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I. INTRODUCTION

Here is the general problem of Chebyshev approximation: suppose that
f(x) is a real- or complex-valued function to be approximated, K is a
domain, and V is a space of functions in which an approximation to f is
to be found. Then what are the functions geV which minimize the quantity

le-gll = S22 [£@)-g()] 2 |
How can one find them? How small can ”f-gll be made to become?

The word Chebishev indicates the fact that the norm under consider-
ation is the uniform norm, as above, in honor of the early work of P.L.
Chebyshev (1521—1894) on approximation in this norm. The symbol ” ”
will refer throughout this paper to the uniform norm over the region K
under considefation} notations like || ”a,or I IIK which make explicit

reference to norm or domain will be introduced only when necessary for

clarity. The expression best approximation is equivalent to Chebyshev

approximation.

Our concern will be with fonctions f(z) of one complex variable,
which we will usually require to be continuous and often analytic. The
approximating functions will be polynomials or rational functions. The
notation p;(z) denotes a polynomial of degree n; we say of degree n
but always strictly‘mean o£ degree at most ns Simiiarly, rmm(z) denotes
a rational function with numerator of degree at most m and denominator
of degree at most n; we say that such a function is of t _XR_.ﬁﬂ;E_ In.

a given problem of approximation by functions geV there may exist a



function g% Vv such that

. inf
fie-grll = € e-gl

in this case g* is a best approximation function to f over K, and the

asterisk denotes this fact.
If g(z) is an approximation to f(z), of central importance is the

so-called error function:

e(z) = £(z)-g(z) .
Our goal is always to find approximations g(z) which minimize |e(z)|]
If g*(z) is such a function, we write e*(z) = £(z)-g*(z). The least
attainable error ”e*ll is then denoted by E or E(f), or in particular
En(f) and Emn(f) for the polynomial and rational cases, respectively.
A final bit of terminology: the homeomorphic image of an interval

in the plane is a Jordan arc, that of a circle a Jordan curve. If a

Jordan arc or curve can be parametrized in such a way that its real and
imaginary components are real-analytic functions of the parameter with
non-vanishing derivatives, it is analytic. The closed region bounded

by a Jordan curve is a Jordan region. We will make constant use of the

fact, which follows from the maximum modulus principle, that best
approximation to an analytic function over a Jordan region is équivalent
to best approximation over the region's boundary.

The study of Chebyshev approximation is about a century old. Cheby-
shev himself proved part of the characterization theorem which remains .
the foundation of Chebyshev approximation in a real variable. This
states thgt if f(x) is continuous on an interval [a,b], then for aﬁy
n there exists a unique best approximation polynomial p*(z) of degree

.h, and it 1s characterized by'the property that the correspohding error



function e*(x) = £(x)-p*(x) attains its maximum value E = ”e*l| at at
least n+2 points {xi} in [a,b], with e*(xi+l)==~e(xi) if the x, are
labeled in order. To illustrate, Figure 1 shows a typical oscillating
error curve for Chebyshev approximation in a real variable. The function
considered is f(x)==ex on the interval I=([-1,1], for which we have com-
puted the best quadratic polynomial approximation, p*(x) = .98904 +
1.13018x + .55404x2. As predicted by Chebyshev, the error curve e*(I) =
(f-p*) (1) attains ité maximum magnitude E == .04502 at 242 =4 distinct

points, with alternating signs.

. 04502

Figure 1. An error curve e(I)==(f?p*)(I) for real
Chebyshev approximation by polynomials on the unit
interval I=[-1,1]. f(x)= ex, n=2.

Other mathematicians added substantially to Chebyshev's work in the
early part of this centﬁry. Basic results on existence, uniqueness,
possib;lity of approximation and degree of approximafion'were proved by
Runge, Borel, de 1a>Vallée Poussin, Jackson, Bernstein,Aand others.

Most of the concern was with real ;pproximation at this time, an& still

ié, but progress was made on the complex case too. Beginning in the



1920's, J.L. Walsh at Harvard devoted much of a career to interpolation
and approximation in the complex plane, adding much to the theory as well

as compiling his encyclopedic work Interpolation and Approximation by

Rational Functions in the Complex Domain (1935).

More recently, all branches of approximation theory have flourished
in the era of computers, which have provided simultaneously a need for
approximations and a means for computing them. Algorithms have been
developed for computing best approximations in the real case, in one
and in several variables. Complexities and specialties have proliferated.

The case of complex Chebyshev approximation has received relatively
little attention, partly because it is not a pressing practical problem.
(Russian mathematicians have done more in this area than Western ones.)
Most of the work on it has been theoretical rather than computational.
In fact, I have managed fo locate just one pair of algorithms for com—
puting complex pﬁlynomial and rational best approximations (see Section
III); it seems safe to say that only a handful have been.produced. This
work has been coﬁdﬁcted in the'belief tﬁat theory and computation can
productively be mixed. '

There are thfee main areas of discussion in this thesis, The first
is the basic theory of complex Chebyshev approximation by polynomials.
~ Section IT outlines this theory in a review of the main theoremsﬁ on
possibility of approximation, degree of approximation, existence and
uniqueness of best approximations, énd characterization of best appréxi—
mations. Proofs of all excépt the degree of approximation theorems are
given in Appendix A. These results are not new, but they are not often

found collected together.



The second topic is numerical computation, discussed in Section III.
Following the recent work of J. Williams and S. Ellacott in England, I
have implemented a computer program for computing best polynomial approxi-
mations in the complex plane by a version of Lawson's algorithm adapted
from the real case. Section III preseﬁts this algorithm and discusses
its strengths and a major weakness which does not seem to have been
recognized before. A program listing is given in Appendix B. It is
shown in Section III that because of an essential difference between real
and complex Chebyshev approximation, Lawson's algorithm is bound to con-
verge at an extremely slow rate in many problems in the complex plane.

The essential difference just méntioned between real and complex
best approximation is in the geometric behavior of the error curve, and
this is the third area of discussion, présented in Section 1IV. By an
error curve in approximation on a Jordan region K in the complex plane
we mean the image of the boundary of K; because of the maximum modulus
principle, uniform approximation on the‘boundary of K carries with it
approximation in the interior. In the real case, as»exemplified by Figuré
l; best approximation error curves oscillate through zero between a posi-
tive and a negative extreme value. In the complex case they do not have
to go through zero in order to get from one extréme value to another,
and in general they do not. In fact, computed examples indicate that
they tend to do just the opposite. The error in complex Chebyshev
approximation on a Jordan region tends to iemain near its maximum magni-
tude all along the boundary of the region qf approximation; geometrically,
the error cur?e tends to appréximate'a multiply-winding circle about the

origin.



As an example, Figure 2a shows the error curve for degree-2 poly-
nomial approximation to f(z)==ez again, where now we consider the complex
unit disk instead of the real unit interval. (The best approximation
polynomial is p#*(z) = .99982 + .99783z + .5432622.) To the eye, the
error curve appears to be a perfect cifcle (winding around the origin
three times). 1In fact it is not quite a perfect circle, but the maximum

deviation from a circle is less than one part in twenty-thousand relative

‘to the radius, as the expanded plot in Figure 2b shows. Most examples

are not so dramatic, but the phenomenon of nearly-circular error curves
occurs to varying degrees generally, and not just on the unit disk.

That it occurs appears not to be generally known ([12], [33], [47], [54]).

\
N

(a) (b)

Figure 2. (a) An error curve e(C)==(fup*)(C) for complex’
Chebyshev dpproximation by polynomials on the unit disk
bounded by C: Izl=l. f(z)==ez, n=2. (b) The same, with o
deviation from a circle exaggerated by a factor of 10,000.



This paper does not succeed in explaining why Chebyshev approximation
error curves in the pomplex plane tend to approximate circles, although
some partial results are given in Section IV. As far as I know this is
an open problem. Because of the gengral occurrence of the phenomenon,
because of the chance that it may be possible to characterize Chebyshev
approximations fully or partially in terms of the shape of their error
curves, aﬁd because the appearanée of near-circles is computationally
destructive at least in the implementation of Lawson's algorithm, it is

a problem worth pursuing.



ITI. BASIC THEOREMS OF COMPLEX CHEBYSHEV APPROXIMATION

Suppose a function f defined on a domain K is given, and we are
looking for best polynomial approximations to f over K. Here are four
basic questions which it is natural to ask:

1) Possibility of approximation. Can f be uniformly approximated

as closely as desired by polynomials of sufficiently high degree?

2) Degree of approximation. If it can, how quickly does the minimum
error En(f) approach 0 as n approaches «? How great is En(f) for a fixed
degree n?

3) Existence and uniqueness of best approximations. For fixed n,

does a best degree-n approximation polynomial for f over K exist? If
s0, is it unique?

4) Characterization of best approximations. How can such a best

approximation polynomial be characterized?
These questions are the natural starting point for a study of poly-
nomial approximation over any domain, and much attention has been given

to them during the past century. The most heavily studied case has been

approximation of a real-valued function over a real interval; for this

case all four questions had been well resblved by Weierstrass, Chebyshev,
Jackson and others by 1911. For the case of approximation of a complex- *
valued function over a complex domain the questions have received answers

more recently, but the characterizations available for best approximation



polynomials are not as powerful as one would hope.

This section is devoted to an exposition of a set of answers fo
questions (1) - (4) in the case of complex approximation by polynomials.
In order to make the section réadable, proofs are deferred to Appendix
A. Polynomial approximation in a complex domain is simultaneously an
éxtension of the polynomial approximation problem on a real interval
and a restriction of the rational approximation problem on a complex
domain; parallel methods and results for these two neighboring problems

will be pointed out whenever possible.

1. Possibility of approximation

The question of possibility of épproximatioh by polynomials was
opened by the landmark theorems of Weierstrass and Runge in 1885, was
refined successively over the following sixty years, and finally was
completed in a general way by Mergelyan in 1951. |

Welerstrass's contribution, the Weierstrass approximation theorem,

settled the question for the case of real approximation on a real inter-
val ([52]). Provided only that f(x) is continuous on [a,b] , f can be
approximated afbitrarilg closely over [a,b] by polynomials pn(x) for

sufficiently large degree n. Runge's theorem in the same year took the

major step for the complex case ([38]): if K is a compact set in the
pbplane whose complement.ié connected, and if f(z) is analytic throughout
a neighborhood of K, then f can be approximated arbitrarily closely over

K by polynomials. Each of these theorems can be proved with’élementary
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arguments, and in fact the standard proof of Weierstrass's theorem via
Bernstein polynomials (cf. [11], pp. 107-111) is both elementary and
constructive, although the construction is very inefficient. A simple
proof of Runge's theorem is given in Appendix A.

~ In the years following 1885 refinements in Runge's theorem were
made by Walsh (1926), Lavrentiev (1934), and Keldysch (1945). Finally
in 1951 S.N. Mergelyan extended Runge's theorem to a very general result,

which we state here ([27]):

Theorem 1 (Mergelyan's theorem). Let K be a compact set in the
plane whose complemént is connected, and let f(z) be continuous on K
and analytic in the interior. Then for any €>0, there exists a poly-
nomial p(z) such that ||f-p|l<e over k.

The only difference in content between Runge's theofem and Mergelyan's
theorem is that the latter weakens the requirement of analyticity on a
neighborhood of K to just analyticity in the interior. Why is this
refinement so important? There are at least two answers to this ques-
‘tion. First, the relaxation of the boundary restriction makes the theorem
significantly more powerful. In particular, the Weierstrass approxi-
mation theorem is a special case of Mergelyan's theorem, but not of
Runge's theorem. More generally, from Mergelyan's theorem it follows
that if C is any set which has no interior points and does not separate
the plane, then a function f(z) continuous on C caﬁ be uniformly approxi-
mated by polynomials on C; this was first proved by Lavrentiev in
1934. Second, note that to say that f can be approximated arbitrafily
closely by polynomials on some set K is the same as to say that f is a

uniform limit over K of a sequence of polynomials, and that Ehis implies
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(since polynomials are analytic functions) that f is analytic in the
interior of K. Thus Mergelyan's theorem is as general as possible in a
sense 1n which Runge}s theorem is not, for we may state it in the form
of an equivalence: if K is a compact set in the plane whose complement
is connected, then f may be approximated a;bitrarily closely by poly-
nomials if and only if f is continuous on K and analytic in the interior
of K.

