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lll-posedness of absorbing boundary conditions for migration
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ABSTRACT

Absorbing boundary conditions for wave-equation
migration were introduced. by Clayton and Engquist.
We show that one of these boundary conditions, the B2
(second-order) condition applied with the 45° (third-
order) migration equation, is ill-posed. In fact, this
boundary condition is subject to two distinct mecha-
nisms of ill-posedness: a Kreiss mode with finite speed
at one boundary and another mode of a new kind in-
volving wave propagation at unbounded speed back
and forth between two boundaries. Unlike B2, the third-
order Clayton-Engquist boundary condition.B3 is well-
posed. However, we show that it is impossible for any’
boundary condition of Clayton-Engquist type of order
higher than one to be well-posed with a migration equa-
tion whose order is higher than three.

INTRODUCTION

In 1980 Clayton and Engquist proposed a set of absorbing
boundary conditions to minimize reflections at artificial
boundaries in wave-equation migration (Clayton and Eng-
quist, 1980). Migration involves a “one-way wave equation”
with a semicircular dispersion relation (Claerbout, 1970), and
so does the design of absorbing boundary conditions for ordi-
nary wave-equation computations (Engquist and Majda,
1977). To construct absorbing boundary conditions for migra-
tion, Clayton and Engquist proposed combining both ideas in
a quarter-circular dispersion relation. Their boundary con-
ditions are now a standard, highly successful component of

‘industrial calculations. For an introduction to these ideas, see

the recent book by Claerbout (1985).

In this paper we show  that one of the three Clayton-
Engquist boundary conditions, the second-order condition
they call B2, is ill-posed when applied in conjunction with the
45° migration equation. The ill-posedness is caused by two
distinct mechanisms of wave propagation. One is a single-
boundary effect of the kind identified by Kreiss (1970) for
hyperbolic partial differential equations: a wave mode that
may radiate physically spurious energy into the domain from
the boundary. The other mechanism is a two-boundary effect
that could not occur in a hyperbolic problem: a wave that
reflects back and forth between two boundaries at an arbi-
trarily fast rate, growing at each reflection. Numerical experi-
ments confirm that both of these mechanisms can cause cer-
tain model computations to fail.

Both forms of ill-posedness can occur in both time-domain
and frequency-domain calculations. They are most likely to
appear on computational grids fine enough to provide about
ten or more points per wavelength. This may explain why the
problem has apparently not been noticed before, although in
any time-domain calculation or in any frequency-domain cal-
culation in which a number of frequencies are superimposed, it
is likely that some of the frequencies present will be low
enough to lie in the dangerous range.

The two-boundary ill-posedness phenomenon addressed
here is analogous to certain mechanisms of ill-posedness for
hyperbolic partial differential equations in domains with cor-
ners which have been identified by Sarason and Smoller (1975)
and Osher (1976). In these problems, unbounded growth of
solutions results from arbitrarily rapid reflections of waves
with finite speeds between two boundaries; the rapid reflec-
tions are possible because the distance between the boundaries
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goes to zero at the corner. Here, in contrast, we have arbi-
trarily rapid reflections between boundaries a fixed distance
apart, since the wave speeds of the 45° equation are unbound-
ed.

Similar two-boundary ill-posedness phenomena might also
occur in other problems involving an interior one-way wave
equation, whether or not the boundary conditions are of the
absorbing kind. For example, such phenomena may appear in
underwater acoustics.

In the Appendix, we prove that the ill-posedness of the
B2/45° combination is not exceptional; for a Clayton-
Engquist boundary condition to be well-posed in conjunction
with an interior migration equation, the orders of accuracy of
both'the boundary condition and the migration equation must
not be too high. '

CLAYTON-ENGQUIST BOUNDARY CONDITIONS

We confine our attention to a simple model problem: mi-
gration of upgoing acoustic waves in a two-dimensional (2-D)
earth with constant sound speed equal to 1. Our results hold
with little change for downgoing waves or a smoothly variable
sound speed. Except for the presentation in terms of group
velocity, the ideas of this section originated with Claerbout
(1970) and Clayton and Engquist (1980).

