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1. Background

It is well known that spectral methods for non-periodic geometries lead to
matrices that are not normal. We show that in such situations there may
be a wide gap between eigenvalue stability and Lax-stability, especially
for first-order problems. For example, in some cases eigenvalue analysis
predicts a stability restriction At < CN~!, whereas the Lax-stability re-
striction is At = O(N~%). When such anomalies occur, the results of
spectral calculations may be highly sensitive to rounding errors and to the
smoothness of the initial and boundary data.

At this conference spectral methods were mentioned in only two or
three talks, but I believe this relative obscurity is temporary. Spectral
methods are nothing more than finite difference or finite element methods
carried to unusually high orders of accuracy — typically by means of global
trigonometric or polynomial interpolants which are differentiated to yield
approximate derivatives of discrete data sequences. Since many fluid flows
are smooth in at least part of the domain of interest, high-order methods
are of natural utility.

It is not my purpose to present any applications of spectral methods
in detail, but I will mention some representative references. One early pa-
per of lasting interest is the report by Fornberg and Whitham (1978) on
interacting solitons in the KdV equation and in other nonlinear models of
water waves. Important advances in our understanding of instabilities in
incompressible flows were achieved by the spectral calculations of Orszag
and Kells (1980), and Orszag and Patera (1982), who showed numeri-
cally, for example, that the onset of turbulence in plane Poiseuille flow is
triggered by a three-dimensional finite-amplitude instability at Reynolds
number =1000.
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A recent paper by Fornberg (1988) illustrates the impressive capabili-
ties of spectral methods for solving problems in elastic wave propagation,
as occur in geophysics, even in the presence of discontinuous interfaces.
Finally, examples of “gpectral element” calculations in fluid dynamics, in
which a complicated domain is subdivided into smaller domains where
spectral formulas are applied, can be found in the papers of Patera and his
colleagues (Maday and Patera 1988).

Recently a comprehensive monograph has appeared on this subject:
Spectral Methods in Fluid Dynamics, by Canuto, Hussaini, Quarteroni and
Zang (1988). For details and further references the reader can do no better
than consult that book. Another work well worth looking at is the earlier
monograph by Gottlieb and Orszag (1977).

2. The stability problem

The purpose of this paper is to discuss the numerical stability of fully
discrete spectral methods for time-dependent problems with boundaries —
a subject that is incompletely understood. With finite difference or finite
element methods, the process of computing derivatives is local and at least
approximately translation-invariant, so the matrices that arise are typically
close to normal® and the behaviour of the process as a whole can often be
approximated by Fourier techniques (“von Neumann analysis” ), possibly
supplemented by an investigation of wave reflection at boundaries (“GKS
analysis”). For details see Richtmyer and Morton (1967), Gustafsson et
al. (1972), and Trefethen (1983). By contrast, spectral differentiation is a
global process, and the matrices involved may be far from normal. This
paper will explore some consequences of that fact.

In particular, for spectral methods on bounded domains, Lax-stability
time-step restrictions may be much tighter than the restrictions associated
with various weaker definitions of stability (related, but not all identical)
which go by a number of names, including “eigenvalue stability,” “time-
stability,” “von Neumann stability,” “practical stability,” “s-stability,” and
“stability in the sense of Forsythe and Wasow.” In outline, the two ideas
to be contrasted here are as follows:

Laz-stability: stability for fixed ¢ as Az, At — 0.
Eigenvalue stability: stability for fixed Az and At as t — co.

To make the definitions precise, one has to look at norms of operators. Let
|| || be an appropriate norm, and let Sy a: be the discrete solution operator

1 A normal matrix is one that possesses a complete orthogonal system of eigenvectors.
Equivalently, A is normal if and only if AFA = AAH  where AH is the conjugate transpose.
Symmetric, skew-symmetric, orthogonal, and circulant matrices fall in this category.
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on a grid of N points with time step At:

Snat i v o™t v" = Sk at°, (2.1)
where v" represents the computed solution at time step n. (For an m-step
discretization, v™ is replaced by w™ = (v",...,v"*!'"™)T and Sy A, becomes
a block companion matrix of dimension mN.) Lax-stability is defined by

Laz-stability: ||S§ a,|| < C for all N,n such that nAt < T

for any T and some constant C = C(T'), where we assume a fixed relation-
ship between the space and time discretizations:

At = At(N). (2.2)
Eigenvalue stability is defined for fized N and At by
Eigenvalue stability: ||S} o]l < C for all n,

for some constant C. This is equivalent to p(Sny,a¢) < 1, if p denotes the
spectral radius (largest eigenvalue in absolute value), together with the
condition that any eigenvalues on the unit circle should be nondefective.