A proof of Mergelyan's theorem is given in Appendix A. This is
Mergelyan's original proof, which proceeds from Runge's theorem as a
lemma; The theorem can also be proved in a more elegant but more ad-
vanégd way with the techniques of functional analysis; see [6].

Theorem 1 is the general (and entirely satisfactory) answer to

question (1).

2. Degree of approximation

The study of degree of approximatioh is a large and somewhat con-
fusing area, replete with many theorems establishing various estimates
in vari;us.contexts. Here we will set forth only the two bréadest
results on asymptotic degree of approximation in a complex Jordan region:
one for the case §f f analytic within K and cdntinuous on the boundary,
and the other for the case of f analytic throughout a neighborhood of K.

The theory is rooted in the analogous study for the real variable
case, which was brought most of the way to its present state in the

first decade of this century by Jackson and Bernstein and otﬁers. Their
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work made great use of the theory of trigonometric approximation by sums

of the form kriéckcoskx-f-dksinkx), a problem intimately related to our
own question ;f approximation by polynomials. For example, if f(x) is
continuous and suitably periodic on [-T,m] then its truncated Fourier
series gives an upper bound for the minimum error attainable in approxi-
mation by sums of the above form; with the change of variable g(x) =
f(cosx) the same estimate can be carried over to the case of polynomial
approximation to a function f(x) continuous on the interval [-1,1].

Using this kind of approach, Jackson proﬁed ([20]) that if f(x) on [a,b]

is such that f(k)(x) exists and satisfies a Lipschitz condition of order

1
Lkt

0e(0,1], then En(f) =0

). The converse of this theorem is also valid

(with a modification in the case 0=1), and was established by S. Bernstein

([3]). TFor these and other results on degree of approximation in thei
real variable case, see for example [8], [11], or [26].

The extension of such theorems to the complex case was achieved by
J.L. Walsh and his students in the 1920's and 1930's. At this point
the problem becomes considerably more complicated. Walsh's strategy was
a powerful ome, which is covered fully in his book ([50]). Given a
Jordan region, he was able to makevuse of Green's functions with poles
at infinity to approximate its boundar? curve uniformly by lemniscates,
which are the curves in the plane consisting of points which satisfy an
equation of the form lp(z)|=k for some polynomial p. Best approximation
results for general curves now followed from results which Walsh estab-
lished on approximation on lemniscates. This technique differs com-

pletely from that for the real case, but some of the results it yields

are directly parallel. Here is an O #ia) result for the coﬁplexrcase,
, n
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stated in not quite full generality, as proved by J.H. Curtiss and Walsh
and W.E. Sewell; for an exposition see [43]:

Theorem 2. Let K be a compact set in the plane whose boundary is
an analytic Jordan curve C, and let f(z) be continuous throughout K and
analytic in the interior of K. Given ag(0,1) and k>0, there exist poly-

nomials pn(z) and a constant M such that

e ll < Sog
n

if and only if f(k)(z) exists throughout K and satisfies a Lipschitz

condition of order 0, on C.

Now this result does not assume that f is analytic on the boundary
curve C, but of course in many cases of interest f will be analytic there.
When this is true f is infinitely differentiable on C, so that Theorem
2 implies that nk ”f—pn*ll+ 0 as n+« for arbitrarily large k. In fact,
in such a case {pn*} converges to f geometrically ([50]):

Theorem 3. Let K be a compact regﬁon in the plane whose boundary
is an analytic Jordan curve C, and let f(z).be analytic throughout a
neighborhood of K. Let the exterior of K be mapped conformally on the
exterior of the unit disk in the w-plane in such a way thaf the.points
at infinity correspond to each other, and let Cp be the (inverse) image
in the z-plane under this mapping of the circle lWI =p, p>1. If f(k)(z)
exists on the curve Cp and satisfies a Lipschitz condition of order
o€ (0,1] there, then there exist polynomials pn(z) and a constant M such

that

le-p,ll < —a -
p'n"

Conversely, if there exist polgnomials such that this formula is valid
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with o€ (0,1), then f(k-l)(z) exists on Cp and satisfies there a Lipschitz
condition of order o.

In the special case in which K is a circular disk this geometric
convergence is easy to see. Suppose that K is a disk with radius R, and
suppose f(z) converges not only in K but in a larger concentric disk
with radius pR for p>1. Theﬁ we know that the coefficients in the Taylor
expansion for f around the center of K must approach zero essentially as
p_n, and so the truncated Taylor series for f shouid provide a series |
converging to £ at the required geometric rate. Thé argument can easily
be made rigorous with the use of Cauchy's inequality. It is good always
to bear in mind this special case of approximation.over a disk, fof it
helps make Theorems 2 and 3 plausible. This argument also has the ad-
vantage of showing in a loose way that best approximations on a circular

region are not much better than truncated Taylor series. If K is not

circular, of course, a Taylor series may not exist to be truncated.

3. Existence and uniqueness of best approximations

With these problems we move from questions of asymptotic behavior

as n+» to questions dependent on a fixed degree n.

The existence of best polynomial approximations to continuous functions

in the real case was first established by Bbrel in 1905 ([47]), and in
the complex case by Leonida Tonelli in 1908 ([46]). This result is

straightforward to show by a compactness argumeht-—-a proof is given in

Appendix A.
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Theorem 4 (Existence of best approximations). Let f(z) be continuous

on a compact set K in the plane. Then for any n20, there exists a degree-n

polynomial p*(z) of best approximation to f over K; that is, there exists

a polynomial p*(z) of degree n such that ”f;p*| < ”f¥p|l for every
degree-n polynomial p(z).
Best rational as well as polynomial approximations over compact

subsets of the plane exist, but the proof is more difficult. It was

first accomplished by Walsh in 1931 ([48]) using the techniques of normal

families developed by P. Montel in the early part of the century.

Having answered the existence question in the affirmative, we pro-
ceed to do the same with uniqueness. Uniqueness in the real case was
part of Chebyshev's original work of 1859 ([71); Tonelli extended the
result to the complex case in 1908 ([46]). This result is entirely
elementary. The details are given in Appendix A, but we outline the
argument here because it exemplifies the elementary character of the
early work of Chebyshev and Toﬁelli a@d others on polynomial approxi-
mation: most of the results follow from the definition of a best approxi-
mation, the fact that a polynomial of degree n can have no more than
L Zeros, ﬁnd the fact that such a polynomial may be interpolated through
any n+l points.

The proof rests on a lemma which will be of interest later on.

Suppose that p(z) is a degree-n approximation polynomial to £(z) on some

set K, and suppose that the extremal set Ko on which the error function
e(z) =£(z)-p(z) attains its maximum magnitude V”f-pll contains no more
than n+l points of K. Then one may construct an interpolation poly-

nomial q(z) of degree n which agrees with e(z) at all of these points
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of extreme magnitude, and it can be shown that adding a sufficiently
small multiple of q to p produces an approximation p+Aq which is closer
to £ than p. Proceeding in this way we prove:

Lemma. Let f(z) be continuous on a compact set K in the plane

which contains at least n+2 points. Let p*(z) be a best degree-n poly-

-

nomial approximation to f(z) over K. Then the extremal set Kb on which
f(z)-p*(z) attains its maximum magnitude contains at least n+2 points.

To show uniqueness, we now make use of the fact that a degree-n
pdlynomial can have only n zeros. If p* and q* are both best approxi-
mations of degree n, it is easy to see that %(p*+q*) must be a best
approximation too, and from this we can show that p* and q* must attain
equal maximum errors at equal points. Since there are at least nt+2 such
points, p* and q* must be identical.

Theorem 5 (Uniqueness of best approximations). Let f(z) be continuous

on a compact set K in the plane which contains at least n+1.points. Then

the best degree-n polynomial approximation to f over K is unique.
Uniqueness for rational functions of given type does not hold in

general. Chebyshev ([7]) showed that it does hold in the real rational

case (see [26], p. 161), but Walsh demonstrated by counterexample that

it can fail to hold in the complex plane ([50], p. 356). 1In fact, it

can even happen that a complex rational function may approximate a real-

valued function on aAreal interval better than any real rational function

of the same type, and consequently that such a best approximation is

not unique. For example, the best complex rational approximation to

f(x)==x2 on the interval [—l,lj does not have real coefficients ([40]).

For polynomial approximation, however, continuity of f and compactness
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of K are enough to ensure existence and uniqueness.

4. Characterization of best approximations

-

To compute or recognize best approximations, it is important to have
a more concrete characterization of them available than the definition
I[f-p* “ SHf—qll(Vq). This problem is best approached in the way in which
uniqueness of best approximations is established, by considering the
extremal set. If p is a polynomial of degree n with extremal set Ko,
and if we perturb p to consider the approximation polynomial p+Aq for
some q also of degree n, then for i sufficiently small only points near
Kb will be candidates for extremal points of f-(p+Aq). In particular,
if the addition of Aq perturbs the approximation in such a way as to
decrease the error magnitude at all the extremal points zy in KO, then
byAcontinuity this should be enough to ensﬁre 1 £= (p+A) || < || £-p ] for
sufficiently small A. Such an approach is the standard one upon which
characterizations of best approximations are based:.iocally, we need
consider only the points of extreme error magnitude.

For real approximation on a real interval, the problem of charac-
terization is now as good as solved. In one direction, we may easily
show as in the lemma on p. 16 that f£(x)-p*(x) must attain its maximum
magnitude [ f-p*|| at at least nt+2 points. In the other, if f£(x)-p(x)
attains its maximum magnitude at n+2 (or more) successive points with
alternating signs, then no perturbation term Aq(x) of degree n can

lessen the error at all n+2 points unless q(x) crosses the x-axis n+l
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times in [a,b], and hence has n+l zeros; since this is impossible, p(x)
must be the best approximation p*(x). Thus we have a simple characteri-
zation: for real polynomial approximation on an interval [a,b], fo) is
the best degree-n polynomial approximation to a continuous function f(x)
ifléﬁé.Qﬂii.if f(x)-p(x) achieves its maximum magnitude at at least ﬁ+2

successive points in [a,b], with alternating signs of the error function

f(x)-p(x). This characterization is the Chebyshev equioscillation theorem.

It can be extended to apply to rational approximations ([7]); in the
rational case one does not know_a priori how many extremal points are
needed to determine a best approximation.

For complex approximation the situation is more difficult. What
breaks down is the notion of "alternating signs" of the error function.

. . . i@ .
Now the sign of an error is a complex sign of the form e, and since

the complex sign of f(z)-p(z) may easily change values without passing
through 0 as z moves from one extremal point to another, one cannot
argue that a perturbation term Aq(z) which reduces the error at n+2
points must have n+l zeros. On the contrary, it is possible for an

error function f£(z)-p(z) to attain its maximum magnitude at n+2 points

without having p(z) be the polynomial of best approximation. For example,

zA-z attains a maximum magnitude of 2 at three points on the unit disk,
but the best degree-1 approximation to z4 over the unit disk is 0, not z.
We will now give two characterizations of best approximations in
the complex plane, but neither one is as powerfﬁl as Chebyshev's equi-
oscillation theorem for the real case. For the first one, consider

that we might state the argument leading to the Chébyshev result like

this: p(x) is the best degree-n polynomial approximation to f(x) on
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I=[a,b] if and only if, for any degree-n polynomial q(x),

ﬁo {[fGx)-p(x)]a(x)} 20 ,

where I is the extremal set on which |f(x)-p(&x)|= | £-pl| . Kolmogorov's

characterization ([22]) is an extension of this statement:

Theorem 6 (Kolmogorov's characterization). Let f(z) be continuous

on a compact set K in the plane. Let p(z) be a polynomial of degree n,
and let Kb be the extremal set of points z at which |f(z)-p(z)l =”fﬂp|].
Then p is a best degree-n approximation to f over K if and only if, for
any degree-n polynomial q(z),

max. _ —_—
zeK rRe{[f(z)-p(z)]lg(z)} 2 0.