The 2-D acoustic wave equation is P,=P_ -+ P, 6 wherex
and z are the range and depth, ¢ is time, and P is the
wave amplitude. Substituting the plane wave P(x, z, t) =
eikrrkz-ul into this equation gives the dispersion relation
o® =kZ+ k2, or k, = +o(l — k?/o?)"?. The minus sign cor-
responds to upgoing waves, i.c., waves propagating in the —z
direction, so we have the following ideal dispersion relation

for migration:
k, = —o/1 K jo?. )

Equation (1) describes a semicircle, but for finite-difference
calculations, the square root must be approximated by a
rational function r(k, /o), i.e., a quotient of polynomials in the

variable k_/o:
ks
k,= —or { —=]. 2
©

The two most common approximations are the Padé approxi-
mants '

Padé (2, 0): /1 — k2 jo? &~ 1 = 1k2 Jo?, 3)
Padé (2, 2): /1— k2/0? ~ (1 — 2k2 jo?)/(1 — +k% /o?). @)

When these functions are inserted in Vequat_ion (2), the resulting
dispersion relations correspond to the following partial differ-
ential equations for migration:

15° equation: P,=P,—LiP__, %)

45° equation: Po= Py~ %Pxxt + %Pxxz' (6)

Figure 1 shows the semicircle (1) and the approximations (2)
based on equations (3) and (4). A variety of alternatives to
Padé approximation are proposed in Halpern and Trefethen
(1988). ‘

In wave-equation migration, equation (5) or equation (6) is
marched forward in the z direction by finite differences. Often
-a retarded time coordinate ¢ =t + z is first introduced to

eliminate the terms P, and P,,. It is also common to work
with reduced equations in which a sinusoidal time dependence
e~ or ¢7™" is assumed, so that time derivatives reduce to
multiplications by —iw. This choice of frequency-domain or
time-domain formulation has no effect on the mathematical
derivations of ill-posedness in the rest of this paper.

The earth is essentially infinite in the +x directions, but
boundaries must be introduced for numerical computation,
and these boundaries should be designed to generate minimal
reflections of outgoing waves back into the computational
domain. To make this idea precise, we can use the notion of
group velocity, which is also the basis of the analysis of well-
posedness. In the migration calculation, z is the “time” vari-
able. Therefore, according to the theory of linear dispersive
waves (Whitham, 1974), energy associated with the wave-
numbers k_and k, travels at the group velocity

ok,
ak,’

= ()
where velocity is inte;preted as change in x per change in z.
The partial derivative in equation (7) is obtained by differ-
entiating the dispersion relation relating k., k,, and ®. In
other words, the group velocity equals' the negative of the
slope of the appropriate curve in Figure 1.

At a left-hand boundary x = x, gpr, We want a boundary
condition that admits only waves with C < 0, so that they will
pass out of the computational domain. Clayton and Engquist
observed that it is therefore appropriate to look for a bound-
ary condition whose dispersion relation is a quarter-circle, the
right half of the semicircle of Figure 1:

k.= o1 -k /o?,  k,jo<O0. (8)

~ Notice that here and subsequently, we switch from k, to k,_ as

the dependent variable when describing boundary conditions.
For a right-hand boundary, the sign in equation (8) is re-
versed. ) v

Once again, the circular arc must be approximated by a
rational function for finite-difference calculations. Clayton and
Engquist proposed approximations in which the square root
in equation (8) is replaced by a constant, linear, or hyperbolic

g

45°

45°

Fi1G. 1. Dispersion relations for migration of upgoing waves:

ideal (dashed), 15 approximation, 45 approximation. The

group velocity for propagation in x of a (k., k.) wave during .
migration in the -z direction is the negative of the slope of

the dispersion relation.
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function of k,, as follows:

V1 =k jo? ~ aq, 9
S1Z k2 j0? % b + ckjo, (10)

./l—kf/cozzlijek—zm. (11
1+ fk,/o

From here on we use the coefficients a =1/2, b =2 + \/?: ,
c=2+./3,d=1,e=1,and f= 2 —2/./3, which have been
chosen so- that the rational functions interpolate the quarter-
circle at multiples of 30°. These approximations are illustrated
in Figure 2. The differential equatibns corresponding to equa-
tions (9)}-(11) are the following:

B1: P,= —aP,,- (12)
B2: P, = —bP, +cP,, (13)
B3: ~Py+fP,,=dP,—eP,. (14)

Altogether, a migration calculation consists of solving an
interior equation (5) or (6) together with a boundary condition
(12), (13), or (14) at the left-hand boundary, and an analogous
equation with the x derivatives negated at the right-hand
boundary. The numerical solution is carried out by finite-
difference formulas, but since our ill-posedness results hold for
the differential equations themselves, we do not specify a par-
ticular discretization until we turn to computational examples.

KREISS ILL-POSEDNESS

An initial boundary-value problem is well-posed if a unique
solution exists for each set of initial and boundary data and
depends continuously on these data. The precise definition
depends upon what norms are used to measure the data, but
except in certain borderline cases, a problem that is ill-posed
in one norm is usually ill-posed in others, too. One cannot
count on obtaining meaningful solutions to such problems.

In 1970, H.-O. Kreiss published a theory of well-posedness
for hyperbolic initial boundary-value problems (Kreiss, 1970).
The main result of Kreiss’s theory is a well-posedness criterion
that can be summarized as follows: a one-boundary problem
is ill-posed if and only if, even in the absence of explicit forcing
data at the boundary, it admits a solution consisting entirely
of waves propagating inward from the boundary. The mean-

e

Bl |p3

e
B2

B3 o Bl
B3

B2

F16. 2. Dispersion relations for absorbing boundary con-
ditions at a left-hand boundary x = x gy : ideal (right. half of
dashed semicircle), B1, B2, B3.

ing of “inward” is defined in most cases by the group velocity.
A two-boundary problem is well-posed if and only if each of
its boundaries satisfies the Kreiss condition individually. See
Higdon (1986) for a physical summary of the Kreiss theory,
and Gustafsson et al. (1972) and Trefethen (1984) for analo-
gous results on the stability of finite-difference discretizations.
Our migration problem is not hyperbolic, and we do not
know of a necessary and sufficient condition for well-
posedness. The Kreiss criterion, however, is still necessary.
That is, one can still look for incoming wave modes, and if
there are any, the problem must be ifl—posed. An incoming
wave mode at a left-hand boundary is a wave '®=>F%=79% that
satisfies three conditions: ’

(1) k., k,, @ satisfy the dispersion relation of the
boundary condition;

() k., k,, @ satisfy the dispersion relation of the in-
terior equation; and either

(3a) Propagating wave: k., k,, @ are real and C >0,
ie., ok, /0k, < 0, for the interior equation, or

(3b) Stationary wave: o is real and Im k, <0<
Imk,.

In the Kreiss theory, condition (3a) is weakened to C =0 to
make the condition sufficient as well as necesary, but the ill-
posedness associated with modes of type C =0 is of a border-
line kind in that they have negligible impact in migration
problems. Condition (3b) does not come up in the examples
we consider, nor, so far as we know, is it important in practi-

cal computations. .

In other words, we must look for intersections of a curve
from Figure 1 and a curve from Figure 2. If there is a point of
intersection for which dk, /ok, < 0 in Figure 1, the problem is
ill-posed.

Consider first the Bl boundary condition. Superimposing
Figures 1 and 2 by eye, we see that there is just one intersec-
tion point of the B1 line with the dispersion curve for the 15°
or 45° equation, and this point has dk,/dk, > 0. Thus we have
no evidence of ill-posedness. In fact, in the appendix to their
paper, Clayton and Engquist prove the stability of a finite-
difference discretization of the B1 condition with the 15° equa-
tion, which implies well-posedness of the differential equation.

Similarly, the B3 boundary condition admits no Kreiss ill-
posed wave modes in combination with the 15° or 45° wave
équations in the interior, except for the mode k, = 0, which is
of the borderline sort with C = 0.