For some purposes these definitions must be weakened by logarithmic or
algebraic factors in n or N, but since my concern here is general phenomena
rather than precise theorems, I will not worry about such details. What
is important is that Lax-stability is a uniform bound for all matrices in a
certain class corresponding to finer and finer meshes, whereas eigenvalue
stability is a bound on the powers of a single matrix corresponding to a
fixed mesh.

For the common situation in which a spectral discretization consists of
a spectral differentiation operator Dy in z coupled with a standard o.d.e.
formula in ¢, there is a further equivalent statement of eigenvalue stability:

Eigenvalue stability: The eigenvalues of Dy lie within the sta-
bility region for the time-integrator.

To be precise, we again permit only non-defective eigenvalues on the
g

boundary.) An advantage of eigenvalue stability is that it is a relatively el-

ementary concept, for stability regions are a familiar tool among numerical
analysts (Gear 1971).

The points to be made in this paper can be summarized as follows. In
comparison with finite difference and finite element methods, instabilities
in spectral methods are '

(A) Less well understood, and  (B) More troublesome.
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In particular, the stability condition for an explicit spectral method is
typically both harder to predict and more restrictive than for explicit finite
differences (assuming a uniform mesh). Furthermore, because a gap may
arise between Lax-stability and eigenvalue stability, instabilities in spectral
methods are sometimes

(C) More sensitive to rounding errors
and
(D) More sensitive to smoothness of the solution,

especially for first-order problems. The origin of (C) and (D) is the char-
acteristic virtue of spectral methods: their high order of accuracy. For
smooth problems, the truncation errors in a spectral calculation are often
zero or negligible, so that any instability present is excited only by round-
ing errors. Consequently there are circumstances in which a Lax-unstable
spectral method may give accurate answers. However, the accuracy may
be destroyed by rounding errors, non-smooth data, or other perturbations
such as variable coefficients or lower-order terms.

The distinctions between various notions of stability have been investi-
gated for many years in the theoretical literature of finite difference meth-
ods; perhaps the central point of this paper is that certain spectral methods
provide examples in which these distinctions are of paramount importance.
A classic paper on convergence of unstable formulas with analytic initial
data was written by Dahlquist (1954). The Lax stability theory appeared
shortly thereafter in the survey by Lax and Richtmyer (1956). The sensitiv-
ity to perturbations of certain eigenvalue stable but Lax-unstable formulas
was explored in an important paper by Kreiss (1962), which unfortunately
has had limited influence because it was written in German. Discussions
of various weaker definitions of stability can be found in Strang (1960) and
Gottlieb and Orszag (1977), among others. The book by Richtmyer and
Morton (1967) remains an excellent source on many of these topics.

3. 2nd-order differentiation
Consider the model problem

up = ugg, <z €[-1,1], u(£l,t)=0, (3.1)
and for concreteness let
1=$0>$1>"'>$N_1>$N=—1 (32)

be the Chebyshev exztreme points (= Gauss-Lobatto- Chebyshev points) de-
fined by ; = cos(jm/N). Like most grids for nonperiodic spectral meth-
ods, this grid has spacing O(N™1) in the interior but O(N~?) near the

B
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Fig. 1: Eigenvalues of the second-order spectral differentiation matrix for Cheby-
shev extreme points, N = 64 (log-log scale). The eigenvalues with k > 2N/x
occur in approximate pairs

boundary; such nonuniformity is essential if one is to avoid the Runge
phenomenon of wild oscillations (Trefethen and Weideman 1989). If v =
(V19 vn-1)T denotes a vector of data at positions zy,...,ZN-1, then the
second-order spectral differentiation matrix Dy is the (N — 1) x (N — 1)
matrix

Dy: v w : (3.3)

defined implicitly as follows (explicit matrix entries can be derived from
the first-order matrix given by Canuto et al. (1988), p. 69:

(1) Interpolate v by a polynomial p of degree N with p(x1) = 0;
(2) Set w; = (Dyv); =p"(2;), 1 <j <N -L

This differentiation process is global and, for “smooth” vectors v, highly
accurate. A semidiscrete spectral approximation to (3.1) is now provided
by the system of N — 1 ordinary differential equations

Vs = DN‘U, (3.4)

and if the time derivative is replaced by a linear multistep or Runge-Kutta
formula, the approximation becomes fully discrete.