A proof of this theorem is given in Appendix A. It is a smali modification
of the earlier proof of uniqueness.

The second, more substantive characterization is due to Remes ([30]),
who tightened Kolmogorov's characterization by making use of arguments
of convexity:

Theorem 7 (Remes's characterization). Let f(z) be continuous on

a compact set K in the plane. Then p(z) is a best degree-n polynomial
approximation to f if and only if for some r < 2n+3 there exist r points
zl s res ,zr in the extremal set Kb for p, and r numbers wi ;e ,W}

with wk>0 and Zwk&=l, such that

r
kzlwk{f (z,)-p(z,)}a(z,) =0

for every degree-n polynomial q.

This theorem is proved in Appendix A also.
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Neither of these characterizations has the simplicity or the power
of Chebyshev's equioscillation theorem for the real case. This fact
will be expanded upon in the next section, on computation of best approxi—
mations. However, the Remes characterization does succeed in eliminating
all but extremal points zkeKo from consideration. As a consequence we
have an immediate corollary of Theorem 7 whose importance is both theo-
retical and computational:

Corollary. Let f(z) be continuous on a compact set K in the plane.
If p*kz) is a best degree-n polynomial approximation to f over K, then
p* is also a best degree-n approxinafion to f over some finite subset
of K which consists of at nbst‘2n+3 points.

Unfortunately, in practice it is no easy matter to find such a set

of points, or even to know how many points it must contain.
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IIT. COMPUTATION OF COMPLEX CHEBYSHEV APPROXIMATIONS

1. Lawson's algorithm

The Chebyshev equioscillation theorem (p. 18) is a powerful tool
for computing best approximations numerically in the real case. Many
algorithms for the real case exist (see [9], [10], [24], [31] for
surveys), and most start from this theorem.

The best known of the numerical methods is the second algorithm of

Remes ([29]). The idea behind this algorithm in the polynomial case is
that if any set'{xk} of n+2 points of alternating extreme error were
known, then the best approximation p* could be computed by solving the

linear system of n+2 equations
G )-pr(x) = (D6, o W

where the unknowns are the n+l coefficients of p* and the value of 6.
The algorithm attempts to find such extremal pﬁints iteratively, as
follows. First, an initial guess {xi} at the extremal points is chosen
and a best approximation pl(x) over these points is computed from (1).
Next a new set {xi} is constructed by choosing n+2 extremal points of
f-pl at which this difference alternates in sign. Now a second approxi-
mation pz(x) is computed, and so on. TEOLS eaoin

The Remes algorithm and related algorithms can be extended to

rational approximation on a real interval, although the situation grows

more complicated for two reasons. First, the equations (1) become
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nonlinear. Second, one no longer knows in advance how many extremal
points {xk} it takes to determine a best approximation (see p. 18).

But the same approacﬁ cannot be extended directly to complex
approximation. For one thing, again one does not know in advance how
many extremal points {zk} to look for, even in the case of approximation
by polynomials (see p. 20). But more fundamentally, "alternation' breaks
down. The terms (-—l)k in (1) now become unknown arguments eie, and so
even if the points {xk} are given the system has more unknowns than
equations. It was pointed out in Section II that no characterization
of complex best approximations exists which is equal in power to the
Chebyshev equioscillation theorem for the real case, and this fact shows
up in the difficulty of computing Chebyshev approximations in the com~
plex plane.

A different approach, Lawson's algorithm, has been implemented

here. This algorithm was first studied for the real case by C.L. Lawson
in 1961 ([23]), and an extension to cqmplex approximation was achieved
by S. Ellacott and J. Williams in 1976 ([14]). Additional discussion
of it may be found in [32] aﬁd [34].

Given a Jordan region K bounded by a Jordan curve C, if f is
analytic inside K it is sufficient to consider approximations over C,
because of the maximum modulus principle. Going further, we shall
discretize the problem and consider only a finite subset C of C —
say, 100 points evenly spaced. Such a restriction to a discrete set
can be justified theoretically. If we define the denéitz IEI of € in

C by

5] - sup inf =~
|| zel zeC |=-%| ,
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then it 1s true that as lE‘*O, which corresponds (confusingly) to C
becoming more dense in C, the best approximation to f over c approaches
that over C:

Theorem 8 (Cheney [8], p. 87). Let f(z) be continuous on a compact
set K in the plane which contains at least n+l points. Let p#*(z) and
p*(z) be the best degree-n polynomial approximations to f over K and K,
respectively, where X is any subset of K. Then as the density of K in
K approaches zero, p* approaches p*.

Ellacott and Williams ({14]) discuss the characterization process
in more detail. They show in particular that if C is a piecewise twice
differentiable Jordan curve (say, the unit square), and if one includes
all the "corner" points in each discrete subset ¢ used for computation,
then ||£-p*|| converges to | f-p*|| quadratically as |c|-+o0.

So let us assume that a discrete dOmaiﬁ K has been chosen, and drop
the tilde symbol. The procédure used in Lawson's algorithm is to approach
p* iteratively as a suitable limit of weighted least-squares approximations,
which are relatively easy to compute. The foundation of this method is
the Remes characterization theorem (Theorem 7), which was stated in
Section II:

Theorem. Let f(z) be continuous on a compact set K in the plane.
Then p(z) is a best degree-n polynomial approximation to f if and only
if for some r £2n+3 there exist r points Zys e 2, in the extremal

set Ko for p, and r numbers w, , ... ,wi with w,>0 and Zw, =1, such

1 k k
that
w {f(z, )-p(z,)} q(z,) =0 : (2)
k=1 k k k . k

for every degree-n polynomial q.
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The linear system of equations (2) has a familiar form: taking q(z)
= 1y 2, coey zn, it becomes the system of normal equations for approxi-
mation of f by p in the weighted least-squares norm with weights {wk}.
Like the system (1}, it includes more unknowns than equations, for we
do not know at the outset the polynomial p, the weights {wk}, or the
points {zk}. Lawson's algorithm is a method of finding a set {zk} and
corresponding weights {wk} iteratively. First, choose an initial set {wi}
of positive weights arbitrarily,bwhere now z, ranges over the discrete
set C. Using these, solve (2) tb'find a weighted least-squares approxi-
mation over C. That is, find p1 80 as to minimize the quantity 01
defined by

j_[ 3 z]*ﬁ
ol = | ] wk{f(zk)-p (zk)} _ (3)
keC

Next, adjust the weights according to this formula:

N el )|
K

— (4)
ZwiJIeJ(zi)l
i

where ej==f—pj, as usual. With the new weights return to compute a
second weighted least-squares appréximation pz(z), and so on.

It can be proven that the polynomials pj computed in this fashion
converge to the best approximation polynomial p*, with one proviso.
This is that if it should happen during the iteration that W is set to
zero by (4) for some k, the algorithm must be restrated with new nonzero
weights set in a certain way specified in {14], p.-39. After a finite

number of such restarts, the algorithm is guaranteed to converge. In

practice, in my own experience and that of Ellacott and Williams ([14],
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p..41), the restart procedure is rarely required.
It can also be shown that as the computation proceeds the weighted

3

least~squares error 0Y must increase monotonically to the limit ||e*|| .

This fact enables one to judge at each step how close the current pJ is

to the best approximation p*, by examining the bound

A < flex]| < [l . (5)

2. Description of program

I have implemented Lawson's algorithm in FORTRAN on a PDP-10 (Aiken
Computation Lab, Harvard). The algorithm converges reliably towards
best approximations, and I have successfully used it to compute about
a hundred best approximation polynomials and plot the corresponding
error curves.

For convenience, single precision complex arithmetic has been used
throughout. This means that as it stands the progrém is not suitable
for generating approximations with the accuracy required to serve as
function definitions within a computer. However, there is no reason
to anticipate that any difficulty would be encountered in converting the
algorithm to double or higher precision.

The linear system (2) is solved by Gaussian elimination with partial
pivoting and iterative improvement, using an adaptation for complex
arithmetic of the code of Forsythe and Mole? ([16]). Matrices arising
in least-squares approximation tend to be ill-conditioned, and specialized

methods exist for'coping with them; Ellacott and Williams used Golﬁb's
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algorithm involving Householder transformations ([53]). This implemen-
tation could probably be made more efficient and reliable by taking
advantage of these méthods, but I have not experienced numerical problems
with the current program.

The FORTRAN code is reproduced in Appendix B. FUNCT(Z) is the
function to be approximated and CP(Z) is the approximation polynomial,
whose coefficients are adjusted at each iteration. The main program
CHEBY controls the sequence of operations, calling the following sub-

routines in order:

LAWSON. Performs the Lawson's algorithm iteration. The Forsythe
and Moler subroﬁtinesADECOMT, SOLVE, IMPRUV, and SING are called to solve
the linear system (2). Coefficients for pj(z) are printed at each iter-
ation, along with the minimum error Eiin = minlej(z)l, the weighted
least-squares error,cj, and the maximum error Ej = ”ejll. Convergence

is judged manually by the user on the basis of these data and (5).

ERRCRV. Plots the error curve e*(C) in the complex plane. Arrows
showing the direction of the curve are marked at the image points of
eight points evenly spaced along the domain boundary (for the unit

circle, the eight roots of unity).

ERRMAG. Plots the error magnitude |e*(z)| 6n>a gcale from E in
to E at the top of the plotter pags. In a case like that of Figure 2a
it is only this plot which shows the true shape of the error magnitude
and reveals extremal pbints, since the error curve itself is so nearly

circular.
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Figure 3 shows a typical page of output from the plotter. The

In(z+31i)

example shown is the best linear approximation to the function
A cos(z+.1)

over the unit disk. Note the characteristic presence of (at least) n+2
points of extreme error in the ERRMAG plot, and the roughly circular

shape of the error curve below.

3. Rate of convergence

The algorithm converges towards best approximations, but it fails
to do so at a satisfactory rate. In fact, as the best approximation is
approached the rate of convergence often drops sharply to near zero.

3

Figure 4 shows plots of E- and o) as a function of iteration number h|
for the simple case of linear approximation to e? on the set consisting

of 64 evenly spaced points along the unit circle. EJ and 0 should converge

‘from above and below to the minimax error E, but it is clear that after

an initial period of rapid convergence this process begins to take very,
very long. Figure 4b exténds the curves out to j=2500, a computation
which took half an hour of CPU time, with little improvement. Con-
vergence has been virtually halted.

The value of .557679 marked on the plot is a conjectured limiting
value for linear best approximation of e? over the unit disk. It was
computed by assuming that the minimax error E(r) in linear approximation
of e? on the disk of radius r is a real-analytic function of r, and
investigating its Téylor series coefficients empirically. This approaqh

leads eventually to an apparently clear answer of E(r) = (2-+J%)coshr
T



MAX: 1.2679433
/\ THETA: 1.2364286

MIN: 1.1627094
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ERROR MAX: 1.2579433
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Figure 3. Typical plotter output shows error curve _
e(C) = (£-p*) (C) at center of page with error magnitude

plot above. The curves shown are for degree-1
In(z+31)

aPProximatiqn over the unit disk to f(z) = cos (z+. 1) °
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Figure 4. Ej and Gj as functions. of iteration number

. 3 in linear approximation to e? over the unit disk by

Lawson's algorithm. The domain of approximation is
64 points evenly spaced along the boundary.