With the B2 condition and the 45° equation, however, an
ill-posed intersection point appears on one of the outer
branches of the dispersion relation for the 45° equation, with
k. /o =~ —1797 for our standard choice of b and ¢ in equation

-(13). This point represents a plane wave with wave crests at

the angle ~21.5° from the z-axis, propagating to the right
from the boundary with the modest group velocity C =~ 0.036
(see Figure 3). This wave is entirely an artifact of the rational
approximation of our one-way wave operators, not being
physically related to the original migration problem at all.

We conclude :

Theorem 1. The B2 boundary condition is ill-posed in combi-
nation with the 45° migration equation.

Theorem 1 is valid for any choice of b and c¢ in equations
(10) and (13), provided ¢ # 0. One can make the theorem




596 Howell and Trefethen
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F1G. 3. Superimposed dispersion relations for the 45° migra-
tion equation and the B2 boundary condition. The circled
intersection point corresponds to an ill-posed mode of Kreiss
type that propdgates inward from a left-hand boundary.

B2

el

quantitative in various ways by using asymptotic methods of
group velocity analysis (cf., Trefethen, 1984, for the discrete
case). Kreiss discusses this matter on p. 72 of Kreiss (1974),
where he considers a “generalized eigenvalue of the second
kind” for an ill-posed hyperbolic example. The ill-posed mode
has the effect that, at best, one must expect a “loss of one
derivative.” That is, to ensure that no dangerous nonphysical
reflections from the boundary occur, as a minimum one must
take wave data that are smooth. In the next section we show
that the situation is actually worse than this.

TWO-BOUNDARY ILL-POSEDNESS

In our first numerical experiments on coarse meshes, the
ill-posed mode of the last section had no visible effect. It
began to appear when we made the mesh finer, and unex-
pectedly, we also began to encounter another phenomenon of
ill-posedness that is often more pronounced. The key to these
results is reflection coefficients.

To calculate a reflection coeflicient at a left-hand boundary,

we begin with an incident plane wave e/®=**k=2=o0 that satis-
fies the migration equation and has group velocity C < 0. For

either of the equations of Figure 1, this means that k_, k,, and

® satisfy the migration dispersion relation with k, > 0. When
such a wave hits the boundary, it generates a reflected plane
wave in which k_, and o have the same value, but k_ is negated.
Therefore, we look for a linear combination '

P(X, z, t) — AL ei(kxx+k1z—mr) + AR ei(~kxx+kzz—mt) (15)

that satisfies the boundary condition as well as the migration
equation. To find such a linear combination, we insert equa-
tion (15) into the boundary condition and calculate R =
Ag/A, . The results are as follows:

Bl: R= 90 16

o Tk, + ao’ (16)
k, — bo — ck,

B2: T OO CK 17

Tk + bo + ck,’

— 2 —
R k.w—do®* — ek, 0 + fk k, .

B3:

These functions are plotted for the 45° equation in the interior
in Figure 4. For the Bl and B3 conditions, R is bounded, and
indeed |R(k.)] <1 for all k.. However, the plot for the B2
condition is dominated by a pole at k_ /o ~ 7.97. This “infinite
reflection coefficient” corresponds to the ill-posed mode iden-
tified in the last section.

Figure 4 suggests that for the B2/45° combination, the
wavenumber k, /o = 7.97 will dominate. In fact, though, the
wavenumber k_/w = 2 often turns out to be more important
since. the group velocity C becomes infinite there. The formula
for C as a function of k /o, obtained via equation (7) by
differentiating the dispersion relation that results from equa-
tions (2) and (4), is
' c ~k, jo 19

U jh )
Figure 5 plots | C| as a function of k, /o.

In a migration calculation with two absorbing boundaries,
the following will happen. Wave energy for a given value k_
hits the left-hand boundary and is amplified by | R(k,}|. Then
it propagates to the right at a speed of | C(k,)| until it hits the
right-hand boundary, where it is amplified again by the same
factor, and so on. If L is the distance between the»boundaries,

12}

F16. 4. Reflection coefficients | R} as functions of k_ /o for the
45° equation with boundary conditions BI, B2, B3.
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F1G. 5. Group speed | C as a function of k. for the 45
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FiG. 6. |R|!¢! as a function of k. /w for the 45° équation with
boundary condition B2. This quantity determines the rate of
energy growth due to two-boundary interactions.

this back-and-forth process results in a growth in amplitude at
the rate

A(z) = | R(k,) |19, (20)

Note that z/L behaves here like a normalized time variable.