The eigenvalues of Dy are real and negative — and as illustrated in
Fig. 1 for N = 64, some of them are huge. A proportion 2/ are of order
O(N?), and approximate closely the eigenvalues 1(wk)? of the associated
differential operator; the corresponding eigenvectors are very nearly the
sines and cosines one gets for the latter, represented by at least two points
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per wavelength throughout the spatial grid. But the remaining “outlier”
eigenvalues are of order O(N*), with the largest being about 0.0474N*
(Ouazzani et al. 1982, Trefethen and Weideman 1989). A rigorous upper
bound as N — oo is {/11/4725 N4 = 0.0482N*.

Because the largest eigenvalues are so big, any explicit time integration
of (3.4) will be subject to an eigenvalue stability restriction

At<CN™ (3.5)

for some constant C' that depends on how much of the negative real axis is
contained in the stability region for the time-integrator. For Runge-Kutta
formulas of orders 14 the constants are C' = 42, 42, 53, 59, respectively;
for the corresponding Adams-Bashforth formulas they are C ~ 42, 21, 11,
6.3.

Although the eigenvalues of Dy are real, Dy is not symmetric, or
normal; but it is close to normal. One measure of this is a comparison
between the spectral radius (largest eigenvalue) and the 2-norm (largest
singular value):

p(Dy) =~ 0.0474N*, || Dy|| = 0.0483N*. (3.6)

Another is the size of the commutator:

|D%Dn — Dy D%,
ID% Dl

I~ 0.163. (3.7)

(These are empirical results for large N, based on the 2-norm.) A more
useful measure of closeness to normality is the modest size of the condition
number «(V) = ||V]|||[V~!|| of V, the matrix of normalized eigenvectors of
DNZ

k(V) =~ 1.72, 4.06, 11.31 for N =8, 32, 128. (3.8)

(If Dy were normal k(V) would be 1.) So far as I am aware, because
Dy is close to normal, important differences do not arise in this second-
order problem between Lax-stability and eigenvalue stability, and the same
condition (3.5) is at least approximately valid for both. This conclusion
appears to extend also to other Chebyshev and Legendre meshes.

Here is a summary of the stability of second-order spectral differentia-
tion in terms of statements (A)-(D) of the last section. First, (A) stability
restrictions for explicit formulas are not as easy to predict as with finite
differences, but reasonable estimates can be obtained in some cases by look-
ing at coefficients of characteristic polynomials (Weideman and Trefethen
1988). Second, (B) these stability limits are extremely restrictive. Third,
the matrices are close enough to normal that Lax-stability and eigenvalue
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stability correspond closely, and there is no exaggerated sensitivity to (C)
rounding errors or (D) smoothness of the solution.

Because the stability limits for explicit second-order spectral formulas
are so restrictive, every effort should be made to employ implicit schemes
instead. The efficient implementation of implicit spectral methods 1s a
topic of active current research, and impressive results have been achieved
by iterative methods with suitably chosen preconditioners; see Chapter 5
of Canuto et al. (1988).

4. 1st-order differentiation in Chebyshev points
Now consider the first-order problem

u =uz < €[-1,1, u(l,t)=0, (4.1)

again on the Chebyshev grid (3.2); to make the problem well-posed only
the inflow boundary condition has been specified. We now deal with a
vector v = (vy,... ,un)T of data values at zy,...,ZN, and the first-order
spectral differentiation matrix

Dy:v—w (4.2)

is an N x N matrix defined implicitly as follows (fof explicit entries see
Canuto et al. (1988), p. 69):

(1) Interpolate v by a polynomial p of degree N with p(1) = 0;
(2) Set w; = (DNv)j = p’(mj), 1 S] S N.