[—

.30

_ 4sinhr _ 4

s, which agrees convincingly with computed estimates of E(r)
r r2

for various r and is asymptotically correct as r+», It is to be expected
that .557679 should lie slightly higher than the apparent limiting values
in Figure 4b, since the algorithm has considered a discrete set of 64
points, not the continuous unit circle. The fact that it lies slightly
lower instead is a bad mark for the conjectured formula.

The slow convergence in this example can be seen in more detail in
Figure 5, which shows the distribution of weights and the error magnitude
as a function of angle 8 around the unit circle, for a sequence of iter-
ation numbers. The error magnitude is plotted on a normalized scale
from Emin to E as usual, because its absolute magnitude remains very
close to .558 all around the unit circle. One sees immediately that
although the curve quickly achieves an oscillatory behavior that is
close to correct, it fails to converge at a reasonable rate to true
solution, which would have three points of precisely equal maximum

error magnitude. The same lack of convergence is evident in the weight

distribution plots, which are normalized from 0 to LA Lawson's

algorithm is based on the idea that the weights W can be made to converge
to zero at all but a true set of extremal points, until ome is left
with a weight distribution that is zero except at a few spikes. Not
only is the weight distribution in this example failing to converge at
a reasonable rate to the three spikes it must attain in the limit, but
for a long time the largest weights appear at points which are not

ultimately in the extremal set.

This convergence problem is a result of the near-circularity of

the error curve. At each step the weights are adjusted according to
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equation (4):
wﬂlej(zk)|

ZWilej(zi)|

wkj+1 _

But to the extent that Iej(z)l stays nearly constant along the error
curve, it is obvious that (4) will adjﬁst the weights slowly. This problem
is visible iﬁ Figure 5. An early non-optimum weight distribution is
established in the first few iterations, when le(z)| varies significantly
over the unit circle; it soon becomes clear that a different weight
distribution is needed, but by this time |e(z)| is so nearly constant
around the circle that it takes hundreds of iterations for (4) to reshape
the distribution. Thus in any problem where the best approximation
error curve is nearly circular, which is a common occurrence in the
complex case, we may expect the convergence of Lawson's algorithm ulti-
mately to be linear with an asymptotic error constant that is only
negligibly better than 1.

For example, one of the examples Ellacott and Williams mention
is approximation of e” on the unit disk by a degree-5 polynomial.
Having computed a best approximation, they observé that in this instance
"all the points are extremal points" along the unit circle ([14]; p. 42).
Mathematically this is not true (this will be proved in Theorem 12),
but numerically it might as well be, for I estimate on the basis of
computed results that the deviation of the true error curve from a
circle in this example is less than one part in 1010.(see Figure 8).
Even in infinite-precision arithmetic, therefore, Lawson's algorithm
would require on the order of 1010 iterations to converge.

For the practical approximation of functions; the ultimate rate
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~circle eie for a sequence of iteration numbers j in linear approxi-

mation to_ez over the unit disk by Lawson's algorithm. Convergence
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mation is 64 points evenly spaced along the boundary.
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of convergence may not be critical provided that a nearly-best approxi-
mation can be computed in reasonmable time. In Lawson's algorithm only
when the best approximation is nearly achieved, at which point the error
curve may be nearly circular, does the rate of convergence fall. As a
consequence the minimax errors computed and reported here are generally
accurate to at least three decimal places. - Coefficients for best approxi-
mation functions such as those reported in Appendix C, on the other hand,
are often an order of magnitude less accurate. Computing them to four
places would usually have required the kind of excessive use of computer
time required for the computation 6f-Figures 4 and 5.

Those who have worked on Lawson's algorithm in the real case have
suggested possible ways to make it converge faster (see [32]). One of
these was adopted by Ellacott and Williams in their algorithm: instead
of using (4) at every step, at alternate iterations they update the
welghts instead according to the formula

R Al
Lwilel(zp]

(6)

and they show that this alternating procedure is still guaranteed to
converge ([14]). Indeed, in practice the resulting convergence rate
is generally higher than in the scheme using (4) exclusively; Most of
the results reported here have been computed with the alternating
method. But asymptotically each iteration using (6) is no better than
two iterations using (4), so the modification is not enough to get
around the general convergencé problem caused by nearly-circular error

functions.
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I have experimented with various schemes to pick out the extremal
points more quickly than with (4) or (6), but have not yet found one

which works consistently.
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IV. GEOMETRY OF THE ERROR CURVE

1. Geometric interpretation of the problem

We shall now turn to questions of the geémetry of the error curve
e*(C) = (f-g*)(C), and in particular ask why it is observed to tend to
approximate a circle. Unfortunately, only a partial answer to this
question can be giveﬂ.

What motivates our interest in the behavior of the error curve is
the fact that for anmalytic functions,'épproximation over a Jordan region
is equivalent to approximation over its boundary. This is an immediate
consequence of the maximum modulus principle:

Theorem 9. Let K be a Jordan region in the plane whose boundary
is €, and let f(z) be continuous throughout K and analytic in the interior..
Then r(z) is a best rational approximation to f over K of type (m,n) if
and only if it is a best approximation to f over C among the rational
functions of type (m,n) which have no poles in K.

Because of this fact, the problem of approximating an analytic
function f on a Jordan region by rational functions or polynomials may
be interpreted geometrically as follows: what is a function g% such that
f-g* maps the boundaryVC into a disk of minimum radius about the origin?
This interpretation is surely not original, but most people do not
approach the Chebyshev approximation problem from this point of view.

To begin with, let us state a collection of simple geometric facts.
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Theorem 10. Let K be a Jordan region in the plane whose boundary
is C; and let f(z) be continuous throﬁghout K and analytic in the
interior. Then we have:

a) If g(z) is any approximation to f which is analytic within K,
then the error curve e(C) = (f-g) (C) wihds around the origin in the
positive sense as many times as there are points of interpolation z, at
which f(zi)==g(zi) interior to K. (Argument pfinciple)

b) Suppose f and g are in fact analytic on a neighborhood of K.

If a point’zC on C is the vertex between two analytic Jordan arcs of

C meeting at a definite angle O, then the error curve has a bend of
the same angle O at the point (f—g)(zc), provided that_(f’—g’)(zc)sfo.
(This is the interpretation of (f-g)(z) as a conformal mapping.)

c) Suppose p*(z) is the best degree-n polynomial approximation to
f over C, hence over K. Then the error curve e*(C) = (f-p*) (C) is
contained within a circle of radius ”e*|| about the origin. It touches
this circle at at least n+2 points of C, and attains locally minimum
magnitudes at at least n+2 points interlaced with these. (This is a
restatement of the lemma preceding Theorem 5 on p. 16.)

These geometric features will be illustrated in the figures which

follow.

2. Computational evidence

I have computed and plotted a large number of polynomial best

approximations over the unit disk, and found clear evidence that in a
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wide range of situations the corresponding error curves closely approxi-
mate circles along most or all of their length. Judging by appearances,
it would seem that Chebyshev approximation polynomials may be character-
izable as those polynomials which achieve error curves that are in some
sense most nearly circular. However, although this possibility has been
a primary focus of my efforts, I have been unable to prove a satisfactory
result along these lines. /

As a first set of examples, Figure 6 shows the error curves corres-
ponding to best quadratic approximation over the unit disk to four func-
tions which are analjtic in the disk: vz-2, 1n(z-2), T'(z+3), and 24-+1izs.
In Figures 6a-c the curve looks like a qircle (with winding number 3),
and in fact none of these curves deviatés from a perfect circle by more
than 0.5%. 1In Figure 6d the curve is by no means a circle, as it loops
in and barely around the origin, and yet even in this case a nearly |
circular path is traversed during two of the three main circuits around
the origin. These examples are representative of the functions I have
considered. .

To illustrate that the nearly-circular shape of the error curve
is a feature peculiar to Chebyshev approximation, Figure 7 compares the
Chebyshev approximation error curves for e on the unit disk, n=0,1,2,

with the non-Chebyshev error curves corresponding to the first three

2
z_

2

facilitate comparison, the two plots for each polynomial degree are

partial. sums of the Taylor series for ez: 1, 14z, and 1+z + To

drawvn on the same scale. On the unit cirecle the least-squares approxi-

mation to an analytic function is always the same as the corresponding
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{a) £(z) =vz~2 - (b) £(z) =1n(z-2)
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Figure 6. Error curves (f-p#*)(C) corresponding to

best degree-2 polynomial approxi;nation to £(z) over

the unit disk, for four functions f analytic in
the disk.
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Figure 7. Error curves for polynomial'appfOXImatiaa
Left column shows partial

- to e over the unit disk.
sums of the Taylor series; right column shows Chebyshev

approximations. Each pair is plotted on a single scale.
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partial sum of the function's Taylor series, so from Figure 7 it is
evident that least-squares approximation over the unit circle does not
lead to nearly-circular error curves in the way that Chebyshev approxi-
mation does. It is clear also that the extent of circularity in Cheby-
shev approximation error curves is much greater than can be accounted

for simply as the result of the (n+l)-degree term of the e? Taylor series
dominating the subsequent ones. Something mofe is going on here.

Figure 8 makes the same comparison in another form: it plots E and
E—Emin as functions of degree n for both Chebyshev approximation and
approximation by truncated Taylor series. The rate at which E—Emin
approaches 0 for Chebyshev approximatiqn is striking.

Most of my experimentation has beén on the unit disk. A few examples
computed over non-circular domains, however, suggest two observations.
First, best approximation error curves are typically less circular than
in approximation over the disk. Second, it seemé tfue nevertheless that
as the degree n increases, the error curves>become increasingly circular.

To illustrate, Figure 9 considers best polynomial approximations of
degrees n=0,2,4,8 to the function f(z) =;ﬁ%§ over the ellipse in the
complex plahe passing through the points (2, %i), (2,-%1), (-2,%i),
(-2,-%1i). £ is analytic in this domain, but because of the pole at z=1i
it cannot be expressed as a Taylor series about the origin. Even so, it
appears that for n->« the error curve approaches a perfect circle.

What about regions whose boundaries are not smooth? Figure 10
shows error curves for best polynomial approximation to e? over the

unit square, again for n==0,2,4,8. As predicted by Theorem 10b, four

right angles appear in each error curve, and it appears that because of
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Figure 8. E and E-—Emin as functions of degree n for
approximation of e? on the unit disk by partial sums of

the Tayior series and by Chebyshev approximations.

v

degree n



-Figure 9. Error curves for best polynomial approki—_.f

mation to f(z) =;%I over the ellipse passing through

. 1, 1, 1, 1., =
the points (2,51), (2,-2-1), (-2,—2—1), (—2,-?2—1).'



s..\

TS S

-

470

t
i

Figure 10. Error curves for best polynomial approxi-

mation to f£(z) =e? over the unit square.
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T;n will not approach 1 as n approaches infinity. But will the
!
average of ig%fll over the unit square approach 1? It appears that the

them

tendency of best approximation error curves to approach a circular shape
in some measure is not limited to approximation on a disk.
I have not computed any rational best approximations, but I have
plotted error curves for the few numerical examples of them which I
have been able to obtain from others ([13]). fThe curves in these examples
have been very nearly circular with winding numbers min+l for approxi-
mations of type (m,n). Thus the tendency for best approximation error
curves to approximaté circles seems not to be limited to polynomial
apbroximation either. It would seem thgt this circularity is in some
way a general feature of the supremum norm for complex approximation.
For further examples, with plots and numerical coefficients, see

Appendix C.

