interesting to know whether the difference between the Lax-Nirenberg
and Kreiss-Parlett results can be explained physically in terms of dispersive
and dissipative propagation of waves.

When we turn to nonlinear problems, very little is known in a general way
about stability. It seems likely that there may be nonlinear stability
principles for initial boundary value problems, analogous to the Kreiss-Osher
theory of Section 3 for the linear case, that could be obtained by consider-
ation of nonlinear dispersion relations [24], but this has not been investi-
gated. What has been looked at is chiefly the example of the inviscid

Burgers equation,
u = uu_ = ($u”)_, (23)

t X X

n+l n-1 n n 1.n 2 n 2
v, T -v. vl -y (3v, )= (3v, )
A4 J - (1-8) vrjl+l {Ji—J—-I—J + e{ j+l — L } (24)

2h

for some 8¢ [0,1] . The question of the behavior of (24) dates to Phillips
in 1959, and has been studied since then by Stetter, Arakawa, Richtmyer and
Morton, Fornberg [4], Kreiss and Oliger, Majda and Osher, Newell, and Briggs,
Newell, and Sarie [25]. The omitted references can be found in the papers
cited.

For accurate simulation of shock speeds, one might expect that one should

take 8 =1, since the model is then in conservation form. But it turns out
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that =2/3 is also a critical value, at which the energy would be con-
served if the time discretization were exact. The papers mentioned show that
for 8>2/3, a 3h-periodic mode of the form (... ,-¢,0,c,~c,0,c, ...)
with ¢ >0 will blow up super-exponentially under (24), while for 0<2/3,
the same is true of a mode (... ,c,0,-¢c,c,0,~c, ...) . Therefore (24) is
unstable for all 6=2/3. In computational experiments, however, the explo-
sion is usually observed only in the latter case. The reason is that for

8 >2/3, local patterns approximating the configuration =-c ,0,c tend to
disperse into waves of constant amplitude radiating in both directions. By
contrast, with 8<2/3, irregular initial oscillations tend to concentrate
into the unstable configuration and blow up quickly. (The same also occurs
with 6>2/3 if a boundary with a homogeneous boundary condition is intro-
duced.) Thus (24) seems to be an instance in which dispersion is not the
fundamental mechanism of instability, yet it is the factor which controls
whether that mechanism is excited.

Finally, consider 6 =2/3 and values of u bounded initially above Q.
Either of these conditions is enough to make (24) appear stable in most
experiments for short times. Nevertheless, Briggs, et al. discovered that
when very many time steps are taken, a fascinating new kind of instability
occurs [25]. An example is shown in Figure 7, in which (24) has been applied
with A =% on the usual grid with periodic boundary conditions. The initial
signal is 4h-periodic, except that a random perturbation has been added of
amplitude about .01 . At t=12, nothing surprising has happened. But at
t =24, the signal has begun to undulate in a regular way — an effect one
would never encounter in a linear situation. By t =36, the undulations
have become dangerously large, and in a few more time steps the CFL limit
will be exceeded locally and an explosion will take place. Briggs, et al.

show that what is going on is a systematic process of nonlinear focusing of

energy, and that this will always occur on any sufficiently fine mesh. The
precise positions at which large amplitudes first appear are more or less
random, but the nature of their appearance and growth follows a predictable
pattern. We conclude that (24) is unstable even for 8=2/3 and with
initial data of one sign.

The lesson of this last example, as of all of the examples of this paper,
is that instabilities may have subtle explanations. But they always do have

explanations — often related to dispersion of waves.
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Figure 7. Instability brought about by nonlinear wave focusing in
a discrete model of the Burgers equation (after Briggs,
Newell, and Sarie).
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