The eigenvalues of Dy are complex, and they are plotted in Fig. 2 for
N = 32. As in the second-order case of the last section, most of them
(about 82%) are of reasonable size, O(N), but the remainder are much
larger: O(N?). (Details can be found in the recent paper by Dubiner
(1987); the exact proportion of “outlier” eigenvalues approaches 1/2 —
1/m ~ 0.1817 as N — oo.) Therefore, any explicit time integration of the
spectral semidiscretization of (4.1) will be subject to an eigenvalue stability
restriction

At < CN™? (4.3)

for some C that depends on the stability region for the time-integrator.
As pointed out first by Trefethen and Trummer (1987), the eigenvalues
of Dy are highly sensitive to small perturbations such as rounding errors.
To illustrate this, Fig. 2 shows eigenvalues computed in 16-digit precision
together with eigenvalues of the same matrix after rounding each entry to
8 digits (relative to the largest element of the matrix). This figure shows
that Dy must be far from normal, since the eigenvalues of normal matrices
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* ...:"““""‘;5.‘ *

. 16 digits . 8 digits

Fig. 2: Eigenvalues in the complex plane of the first-order spectral differentiation
matrix for Chebyshev extreme points, N=32. The region shown is the square
bounded by +100 + 100:

are well-conditioned functions of the matrix entries. In analogy to (3.6)-
(3.8), here are some measures of non-normality: the spectral radius and
2-norm differ considerably,

p(Dn) ~ 0.0886N?, | Dy| ~ 0.5498N2, (4.4)

the commutator is larger than before,

|D% Dy — Dy DF||
I1D% D |

~ 0.870, (4.5)

and the condition number of the matrix of eigenvectors is huge:
k(V) ~ 5.8¢2, 7.1e5, 1.1e12 for N = 8, 16, 32. (4.6)

What are the consequences of the non-normality of Dy? Are Lax-
stability and eigenvalue stability quite distinct for this problem? So far as
I am aware the answer is no, except possibly if an unusual time-integration
formula is chosen. Experiments indicate that Lax-stability as well as eigen-
value stability is essentially determined by the need to fit the largest of the
eigenvalues in a stability region; Fig. 2 suggests that the outlier eigen-
values, after all, are insensitive to perturbations. Since space is limited,
therefore, we shall leave this example without further discussion and turn
to a problem in which the difference between Lax-stability and eigenvalue
stability is pronounced.
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Fig. 3: Eigenvalues in the complex plane of the first-order spectral differentiation
matrix for Legendre points, N = 32 (same scale as in Fig. 2). The stability region
plotted on the left applies to Fig. 7, below

5. 1st-order differentiation in Legendre points

We now consider the most interesting example of this paper: the same
problem as in the last section, but with z4,...,zn5 replaced by the zeros
of the Legendre polynomial Py(z). These Legendre points are not far
different from Chebyshev points, but according to a discovery of Dubiner
(1987), the eigenvalues of the corresponding matrix Dy are much smaller
than before: O(N) rather than O(N?). Therefore should it not be possible
to replace (4.3) by a more favorable stability restriction At < CN-1?

Following upon Dubiner’s theoretical work, Tal-Ezer (1986) carried out
experiments that indicated that this optimistic expectation is indeed jus-
tified, at least for certain scalar problems in one dimension. However, our
own view is that eigenvalue analysis can be misleading, and the optimism
must be qualified. Legendre spectral methods with large time steps may
be sensitive to non-smooth data and to other perturbations of the problem
such as the introduction of variable coefficients or lower-order terms. This
sensitivity is of just the kind Kreiss warned of in 1962.

To begin the numerical illustrations, Fig. 3 repeats Fig. 2 for Legendre
points. The prediction that the eigenvalues are O(N) is clearly valid, in
exact arithmetic, but as in the Chebyshev case, they are highly sensitive
to perturbations. Therefore Dy must again be far from normal, and our
measures of normality come out as follows:

p(Dn) = N,  ||Dn|l = N?, (5.1)

|\DE Dy — Dy DRl ~
| DY Dl

1, (5.2)
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k(V) ~ 8.5¢3, 3.1¢8, 2.5¢17 for N =8, 16, 32. (5.3)

Evidently the matrices Dy are even farther from normal than in the Cheby-
shev case. What is more important, the large outlier eigenvalues are no
longer present to mask the non-normality.
Let us now restrict attention to the 3rd-order Adams-Bashforth for-
mula
At

"t =" 4 EDN(23U" —16v™"! 4 50™"%). (5.4)

For eigenvalue stability, the stability region of the time-integrator must
enclose the eigenvalues of Dy, and computations show that the condition
for this in exact arithmetic is approximately

Eigenvalue stability: At < 0.734N7". (5.5)