3. Beginnings of an explanation

As a first step in the direction of explaining the occurrence of
nearly-circular error curves, we can prove from Rouché's theorem that
in the extreme case in which an error curve e(C)==(f—rmn)(C) is perfectly
circular, with sufficiently high winding number, then rmﬁ(z) is neces-
sarily a best approximation to £(z). This result appeared to be new
until I discovered that it has been proved independently for the case
of the unit disk by V. Klotz ([21]) earlier this year. The extension

from polynomial to rational approkximation is his.
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Theorem 11. Let K be a Jordan region in the pblane with boundary

. C, and let f(z) be analytic in the interior of K and continuous on C.

Suppose that r(z) is a rational approximation to f of type (m,n) such
that the error function f(z)-r(z) maps C onto a perfect circle around
the origin with positive winding number >mtn+l. Then r is a best |
rational approximation to f over K.

Proof. Suppose on the contrary that thege exists some rational
function ¥ of type (m,n) such that [ £-%|| < ||£-r]| over K, hence the same
over C. Since f(z)-r(z) is circular, it follows that |f(z)—§(z)|<|f(z)—r(z)l
for every zeC. Theréfore, by Rouché's theorem, r-¥ must have the same
nuﬁber (#zeros;-#poles) interior torK as f-r, which is at least mtntl.
Hence r-f must have at least min+l zeroé within K. This is impossible
since this difference is of type (mn,2n). Q.E.D.

As an immediate corollary, we may note that for any N>n, the best
degree-n polynomial approximation to zN over a disk centered at the
origin is p*(z) =0, for (zN—O)(C) is in this case a perfect circle with
positive winding number N>n. Thus the analogs of the Chebyshev poly-

nomials over the unit disk rather than.the interval [-1,1] are just the
2

‘monomials 1,2z,2°,....

The direct applicability of Theorem 11 is limited, because only a
rational function can have circular error curves on a circular domain.
The following proof was suggested to me by Lars Ahlfors.

Theorem 12. Let K be a disk in the plane bounded by a circle C,
and let f(z) be meromorphic in the interior of K and continuous on C.
Suppose r(z) is a rational function with the property that f(z)-r(z)

maps C onto a perfect circle around the origin. Then f must be a
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rational function.

Proof. By the principle of symmétry ([41], p. 219), £(2)-r(2) can
be extended to a function meromorphic in the plane whose zeros and poles
are symmetric with resbect to C. Such a function is necessarily mero-
morphic in the extended plane, hence rational ([19], vol. 1, p. 217).

Therefore f is rational also. Q.E.D.

4. Possible next steps

But the main question remains unanswered. In what sense and under
what circumstances do best approximatiohs error curves approximate circles?
How do we account for Figure 2? I will close this section by mentioning
some of the approaches to the problem which I have considered. Perhaps

one can lead to the answers sought.

Carathéodory-Fejér. On the unit disk, the problem of approximating

an analytic function by polynomials may be put this way: given the tail

zn+1 + c zn+2 + ..., what partial sum

of a Taylor series, f(z) =c )

n+l

PX(z) =cq + cyz + ... + cnzn minimizes the error |/f-p*|| ? cCarathéodory ([5])

and Fejér in effect considered the reverse situation: if p(z) =c. + c.z +

0 1
n n+l n+2
.0.+ i i i * = * o0 i i
c 2 is given, what tail f*(z) Cht12 + C 422 + minimizes

the error ”f*—pll over the unit disk? The answer, they found, is that
f* 1s always a rational function, and (£*-p)(C) is a perfect circle with

winding number n. (Part of this result may be proved by an application of

Rouché's theorem exactly parallel to that used in the proof of Theorem 11.)

.
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This example reinforces the idea that circular error curves are a rather
general feature of best approximation in the complex plane. Can it be

exploited?

Different measures of near-circularity. If best Chebyshev approxi-

mations can be characterized somehow in terms of nearly-circular error
curves, it is probable that '"nearly circular" should not be defined in
terms of maximum relative deviation from the circle of maximum error.
Examples are common like that of Figure 6d, in which the error curve is
circular over most of its length but dips far from the circle of maximum
error at its minimum magnitude. Other candidates for definitions of
nearness are the average modulus over thé circle df Ie(Z)I, and the area
(computed with multiplicity) of the region enclosed by e(C). Simple and
potentially useful properties of each of these quantities are reported
in some of the well-known works on complex analysis (cf. [45]1, p. 174,

[42], p. 186).

Perturbation and deformation. We know (Theorem 11) that circular

error curves of sufficiently high winding numbers correspond to best

. rational approximations. Given a Jordan region K and an analytic

function f on K, can we perturb f slightlylso as to achieve a function
f for which there is an approximation function whose error curve is
perfectly circular? Alternately, can we 1eavelf fixed but deform K
slightly with the same effect? In either approach one would aim to
show that since the best approximation error curve in a nearby problem
is exactly circular, the error curve in the given problem is nearly

circular.
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Expansion from a point to the given region. As r-+0, the best

rational approximation Rmn(f;r) to an analytic function f over the disk
of radius r approaches the Padé fraction Pmn(f), and its error curveb
approaches a perfect circle ([51]). Starting instead at r=0 and moving
outward, can we show that as r increasés the drift of Rmn(f;r) away
from Pmn(f) has the effect of maintaining that circular shape to the

maximum extent possible?
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V. CONCLUSION

Plenty remains to be done in complex Chebyshev approximation, poly-
nomial or otherwise. Here are three questions which are not too difficult

to tackle, whose answers would be very good to have.

1. No reasonably general examples of best approximations to analytic
functions on the complex disk seem to bg known. The sources I have seen
which give explicit polynomial épproxiﬁations in the complex plane are
[2], [21], [28], [35], and [37]; none of these gives a reasonably non-
trivial best approximation over the disk whose error curve is not per-
fectly circular, and examples with circular error curves are certainly
extreme cases (Theorem 12). For example, can we find analytic expres-—
sions for the best polynomial approximations to e? over the disk of
radius r about the origin? Further computational work along the lines

described on P. 27 might suggest probable solutions to such a question,

which could then perhaps be confirmed theoretically.

2. In what sense do best polynomial approximation error curves
over the unif disk approximate circles, either for fixed n or asymp-
totically for n+«? How does the answer extend to other domains, or
to appréximation by rational functions? Can best approximations be

characterized in some way in terms of the shape of their error curves?
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3. We have shown that Lawson's algorithm is unsatisfactory for
complex Chebyshev approximation because it converges too slowly whenever
the best approximation error curve is nearly circular. Can the algorithm
be altered to get around this problem? Can one design an algorithm
which, rather than failing as a circular error curve is approached, takes

advantage of the fact that the limit error function is nearly circular?
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APPENDIX A. PROOFS OF THE BASIC THEOREMS

Runge's Theorem

(Proof from Grabiner [18] 1976.)

Lemma 1. Let K be a compact set in the plane and let f(z) be analytic
throughout a neighbérhood of K. Then for any €>0, there exists a rational
function Q(z), all of whose poles lie in the complement of K, such that
”f‘Q” <e over K.

Proof ([41], Lemma IV-1.1). Letbﬁ be an open region containing K
in which f is analytic. We will need to make use of a rectifiable system

of curves I' contained in H~K such that Cauchy's integrai formula holds

on I':

1 f(2) =
2mi fF L-z ¢ = £(2) .

To find such a I', cover H by a grid of closed squares fine enough so that
every square which has points in common with K is contained in H. It
can then.be shown that the boundary segments of the system of those
squares which have at least one point in common with K will serve for r.
(For details see [41], Lemma III—lO.i).

Now let z=z(t) be a parametrization of I', with 0<t<l. z'(t)
exists at all but a finite number of points of I'; let M be the maximum
of ]C'(t)l where it exists. The function £G) is a continuous func-

t(t)-z

tion of t and z for zeK, so we can divide [0,1] into a finite number

N
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of subintervals [ti’ti+1]’ i=0,1,...n-1, such that

£(Z(t))  £(Llt)))
t(D-z ~ Ttz

€
< e t€[ti,ti+l], zeK.

Hence, taking

ol EE(e))
Q(z) = Lo —Z‘;*(?l—)_—z— [zt 1)-2(td],

we have for zeK

fEE 4 - e

T
n-1 ti+1‘ £(z(t))  £(g(ty)) '
i iEO t, z(t)-z ;(ti)_z ¢'(t) de
i .
<9-M=e. Q.ED.

Lemma 2. Let B be the collection of functions on K which can be

approximated arbitrarily closely by polynomials. Then for MK, E%X

belongs to B.
Proof. Let U be the complement of K in the plane and let
p={A: ;%XWZB} . For large enough A the Taylor series for E%X

converges uniformly on K, so p is not empty. If A belongs to p and if

1 _ 1 e |
z-U  z-A a z—l)

is the uniformly converging sum of a series in powers of ;%X° Thus p

1s an open subset of U. Now suppose that u is a boundary point of p,

lu—l|'<dist(A,K), then y also belongs to p, since

and choose a sequence {Xn} in p with limit Y. Since U does not belong
to p we must have Iu—knl 2 dist(kn,K) for all n. In the limit this gives
dist(M,K)=0, so that u¢gU. Thus the boundary points of pcU are disjoint

from U, and hence p=U. 'Q.E.D.
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Similarly,

v
9x

au|  |av] . 3w(e)
oy|, |9y

Hence, if we define

wigy = RU_V, . . U3V

¥(z) = ax_ay) + 1 8y+3x) s i (8)
then

G2y | < 2220 (9

Now ¢(z) is not analytic throughout Dn’ so Cauchy's integral formula
does not apply to it. But we can use Green's identity to construct a
generalized form of Cauchy's integral formula to take advantage of the 7
faét that @ is hnearly" analytic, as represented by the bound (9). To
do this, set f(z) = —A;-for some ng, and let I'' be the compound arc

-z

Ln-FG-Ce, where C€ is a small circle of radius € surrounding the

point z. Then f(z) is analytic in the region bounded by T'', and &(z),
as noted earlier, has continuous partial derivatives in that region.

If £(z) =a(z) +iB(z), we may write

fr"f(Z)@(Z)dz = fr' [a(z)U(z) - B(2)V(z)]dx - [B(2)U(z) +a(z)V(z)]ldy

+.ifr'[8(z)U(z) +0.(2)V(z)1dx + [a(2)U(z) - B(2)V(z)]dy . (10)
To this we apply Green's identity,
[ B@ax + Q@dy = [f GE-22) axay .
Using the fact that f is analytic, (10) becomes
J 820Gz =[] £ ge) - T T+ 1) ~ T} axay

S

where the area integral is over the region bounded by I'', which is RnS
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minus the disk around z bounded by CE. Now plugging in f(§)==z%;, and

taking the limit €+ 0, we obtain after some manipulation

- o(r)dr o(r)dg l ¥Y(z)d&dn
®(z) 2ﬂi &, -z - 2ﬂ1 f i~z + [f .-z ’
6

which we write in the form

o(z) = Il(Ln;z) + IZ(PG;Z) + IB(RhG;ZZ' (11)

The integral Il(Ln;z) is analytic on K, and therefore by Runge's
theorem it can be approximated arbitrarily closely by polynomials. The
integral IZ(PS;Z) vanishes, by‘virtue of (7) and the fact that ¢ is
analytic on Gé'. Furthermore, I3(Rn5;z) approaches 13(R6;z) uniformly
for z in K as n+w. Combining these facts and taking (6) into account
also, we have now shown that to prove Mergelyan s theorem it is suffi-

cient to show that

inf
P(z) ’IP"I3(R ;-)[h, +0 as §-+0, (12)
where P(z) ranges through all polynomials and Il IIP is the supremum

norm over I.

To establish (12) we need a lemma.