Figure 6 plots the crucial quantity |R|'¢! as a function of
k,/eo. The singularity at k. /o ~ 797 is still present, but a
much stronger singularity has appeared at k. /o =2, even
though |R| approaches 1 at that point. This singularity at
k. /o =2 is capable of creating a tremendous growth of
energy. i

We can make the behavior near k_ /o = 2 quantitative as
follows. Consider a wave mode with k_ /o =2 + ¢ for small
g > 0. We get

Oe-2)
IR = [1 * 0(8)} =%, 1)

where the O means “order of.” This function of & has not
merely a pole, but an essential singularity at € = 0. In a finite-
difference discretization, this will translate into an instability
that gets exponentially worse as the mesh is refined at a rate
%%V where h is the grid size. The Kreiss instability associ-

difference, and ., is a forward average. The Clayton-Engquist
boundary conditions were discretized as

B1: | 8% — iamqu:IP =0, 23)

B2: | ep 8% — 3% pi —io(c — bRt ui]P =0, (29

B3: | iecop 8, — 8% 8% — io(l —f)0% Ki

+ o3(e — dy pi]P = 0. (25)

Discretization affects the analysis described in the last sec-

" tion considerably. Let Ax, Az be the step sizes in x and z. For

the continuous problem, we have the dispersion relations

k,

45° == —(0® — e — 1k, (26)
[0
ks k,

B2: —“=b+c—, (27
® [ :

and the corresponding reflection coefficient and group velocity
functions were listed in equations (17) and (19). With the dis-
cretizations in equations (22) and (24), these formulas become

45°: @Az cot [%(k_, + co)Az:l
—(0Ax)? csc? ($k,Ax) + 1 =0, (28)

B2:

o

¢ tan [%(kz' + m)Az] / (0Az)
— tan Gk, Ax)(0hx) — (e — b) =0, (29)

and, after a good deal of algebra,

2 cos <% k. Ax) sin® l:% (kz + m)Az] / (wAz)>
= » (30)
a1l 3
sin (E k. Ax> / (0Ax)

C=—

2 tan <-§ k. Ax> / (@Ax) — (b — ¢) — 2c tan l:% <kz + m>Az} / (0Az)

R =

ated with k, /o = 7.97, in contrast, will worsen at the much
more modest (algebraic) rate O(h~").

FINITE-DIFFERENCE FORMULAS

Following Clayton and Engquist, we solved the 45° equa-
tion in retarded time in the frequency domain by an implicit
Crank-Nicolson type finite-difference formula:

(@78 + 183 8% + iod3u3)P =0, (22)

where 8, is a forward difference, &, is a second-order centered

"2 tan (% k. Ax)/(coAx) + (b —¢) + 2c tan [% (kl + w)Az]/(coAz) (31)

Because of aliasing, these functions have periods of 2n/wAx in
k,/® and 2n/oAz in k_/o. ‘

Figure 7 indicates the effect of the finite mesh by plotting
IR['), as in Figure 6, for nine pairs of values @Ax, oAz As
explained in the last section, the peak in the plots near
k Jo =2 is due to large group velocities there, although they
are no longer infinite on the discrete mesh, while the singular-
ity at higher k_/o is due to an infinite reflection coefficient.
Reading horizontally across the figures shows that as ®Ax
increases for fixed mAz, the dominant effect is that the Kreiss
ill-posed mode moves to a smaller wavenumber. It also be-
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comes more pronounced, largely because C increases, al-
though the figure does not show this in the most appropriate
way, since |R|!¢ is a measure of two-boundary interactions.
At @Ax = 1, the Kreiss mode ceases to exist, and the differ-
ence model is stable for ®Ax > 1, although not very accurate.
On the other hand, reading vertically down the figure shows
that Az has a dominant effect on the two-boundary ill-posed
mode. For mAz = 0, the function | R|!“! is nearly singular at
oAx = 2, although not actually singular as in the continuous
case. As @Az increases, the group velocity goes down and
| R|'¢! rapidly diminishes.