In the presence of rounding errors, however, Fig. 3 suggests that this condi-
tion would have to be tightened, as is confirmed by experiments (Trefethen
and Trummer 1987). It follows that (5.5) cannot be enough to ensure Lax-
stability, for rounding errors are small perturbations, and thus by definition
(together with the discrete Duhamel principle), Lax-stability would entail
insensitivity to them. '

Instead, I conjecture that the Lax-stability restriction for this model
problem is approximately '

Laz-stability: At = O(N~2). (5.6)

The use of the notation O(N~2) rather than CN~? is deliberate: (5.6)
means that the spectral method is Lax-stable as N — oo and A{(N) — 0
if and only if there exists any constant a such that

At < aN~? (5.7)

for all N. Equation (5.6) may not be the exact condition for Lax-stability
of this model problem, since rigorous analysis of the stability of spectral
methods is typically complicated by small factors, as mentioned in Section
2: in any case an exact result may depend on the choice of norm. But I
believe it is at least close to correct. The “only if” half of the statement is
proved in the next section.

For empirical justification of (5.6), consider the solution operator SNnat
(o™, v™1, v 2)T s (v™+ v7, o™ )T for the Adams-Bashforth formula (5.4),
which is a matrix of dimension 3N

I 00\ ,,(2Dy —16Dy 5Dy
Svar = |T 0 0|+ =] o0 0 o |. (5.8)

12

0 I O

0 0 0
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1024 B a=232
ISR, acll
1018 L
a=24
Ny
108 [ Jf .= a=16
(Fig. 7)
lOo ‘ ] ] : T f =
0 20 40 60 80 100

Fig. 4: Legendre grid with N = 32: ISR a¢ll as a function of n for At = aN~2,
various a. Sy a¢ is power-bounded approximately for a < 23.5

Fig. 4 shows numerically computed norms |S% acll as functions of n with
N = 32 for various values a in (5.7). (From now on || || denotes || ||,
which can be computed much faster than || ||,.) For a < 0.734x 32~ 23.5
(see (5.5)), Sn,a¢ is power-bounded and thus eigenvalue stable, but the
figure shows that tremendous growth of the powers S¥ 5, takes place for
much smaller a, before the eventual decay.

Now for any N and At, let yn,a¢ be the power-boundedness constant
TN,a¢ = SUP IS¥,aclls (5.9)

or in other words, the maximum value of one of the curves in a plot like Fig.
4. If p(Snae) > 1 (p being again the spectral radius), or if p(Syat) =1
with a defective eigenvalue on the unit circle, then yn,at = oo and the for-
mula is eigenvalue unstable; otherwise it is eigenvalue stable. Fig. 5 shows
vN.a¢ @s a function of N for various values of a in (5.7). (To suppress the
distracting irregularity that would otherwise result from the discreteness
of N, the corner of each curve has been shifted slightly to the position
corresponding to (5.5).) Each curve is eventually approximately constant,
no matter how large a is, but the constants grow exponentially with a.
Clearly Lax-stability is in jeopardy if (5.7) does not hold for some a.

A different view of the same data is provided by Fig. 6, which is a rough
contour plot, on a log-log scale, of Yn,at as a function of N and At~!. Below
the line At = 0.734N "1, with slope 1, the prediction yy,a¢ = o0 is verified.
The interesting behaviour lies above this line, where yn a¢ is finite and we
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\ ‘ L—a=28
18 |-
10 a=24
IN,At o= 20
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1012— a=16
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10° I —— a=8
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I
loo ! { 1
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N

Fig. 5: Legendre grid: power-boundedness constants Yn,a¢ (5.9) for At = aN~?,
various a. The solid dot marks the computation of Fig. 7

1
T 110 T 103
2°F 108
At™?
10
71 10
2
eigenvalue 1018
stable
26 o oo
25 r B
24 n ‘ |
eigenvalue
unstable
23 - .
L L 1
22 23 24 2°
N

Fig. 6: Legendre grid: contour plot of the power-boundedness constants YN,A¢
(5.9). The solid dot marks the computation of Fig. 7
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see a set of straight parallel contours with slope 2. For Lax-stability it
is permissible to traverse this slope at a constant altitude, however high,
and evidently (5.7) does just that. But any relationship of At to N that
violates (5.7) as N — oo will lead to an ascent of the slope rather than a
traversal: Lax-instability.