Lemma. Given § and any point CSRG, there exists a polynomial P_(z)

g
for which
IPC(Z)I <-%— ,  zEK (13)
and
1 Bs?
IPI(Z) e 3 - zek, |z-z| > 168, (14)
- N

where A and B are constants independent of 8§, and for each § the degree

of PC(Z) is bounded by a number independent of [.
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Proof. Without loss of generality let us assume Z=0. Since the
complement of K is connected, it conﬁains some Jordan arc £ with end-
points t; and t, such that lt1|=26, |t2|=36, and which lies within the
disk |z|<48. Let d be a Jordan region which contains & and has no
points in common with either K or the circle |z|=46.

Let z=T(w) map the region Iw]>46 conformally onto the complement
of d in such a way that the points at infinit; correspond to each other.
Denote by D the image of d under the transformation Z==£%w Then the

T(46w)

function z = 48 maps [w|>l conformally onto the complement of D, and

it may be written in the form

D lies in the disk |w|<1, and by choice of the endpoints ty and t, its
diameter is at least %. It can therefore be shown using arguments of
capacity which we shall not go into (lal is the capacity of D; see [1],

Section 2-3) that we have

=< Jal <1, (15)
)
The function F(w)—aw==b-+7;~+—§~+... is analytic in |wl>l and at

infinity, aﬁd so attains its maximZm on the unit circle, which must be
no more than 2. By applying Cauchy's estimate to F(%) on the unit
disk, we see that |

[b|<2, la <2, k=1,2,..., . (16)
and therefore

|F(w) - aw - b <_R47T for.lw|>2 .
It follows that

. 2 :
| T(w) - 46b - aw| < 64f%T for |w|>86. } an
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Now w=T_1(z) is a conformal transformation of the complement of d onto
the region lw|>46, and by applying the minimum modulus principle to
T1(2) we see that lT_l(z)l >|z| throughout the complement of d. Using

z
this fact, for lz,>86 we compute

r 1 1 - aT-l(z)-—z-+46b
|7748 1y at 1 (2) (z-46b)
2

R A (by (7))

IaIIT (z)l Iz-46bl

2 2

< 6246 ) 210246 by (15)) .

|a| Iz! |z-46b| Izl |z—46b|

If we take |z|>168, then by (16) this bécomes
) .
, S ,
z—iGb - -i < 20483 s |z|>166 . (18)
at “(z) |z|

On the set K the function ——:%?——-is anal&tic, with the bound
at "~ (z) '

1
aT_l(z)

< ,ahs_ <2 oy as), (19)

so by Runge's theorem and (18) there exists a polynomial Q(z) such that

: 2

z—i&b - Q(z) <3(l-)—4—%— , zek, |z[>166, (20)
Z

IQ(z)|<{%y zeK . (21)

We now may compute

48b 2 1 1
———— - 45b[Q(2)]1°] = 468|b] l {—F= - Q2 H—% + Q(2)}
Y , 2—43D 2-48b
< 86{2048‘32} L Q) (by (16) and (20) )
2|3 |7z48b Q(z y an ’
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and thus by (21),'for a suitable constant A

l,
) 2
48 usble@1?] < A, o, zex, |z[>166. (22)
2 1 3
(z-48b) |z |
From the equation
1_ 1 __ 4, _168%°
2 zh0b o ash)? 2(z-48b)2
we have by (20), (22) and (15) ;
2
2 A, S 2
2
L. fqee) - 4oba¥(ay]| < 20488% | DL 648"
, |z || |z] |z-46b]
A,87
<=, zeK, |z|>166
2]

for some constant A2. ,

By this inequality and (21), we méy take Po(z)==Q(z)-46bQ2(z) and
satisfy conditions (13) and (14) of the Lemma. Now by continuity any
PC(Z) satisfies (13) and (14) not just at Z, but throughout some neigh-
borhood of 7. K is compact, so a finite number of such neighborhoods

cover it. Hence a finite collection of polynomials P_ will satisfy (13)

g
and (14) at every point in K, and so we may bound the degree of PC by

a number independent of . This completes the proof of the Lemma. Q.E.D.

It remains to apply the Lemma to demonstrate (12). Given §, the
degree of PC is bounded, and so the function
_ 1
P(z) = 5= HR ¥(E)P, (2)dE dn

§
is a polynomial. We have

P(2) - T, Rg32) | s o ”R' MONENE —E]_‘;ldgdn.
, s A

To evaluate this, break RG into two parts: the part outside the disk
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|z|$l66, and the part inside. By (9) and (14), the integral over the

former is of order w(98).
is also of order w(§).

is proved.

By (9) and (13), the integral over the latter

Thus (12) 1is established, and Mergelyan's theorem
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Existence of best approximations

Theorem 4 (Existence of best approximations). Let f(z) be contin-

uous on a compact set K Iin the plane. Then for any n>0, there exists
a degree-n polynomial p*(z) of best approximation to f over K; that is,
fhere exists a polynomial p*(z). such that “f¥p*]|5 ”f¥p|| for every
degree—n polynomial p(z). . !

Proof ([11), pp. 138-139). Given f(z) consider two functions de-

fined on Cn+1:
. n
' k
d(a,,ecs05a ) = “f - z a, z s
0 n k=0 k
' n
. k
h(a.,...,a ) = “ Z z .
0 n® k=0ak

Both d and h are continuous. Let S denote the sphere

s ¥ e )?
S: =1
1<=0ak

in Cn+1. S is compact, and hence h must take on a minimum value m there.
The case m=0 is possible only if 1,z,...,zn are linearly dependent over
K, in which event K has no more than n points and f(z) can be approximated

with zero error by an interpolation polynomial; so let us suppose m>0.

If we now write
n 4
‘- [ I |ak|2] ,

nakk
I Tz
k=0

then

h(ao,. .o ,an) =r

so that

. h(ao,...,an) > mr .



Moreover,

[a ¥
]

- y a zk 2 y ék -
LR B D ]

v

me - | £ ]].

From this inequality it is clear that as r approaches infinity, d must
do the same. Accordingly, for suitably large R, d must have the same

infimum over the closed ball

k=0
as over all of Cn+1. This ball is compact, and so d must attain a

minimum at some point within it. This point is in the -(nt+l)-tuple of

coefficients of a best approximation polynomial p*(z). Q.E.D.

63
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Uniqueness of best approximations

Lemma. Let f(z) be continuous on a compact set K in the plane
which contains at least n+2 points. Let p*(z) be a best degree-n poly-
nomial approximation to f(z) over K. Then the extremal set Kb on which
f(z):p*(z) attains its maximum magnitude contains at least n+2 points.

Proof ([25], pp. 18-19). Suppose on the contrary that KO contains
8 points Zk’ with s<ntl. Then we can construct an interpolation poly-

nomial q(z) of degree n such that
a(z) = £(z) -p*(z) , k=l,...,s.

On K ,

[£(2) - p*(2)19(2) = E2>0,

where E==,ff—p*”. f, p*, and q are all continuous, so there exists

an open set Kl’ KS:K<:K, such that

1

Re{[£(2)-p*(2)]a(2)} > ,  zeK, .

We will now show that for éufficiently small A>0, the polynomial p=p*+Aq
is a closer approximation to f over K than p*, thus contradicting our
assumption and proving the Lemma. |

First, consider zeK,. Let M denote the maximum of |q(z)| on K.

1
Then

|£42) -5(2)|% = |[£(2) - p*(2)] - Aq(2) |?

= |£(2) - p*(2) |2 = 2Re{[£(2)-p*()19(2)} + A2|q(z)|>

12
<E2—%§—+A2M2 = ‘EZ—A(EZ—}\MZ).
2

‘For A§§§ this quantity is less than Ez, so p(z) is a closer approximation



only if a=d.

Thus p*(z

K

66

=§*(zk) fot at least n+2 points of X, and this

means p* and p* must be identical. Q.E.D.
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Kolmogorov's characterization

Theorem 6 (Kolmogorov's characterization). Let f(z) be continuous

on a compact set K in the plane. [Let p(z) be a polynomial of degree n,
and let K, be the extremal set of points z at which lf(z)—p(z)| = ”f%plL
Then p is a best degree-n approximation to f over K if and only if, for
any degree-n polynomial g (z), . /

max

zek Re{lf(z)-p(z)lg(z)}20. (1)

Proof ([25], pp. 18-19). ' In the "if" direction, suppose p is
given such that (1) holds for every q of degree n. For any p(z) of
degree n, take q =p-p. Then for some z €K,

Re{[f(zo)-p(zo)]q(zo)} >0,
and therefore

B 1P = £ )-pG )tz

|£G-ptz) | + 2Re{[£(z_)-p(z ) Talz )} +|a(z) |

W

£z )-p(z )] % = Il £-p]) 2.

Thus p is a better approximation to f than p.

In the'"only if" direction, the argument is just as in the proof
of the lemma leading to Theorem 5. Suppose that p*(z) is a polynomial
of best approximation but that (1) does not hold. Then there exists
a polynomial q(z) of degree n such that

max

zeKo

Re{[f(z)-p*(z)]q(z)} =-2¢

for some €>0. £, p*, and q are all continuous, so there exists an

<K, such that

open set Kl, K&:Kl
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Re{[£(2)-p*(2)Ja(2)} < -e,  zeK, .
We will now show that for sufficiently small A>0, the polynomial
p=p*+Aq is a closer approximation to f over K than p*, thus contra-
dicting our assumption and proving the theorem.
First, consider zeKl. Let M denote the maximum of |q(z)]| on K,
and write E= ” f—p*” . Then

|£()-5(2)|? = | [£(2)-p*(2)] - Aq(z) |2
= |£(2)-p*(2) |? = | [£(2)-p*(2)1-Aq(z) |?

< EZ-De+2%M = EZ-A(2e-nd).

For A<2—§ this quantity is less than E2, so p(z) is a closer approximation
to'f(z)Mthan p¥(z) over Kl.

Second, consider zeK—Kl. ‘K-K1 is a closed set, on‘ which
If(z)—ﬁ(z)l<E, so for some 8>0, |f(z)-p(z)|<E-§ on K-K,. It follows

1

S
th f A
at for A< N

b}

[£(2)-B(2) |s |£(2)-p*(z)| +A|q(2)]
<E-8§+8= E.

Thus p(z) is also a closer approximation to f(z) than p*(z) over K—Kl.

Q.E.D.
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Remes®s characterization

Theorem 7 (Remes's characterization). Let f(z) be continuous on

a compact set K in the plane. Then p(z) is a best degree-n polynomial
approximation to f if and only if for some r<2n+3 there exist r points
Zl' cos ,zr in the extremal set Ko for p, and r numbers Wl reee s W with

wk>0 and Zwk=l, such that ;

r
Y w {f(z )-p(z )}a(z ) =0 (1)
k=1 k k k k -

for every degree-n polynomial q.
Proof ([25], chap. 2). From Kolmogorov's characterization (Theorem
6) we know that p is best if and only if, for any polynomial q of degree

n,

;;‘?; Ref{e(z)q(z)} > 0,

where e(z) = f(z)-p(z) as usual. Putting q(z)=2ckzk, we see that this
is equivalent to the statement that if for some coefficients {ck} and

real a
o n %
Re{ Z cke(z) z } <a for all zeK , (2)
o o) o
then aOZO. Now the inequality (2) can be interpreted in terms of a

closed half-space in Cn+l. It states that for any sto, the point

— —n
w = (wo,wl, ,wn) = (e(z),e(z)z, ... ,e(2)z ) , sto 3)
L n+1 o= '
lies in the half-space of C defined by Re ) ckwkSao. The state-
k=0
ment that whenever (2) holds a  must be 20 is therefore equivalent to
the statement that the origin 0 in Cn+1 is contained in the intersection

of all half-spaces which contain all the points w given by (3).

iy
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Ko is compact, and so its continuous image w(Ko) from (3) is com-
pact also. Therefore, since the convex hull of a compact set in a finite-
dimensional Euclidean space is compact, the convex hull of w(Ko) is com-
pact. Now it is the case that when a convex set is compact, it is the
intersection of all the closed half-spaces containing‘it. Applying
this fact, we see that the argument of the preceding paragraph leads
to this conclusion: p is a best appréximation‘polynomial if and only
if the origin in Cn+1 belongs to the convex hull of the set of points
W(Ko) given by (3).

The conclusion éf Theorem 7 now follows from a theorem of Carathé-
odory ([8], p. 17) which states that in‘an n-dimensional Euclidean space

every point of the convex hull of a set B is expressible as a convex

n+1

- linear combination of n+l or fewer points of B. ¢C is (2n+2)-dimensional,

. . s . . . -+
so the ‘equation (1) is just such an expression for the point 0 in ¢t 1.

Q.E.D.
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‘APPENDIX B. PROGRAM LISTING

C PROGRAM CHEBY (CIRCULAR DISK VERSIONJ

C

C CONTROL PROGRAM FOR COMPUTING AND PLOTTING COMPLEX CHEBYSHEY

C APPROXIMATIONS. CALLS THE FOLLOWING SUBROUTINES:

LAWSON: COMPUTES BEST POLYNOMIAL APPHOXIMATION COEFFICIENTS

ERRCRY: PLOTS THE ERROR CURVE N THE COMPLEX PLANE

ERRMAG: PLOTS THE MAGNITUDE OF THE ERROR AS A FUNCTION OF PT. NUMBER

LLOYD N, TREFETHEN, FEBRUARY 1977

IMPLICIT COMPLEX (C,F,Z)
COMMON NPTS,ZSET(200),F1200),C(10),NDEG,SCAL,EMIN,SIGMA ,EMAX

C

C SET CONTROL PARAMETERS: !
NPTS=128
WRITE 165,204)
ACCEPT 201,NDEQ

C
C SET UP PLOTTER:
CALL PLOTS(14,,11.)

C

C SET UP DISCRETE POINT NETWORK ZSETI(K):
WRITE (6,205)
ACCEPT 206,RD
DO 10 K=1,NPTS )
CTMP=CMPLX (0, ,2.%3.14159/FLOATINPTS))
ZSET(K)=CMPLX(RD,0,)#CEXP {CTMPHCMPLXIFLOAT(K) ,0.))
FIK)=FUNCTIZSET(K))

10 CONTIKUE

c
C PERFORM COMPUTATIONS AND PLOTTING: . -
WRITE (6,202)
ACCEPT 201, 1GLD
IF {IGLD.EQ.1) CALL PLOT!(-.25,.5,-3)
CALL LAWSON
WRITE (6,207}
\ ACCEPT 201, ICRY
‘ ' IF (1CRV.EQ.1} CALL ERRCRY
IF (IGLD.£Q.1) CALL PLOT(.25,-.5,-3)
CALL ERRMAG

OO0

STOP
¢
201 FORMAT (i6)
202 FORMAT (' GOULD(1) OR CALCOMP(0)?'/)
204 FORMAT (' DEGREE?’/)
; 20§ FORMAT (' RADIUS OF DISK?'/)
i 206 FORMAT (F10,0)
207 . FO4MAT (' PLOT ERROR CURVE?'/)

END.

COMPLEX FUNCTION FUNCTIZ)
; g THIS IS THE FUNCTIOR TO BE APPROXKIMATED.

IMPLICIT COMPLEX (C,F,Z)
FUNCT=CEXPIZ)

N RETURN
END

COMPLEX FUNCTION CPIZ)
[+
g THIS 1S THE APPROXIMATION POLYNOMIAL.

IMPLICIT COMPLEX (C,F,W,Z)

COMMON NPTS,ZSETI200),F{200),C(10) ,NDEG, SCAL,EMIH,SIGHA,EMAR
. CTMPSCINDEG+1)

\ IF (NDEG.LT.1) GO 70 6

: DO 5 I=1,NDEQ

CTMPSCTMPXZ+C (NDEG={+1)

CP=CTMP

‘ RETURN

. END

- 1]
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SUBROUTINE LAWSON

c
C THIS 1S AN (MPLEMENTATION OF LAWSON'S ALGORIYHM FOR
C COMPLEK CHEBYSHEV APPHOXIMATION {N IN A JORDAN REGION,
C BASED ON THE WOHK OF S. ELLACOTT AND JACK WILLIAMS N
€ "LINEAR CHEBYSHEV APPROXIMATION IN THE COMPLEX PLANE
G USING LAWSON'S ALGORITHM," MATH. COMP. 30, NO. 133,
C PP, 35-44,
<
€ LLOYD H. TREFETHEN, FEBRUARY 1977
€
IMPLICIT COMPLEX (C,F,Z}
COMPLEX Z(200),CMAT(10,10),CUL(10,10),CRHS(10}
DIMENSION W(200),E(200}
COMMON NPTS, ZSET(ZOO) F(200),C{10) ,RPEG,SCAL ,EMIN, SIGMA, EMAX
HEXP=1
N1=NDEGQ+!
[+
€ SET INITIAL WEIGHTS:

DO 5 K=1,NPTS
5 WIK}=1./FLOATINPTS)

aon

SET UP LIKEAR SYSTEM OF EQUATIONS:

10 WRITE 16,204)
NWPR=0.
ACCEPT 205,NITT
tF (NITT.GE.O) GO TO 12
RITT==-NITT

. NWPR=1

12 IF (NITT.EQ.0) GO TO 70
BO 60 NIT=1,NITT . R
DO 20 J=1,N% S
C5UM=10.,0.]}
DO 15 K=1,NPTS
CSUMZCSUM+CHPLX (W(K), 0. ) %#F (K)#CONJG(ZSET(K} I ux(J=1)

15 CONTINUE -

20 CRHS (J) =CSUM
DO 30 J=1,N1
DO 30 I1=1,R1
CSUM=1(0.,0.)
DO 25 K=1,NPTS

25 CSuM= CSUMOCMPLXlI(Kl 0. )NCONJG(ZSET(KIl*!(l-llKZSETlKl*N(J 1)

30 CMATU1,d)=CSUM

[
€ SOLVE THE SYSTEM:
CALL DECOMP (N1,CMAT,CUL)
CALL SOLVE(NT1, CUL CRHS ¢)
CALL IMPRUVI(NI CMAT.«UL CRHS,C,DIGITS)
WRITE (6,202) (Clll.l-l N1)

C
. € COMPUTE ERROR FUNCTION FOR THE CURRENT SET OF COEFFICIENTS:

EMIN=09999,
EMAX=0,
SIGSUM=0.
SUM=0, .
DO 40 X=1,NPTS
ETMP=CABS(F (K)-CP{ZSET(K})))
EMINZAMINT (EMIN,ETMP)
EMAX=AMAX1 (EMAX ,ETMP)
SIGSUM=SIGSUM+sWIK) RETMPX%2
E(K) ZETHMPXXNEXP

40 SUMzSUM+W (K ) ®E (K)
S1GMA=SQRT (SIGSUM)
EDIFFSEMAK-EMIN
WRITE (6,203) EMIH,SIGMA ,EMAX,EDIFF

€
[ ADJUST THE WEIGHTS AND GO TO THE NEXT ITERATION:
DO S0 K31, ,NPTS
WK} =W (K)XE (K] /SUM
IF (NWPR.EQ.1) WRITE (6,206) K,¥(K) ,K,E(K)
50 CORT I NUE

NEXP=3-NEXP
60 CORTINUE
GO 10 10
70 CONT INVE
RETURN

202 FORMAT (/' ' ,5(2F11.8," *})

203 FORMAT (' EMIM:* ,F11.7,2X,'SIGMA:' F11.7,2K, EMAR:’ ,F11.7/
1 ' EMAX-EMIN:' ,E12.5)

204 FORMAT (/' HOW MANY MORE iTERATIONS?'/}

205 FORMAT (16)

208 FOAMAT ° W(',13,") =' F9.7,3K,'E(",13,') &' F9.T)

207 FORMAT (' CHOP WEIGHTS TO ZERO?'/)
END



SUBROUTIKE ERRCRY
PLOTS THE ERROR CURVE (F-CP)(C) IN THE COMPLEX PLAKE.

e

PARAMETER EX CONTROLS EXAGGERATION OF THE DEVIATION FROM THE CiRCLE
OF MAXIMUM ERROR. WHEN EX=1 THE PLOT IS TO SCALE.

LLOYD N. TREFETHEN, NOVEMBER 1976

IMPLICIT COMPLERIC,F ,W,Z)

COMMON NPTS,ZSET(200),F{200),C(10) ,NDEG, SCAL ,EMIN,SIGMA,EMAX
! 1 CONT INUE
RWRITE 16,203)
ACCEPT 202,EX
EX=1,
WRITE 16,205)
ACCEPT 206 ,NEXMP .
WRITE (6,201) . . I
ACCEPT 202,SCLMAX
CALL PLOT(4.,4.0,-3)

oo QOO0

Q0

PLOT IMAGE POINTS:
IF (SCLMAX.LT.0.) SCAL=3./(-SCLMAXHEMAX)
IF (SCLMAX.EQ.0.) SCAL=3./EMAX
IF (SCLMAX.GT.0.) SCAL=3./SCLMAX
W=F (NPTS)=-CP(ZSET(NPTS))
WeSCALNWACMPLX [ {EMAX-EX3# (EMAX=-CABS(W]) ) /CABS(¥),0.)
CALL PLOT(REAL(W) ,AIMAGI¥W),3)
| DO 20 §=1,NPTS
W=F(1)=-CPIZSET(1})
W=SCALXWXCMPLX ( (EMAX-EX# (EMAX~CABS(W}))/CABS(I¥W),0,)
CALL PLOTIREALI(W),AIMAGIW),2)
20 CONTINUE

. c .

L C MARK ARAOWS: s -
00 30 1=1,8 '

, 112 IXNPTS/E

¢ 12:11+1

; {F (11.EQ.NPTS}) 1221

Z=ZSETII1)

Z2=ZSET(12)

W=F(11)-CPIZ)

W=SCALKWXCMPLX ( (EMAK=EX% (EMAX-CABS (W) )} /CABS(¥),0.)

i W2=F(12)-CPI(Z2)

! W2=SCALNW2ZHCHPLX{ {EMAX-EXN(EMAX-CABS{W21))/CABS(W2),0 )
ZDIR=(W2-W) /CMPLX (25 %CABSiW2-%),0,)

y W3zwe(-1.5,1.)%ZDIR

! WASWs{=1.5,-1.}%ZDIR

, CALL PLOTEREAL(WJ,AIMAG(¥),3)

; CALL PLOT(REAL(W3),AIMAGIW3),2)

4 IF (#,LE.7) CALL PLOTV(REALI{W4) AIMAGI(W4) 3}
IF (1.€Q.8) CALL PLOT{REALI(W4) AIMAG(X4),2)

: CALL PLOT(REAL (W), AIMAGIN),2)

Lo 30 CONTINUE

[z Xy ]

: DRAW CIRCLE OF MAXIMUM ERROR:
! NPC=200
{F [SCLMAK.GT.0.) NPC=200.%EMAX/SCLMAX
§ . CONST3I=CMPLR(0.,2.43.14159/FLOAT(HPC))
{ IPEN=3
i . PO 40 i=1,NPC
} WSEMAX®SCALXCEXP (FLOAT (1) XCONST3}
- CALL PLOT(REAL(W} AIMAGIW),IPEN)
IPEN=5=-IPEN
40 CONTINUE

C
; C DRAW AXES:
H TMP=3 . .%1.1
CALL PLOT{-TMP,0.,3)
CALL PLOTITMP,0.,2)
CALL PLOTI(O.,TMP,3)
CALL PLOT(O.,-TMP,2)

: : ¢

i C WRITE EMAX AND OTHER INFORMATION ON PLOT:

CALL SyMmBOL (-1.5,-3.5,.16,10HERROR MAX:,0.,10)
CALL NUMBER (.15,-3.5,.16,EMAX,0.,7)

CALL SYMBOL (-1.38,-4.04,.16,1H¥,0.,1}

CALL NUMBER (-1.2,-4.04,.16 FLOATINEXMP),0,,~1)
CALL SympoL (-.5,-4.0,.08,6H0OEGREE,Q.,6)

CALL NUMBER (.05.-4.0,.08,FLOAT(NDEG),0.,-1)
CALL SYMBOL (.6,-4.0,,08,3HEXP,D.,3)

CALL NUMBER ¢.9,-4.0,.08,EX,0.,2}

i
i
i

c
C FINISH UP:
CALL PLOTl=4.,-4,,=3)

c RETURN
! 201  FOAMAT (' SCLMAR?'7)
i 202  FORMAT (F§0.0)
i ) 203 FORMAT (' EXPANSION FACTOR:'/)
} . 205  FORMAT (' EXAMPLE NUMBER:'/)

: 206  FORMAT (15)

END



c SUBROUTIKE ERRMAG
. g PLOTS THE ERROR MAGNITUDE ON A SCALE FROM EMIN TO EMARX.