After several pages devoted to norms of operators, our final figure rep-
resents an actual spectral calculation selected to show that Lax-instability
may reveal itself in some experiments but not others. Fig. 7 is based on
computations with N = 32 and At = aN —2 a = 8, for which the Adams-
Bashforth formula is eigenvalue stable even in low-precision arithmetic;
the stability region was shown in Fig. 3. However, Figs. 4-6 indicate that
vn.a¢ & 10%4, so the potential for unstable growth is present. But in Fig.
Ta the initial function is u(z, 0) = cos*(wz/2); when extended by zeros out-
side [—1, 1], this function is three times continuously differentiable, which
is evidently smooth enough that the computation is successful, but in Fig.
7b the initial function is cos?(wz/2), whose extension outside [—1, 1] is only
once continuously differentiable, and now errors appear at the boundary
that grow considerably before dying away. The computation is unsuccess-
ful, at least if transient phenomena are of importance.

Fig. 7b represents a mild, borderline example chosen to make the plots
interesting; in general the instability may be far worse. With a = 12 or 16,
for example, the error at the boundary grows to 3.1 x 10° and 2.5 x 108,
respectively, before eventually decaying away. Trefethen and Trummer
(1987) used this same initial data with a = 16, but examined the results
only at t = 1 and failed to notice the instability — an indication that errors
appearing in at least some unstable spectral calculations may indeed be
transient. ‘

6. Conclusion; a pseudo CFL condition

Although many spectral calculations exhibit none of the stability problems
highlighted in the example of the last section, that example is by no means
unique. For example, another model problem with similar properties (but
easier to analyze) is the equation u; = —zu, on a Chebyshev or Legendre
grid in [—1, 1] with no boundary conditions (Solomonoff and Turkel 1988,
Trefethen and Trummer 1987). Since the papers in the literature that
address the question of stability mainly restrict their examples to constant
coefficients and analytic initial data, the limitations of eigenvalue analysis
have not received as much notice as they deserve.

This paper has presented experiments; what is needed now is theory.
A starting point would be to prove that the example of the last section is
indeed Lax-stable if and only if (5.6) holds (perhaps in a slightly strength-
ened form). But deeper and more general questions suggest themselves
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I (a) u(z,0) = cos*(mz/2) (smooth)
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(b) u(z,0) = cos?(rz/2) (less smooth)

Fig. 7: Legendre grid: two calculations for 0 < ¢ < 0.5 with N =32, At = N2
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too. What general techniques can be devised for predicting stability lim-
its of fully discrete spectral methods? When is Lax-stability needed in
practice? For steady-state rather than time-accurate calculations, under
what circumstances is it safe to settle for less than Lax-stability and ignore
transient blow-ups like that of Fig. Tb?

I will close with an observation that goes half-way towards justifying
(5.6). That condition must be necessary for Lax-stability, for the simple
reason that Dy contains elements of order O(N?), which implies that Sy,at
contains elements of order O(AtN?); if (5.6) is violated, Sy,a¢ cannot itself
be bounded uniformly in N, to say nothing of its powers. This argument
generalizes to a “pseudo CFL condition” for explicit spectral methods:
small gaps between mesh points imply correspondingly tight stability re-
strictions. (The usual CFL argument, based on domains of dependence, is
vacuous for spectral methods because the spectral differentiation process
is global.) Here is one example of how this assertion can be made into a
theorem:

THEOREM. Consider the pseudospectral approzimation to (4.1) based on
any grid (8.2) and any consistent, ezplicit time-integration formula, and
define Ar = tN-1 — Tn. A necessary condition for Laz-stability of this
approzimation, in any mairiz norm subordinate to a vector norm, s

At = O(Az) as N — oo.

Proof. Let p(z) = (z — o) (2 - zn-1)/(gn — Zo) - (TN — TN-1)

be the polynomial interpolant to the values 0,...,0,1 at zg,...,ZN-1,ZN,
respectively. Then (Dn)ny = pl(an) = Zﬁ:‘a‘(zN —z;)"! < -1/Az, and

thus Sy a: contains an element of order at least At/Az as N — oo. For
Lax-stability this element must be O(1) as N — oo, hence the condition
At = O(Az). g :

In later work, I hope to make the observations of this paper more gen-
eral and precise. Many fundamental problems of numerical analysis, not
only in the area of spectral methods, depend upon a proper treatment
of functions of non-normal matrices. Meanwhile, I remind readers that
despite all of this attention to pathologies, spectral methods can be ex-
traordinarily accurate; we shall see more of them in the years ahead.
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