IMPLICIT COMPLEXI(C,F,W,Z)
. COMMON KPTS,ZSET(200) ,F(200),C110) ,NDEG,SCAL,EMIN,SIGMA, EMAX
; CALL PLOT(2.,8.2,-3)
YCONST=4./FLOATLNPTS)
. NDEG1SNDEG#1

c
€ PLOT ERAOR MAGNITUDE: _
U scaL=t,
IF (EMAX.GT.EMIN) SCALZ1./(EMAX-EMIN)
EMAGESCAL#ICABS (CP(ZSET(NPTS}}~FUNCTIZSETINPTS)))-EMIN)
CALL PLOT{O0.,EMAG,3)
DO 20 1=1,NPTS
Z=ZSET(1)
EMAGESCALS (CABS(CP{Z}=F (1)) =EMIN)
Y= IXYCONST
CALL PLOTIY,EMAG,2)
\ 20 CONTINUE

c .
C WRITE EMIN, SIGMA, AND EMAX ON PLOT:
CALL SYMBOL (4.36,0.,.08,4HMIN:,0.,4)
CALL NUMBER (4.76,0.,.08,EMIN,0.,7)
’ CALL SYMBOL (4.2,.7,.08,6HSIGMA:,0.,6)
i CALL NUMBER (4.76,.7,.08,51GMA,0.,7)
; CALL SYMBOL (4.36,.92,.08,4HMAX:,0.,4)
CALL NUMBER (4. 75..92..08,EHAX.0..7l

C
C FINISH UP:
CALL PLOTIG6,,~-8.2,998])

204 FORMAT (* EMIN:’ ,F12.7/° EMAX:'.F12.1I)
END .

4
{
!
¢
3



[

SUBROUTINE DECOMP (NH,A,UL)

INTO UL FORM.

“COHPUTER SOLUTION OF LlHEAR

{PRENTICE~ HALL, 1967)

¢
C DECOMPOSES COMPLEX WATRIR A
C ADAPTED FROM FORSYTHE & MOLER,
€ ALGEBRAIC SYSTEMS"
C
DIMENSION SCALES(103,IPS(10)
COMPLER A10,10),UL¢10,10) ,PIVOT,EM
COMMON /LlNEARI IPS
H=NN
[+
C IHITIALIZE IPS,UL AND SCALES:
DO 5 1s1,N
IPSti)=}
ROWHNRM=0.0
Do 2 Js=t N

ULt d)=A11,9)
IF (ROWNRM, GE.CABS(UL(I.J))I GO0 70 2
ROWNRM=CABS{ULLI,J))

CONTIHNUE

IF (ROWNRM.EQ.0.) GO YO 4

SCALES(1)=1,/ROWNAM

GO 70 §
CALL SiNG(1)

SCALES(1}=0.0

CONTIRUE

€
€ GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING:
Ki31=K-

IF (NMI.LT,1) GO TO 18
DO 17 K=1,HM1

11

B81G=0.0

DO 11 1=K,N
IP21PSI1)
SIZE=CABS (UL

IF (SIZE.LE.BIG

BIG=S{ZE
1DXPiV=
CONTINUE

P,K})#SCALES(IP)

G0 TO 11

IF (BIG.NE.O.3 GO TO 13

CALL SINGt2)

- GO TO 17

33

15

C KOLER,
c

c
1
2
[+
L
3
4
[

IF {1DXPIV.EQ.K) GO TO 1§

J2IPSI(K)

IPSIKI=IPSLIDXPIY]
I1PSLIDXPIV)=Y

KP={PS(K)

PIVOTSUL (KP,K}

KP13K+1

DO 16 1=XP1,N

IP=1PS(1)

EM=-UL{IP,K)/PIVOT

UL 1P K)=-EM

DO 15 J=KP1, N
uL{ipP,Jdi= UL(|P J) +EM®RUL (KP,J)

CGHTINUE
CONTINUE
CONTINUE
RKP=IPS(N}

IF (UL(KP,N}.EQ.(0.,0.)) CALL $1NQ(2)

RETURN
END

SUBROUTINE SOLVE(NN,UL,B,X)

L=

€ SOLVES THE COMPLEX MATRIX EQUATION (UL)%X=8, WHERE UL IS

€ IN U-L FORM AS PREPARED BY "DECOMP.” ADAPTED FROM FORSYTHE AND
"COMPUTER SOLUTION OF LINEAR ALGEBRAIC SYSTEMS."

COMPLEX UL(10,10),B(10),X(10),SUM
DIMERSION IPS(10)
COMION /L INEARZ 1PS

=RN
KPI=N+1

0O 1 J=i, 1M1

SUM=SUM+ULTLP ,JIRX(J)
KUi3=8(IP}-SUM

IPSIPS(N)

X{M)I=XEN)/UL(IP,N)
IF IN.LT.2) GO TO §

DO 4 |BACK=2
I=NP1-1BACK
IPZIPSLI)
IP1z141
SuK=10.,0.)
00 3 J=IP1,N
SUM=SUM+UL (1
RUI={K()1)=-§
RETURN

END

N
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SUBROUTINE IMPRUYINN,A,UL,B,X,DIQITS)

C
C IMPROVES THE LINEAA SOLUTION ITERATIVELY. ADAPTED FROM FORSYTHE
C AND MOLER, "COMPUTER SOLUTION OF LINEAR ALGEBRAIC SYSTEMS."

¢

COMPLEX A(10,10),UL(10,10),B(10),X(10),R{(10),DK(10),T,5UM
DOUBLE PRECISION DAA,DAB,DXA,DXB,DSUMA,DSUMB

N=NN

EPSZ1.0E-8
I TMAXZ16
XNORM=0.
DO 1 {=1,N

1 KHORM=AMAX1 (XNORM,CABS(X(i}))
IF (XNORM.NE.O.) GO T0 3
DIGITS=-ALOGIO(EPS)
@0 TO 10

3 DO 9 ITER=1, ITMAX
00 § i=1,H

DSUMA=0.D0
DSUMB=0.D0
DO 4 J=1,H
DAAZREALIALE,J)
DAB=AIMAG(A(L,d
DXAZREAL(X(J))
DAB=AIMAGIX(J))
DSUMA=DSUMA+DAA¥DXA-DABXDXB
DSUNB=DSUMB+DABXDXA+DAAXDXB

4 CONTINUE
SUMA=DSUMA
SUMB=DSUMB
SUM=CMPLX {SUMA, SUMB)

SUM=Bt|)-SUM
5 R{1)=SUM
CALL SOLVE(N,VUL,R,DX)
DXNORH=0.0
DO 6 I=1,R
T=X(1)
ROI)=X(134DX(1)
DXNORM=AMAX1 (DXNORM,CABSIX(1)=T)}
[ COUNTINUE
IF (ITER.NE.1) GO TO 8
DIGITS=~ALOG10 (AMAX1 {DXNORM/XNORM,EPS))
{F (DXNORM.LE.EPS®¥XNORM] GO TO 10
CONTINUE
G ITERATION DID NOT CONVERGE:
CALL SING(3)
10 RETURN
END

LX)

c SUBROUTINE SINGUIWHY)

C (THE ABOVE INNER COMPUTATION 1S !N DOUBLE PRECISION.)

C PRINTS AN APPROPRIATE ERROR MESSAGE, FROM FORSYTHE AND MOLER,

g "COMPUTER SOLUTION OF LINEAR ALGEBRAIC SYSTEMS,"

GO TO 1,2,3), IWHY
1 WRITE (6,201)
GO 10 10
2 WRITE (6,202)
GO T0 10
3 WRITE (6,203}
é i0 RETURN
201 FORMAT {' MATRIX WITH ZERO ROW IN DECOMPOSE.’)
202 FORMAY (' SINGULAR MATRIX IN DECOMPOSE. ZERO DIVIDE IN SOLVE.
203 FORMAT (' NO CONVERGENCE IN IMPRUV. MATRIX 1S NEARLY SINGULAR.

76
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APPENDIX C. COMPUTED EXAMPLES
The following five pages present near-best polynomial approximations

over the unit disk to five functions which are analytic in the disk. The

approximations have been computed with Lawson's algorithm as described in

Section ITI. These are the functions considered:

f(z) = z4 + z5
Z
£(z) = e
£(z) = tan‘lcg)
!
@ =1
£(z) = (z-1) (z+1) (z-1)

(z-i—l)2

All plots are drawn on normalized scales; the radius of each circle is
equal to the maximum error E given below. The weighted least-squares
error ¢ is also given, so that one may judge how nearly a given poly-

nomial is a best approximation by considering the bound
0 < |lex]] < E

(see p. 25). Numerical coefficients are reported to five places, so that
the polynomials might be used as given with the stated errors E. The
true best approximation polynomial in each case, however, typically
agrees with the near-best approximation reported to only two or three

places in each coefficient.
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T:? \\\\\\%§*§*T~d::>

n=20 n=1

-
-

n=2 . n 3
£(z) = z2° + 2°
po*(z) = ,05680
o= 1.953 E = 1.975
pl*(z) = -,13690 + ,21342z

g = 1.910 E=1.933

p,*(z) = .14216 - .35904z + .411092>

G = 1.823 E = 1.863
~.05973 + .15834z — .320072% + .582122°
o = 1.629 E = 1.662

py*(z)
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n=20 n=1
n=2 n=3
z 2 3 4

£(z) = e® = 2.71828 + 2.71828z + 2.718282

+ 2.26523z + 1.69893z" + ...

po*(z) = 7.23557
G = 8.293 E = 8.438

P *(2) = 2.15636 + 6.965892
G = 6.149 E = 6.254

P,*(z) = 2.59094 + 2.51918z + 5.68210z°
G = 4387 E = 4.435

Py*(2z) = 2.69297 + 2.67192z + 2.616492° + 4.19081z

o = 2.987 E = 2.998
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n=3 n=35

£(z) = tan”lcg = .5z - .041667z° + .00625z° — .00112z’ + ...
Po*(z) = 0.00000
G = .537 E = .549
P *(2) = .50648z
G = .04265 E = .04283
py*(z) = .50002z - . 042832°
G = .006458 E = .006461
ps*(z) = .50000z - .041672° + .006482°

g = .0011602 E = .0011603
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Pé;) =z + .577222% - .65588z° — 04200z + .16654z° + ..

pg*(2) = -.22212

g = 1.806 E = 1.877
p *(z) = -.24585 + .79844z

G = 1.064 E = 1.083
p,*(2) = -.03034 + 1.13510z + .590842°%

g = .713 E = .725
py*(z) = .00939 + 1.02653z + .631952% - .599624°

g =,213 E = .217
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