Different discretizations would have different effects on R,
C, and |R|!° from those described in equations (30)~(31) and
in Figure 7. Any discretization, however, will give rise to
periodic functions R, C, and | R|'® that approach the curves
of Figures 4-6 as the mesh becomes finer.

Howell and Trefethen

NUMERICAL EXPERIMENTS.

Our numerical experiments involved two kinds of initial
data at z = 0: random complex numbers uniformly distributed
in the unit disk, the same for each experiment, and a smooth
pulse obtained by superimposing seven frequencies, modeled
after Figure 4 of Clayton and Engquist (1980). Real seismic
data would lie between these two extremes of regularity. In
each case we solved the discretization in equation (22) of the
45° equation on a domain with width 1, depth 2, and Ax = Az,
in single precision (7-8 digits) on a Sun workstation.

Figure 8 presents four calculations with random initial data
on a 160 x 80 grid. Figures 8a-8c cut diagonally across
Figure 7 from the lower right to the upper left, showing
various values of ® with ®Ax = @Az = 1, 0.6, 0.2. These three
plots illustrate the range of stability phenomena that we have

wAz = .2 wAz = 6 C wAz =1
wAz=.2 : i R
-—*_-I——l—‘—l—-l——i——l 1 1 | V‘I:J-_l—_’—nl 1 Il 1 I3 1 ) — '\-’-_;':] 1 ] 1 1 1 1 1 1 A
wAz=.6 | L L
I \ |
1 1 (] i ] 1 1 1 | I S | M 1 1 1 1 i 1 3 1 —
wAz=1 : L L
_______ N ————
[T VRN S 6 S WY TS SEN B M R M PRI TS WA TSR NS DR S S

Fic. 7. | R|'¢ as a function of k. /o for the discretized
The vertical bars on the right (off-scale for mAx = 0.

45° equation and boundary condition B2, various wAx and oAz,
2) indicate the largest wavenumbers representable on the grid.
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(a) B2, 0Ax = oAz =1

{¢c) B2, oAx = 0Az = .2 . (d) B3, 0Ax = wAz = .2 .

FIG. 8. 45° migration calculations with random initial data on a 160 x 80 grid, various boundary conditions and

frequencies.
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described. In Figure 8a, o is sufficiently large that no insta-
bility appears. In Figure 8b, the Kreiss instability is evident in
the form of noise propagating.in linearly from both bound-
aries, (The asymmetry between the two boundaries is a conse-
quence of the random initial data.) In Figure 8c there is a hint
of the Kreiss instability again, but it is soon obliterated by a
much larger two-boundary instability. Obviously the latter
two computations are unacceptable. Figure 8d repeats 8c, but
with B2 replaced by the presumably well-posed boundary con-
dition B3. The instabilities vanish.

Figure 9 quantifies these results. Figure 9a shows the rms
energy as a function of z for the same four calculations as in
Figure 8, revealing marked energy growth in the two unstable
cases. Of the two stable calculations, the reason the
B2/wAx = 1 combination exhibits faster decay of energy than
the B3/wAx = 0.2 combination is that the group velocities are
larger, so that more energy passes out through the boundaries
(see Figure 8a). »

Figure 9b shows the energy at fixed depth z = 2 for various
values of mAx = wAz; each point of this plot was obtained
from a separate calculation. As wAx decreases, the first bump
in the B2 energy curve reflects the Kreiss instability, while the
more catastrophic growth for @Ax < 0.3 represents the two-
boundary effect. The more detailed structure of the data is a

7

-

RMS Energy
o

o
T

Howell and Trefethen

consequence of randomness and is not significant.

In both parts of Figure 9, the data for the B1 condition look
almost the same as for the B3 condition and are therefore
omitted. )

Finally, Figure 10 shows a set of results modeled after
Figure 4 of Clayton and Engquist. Each plot shows a super-
position of calculations at seven different frequencies (multi-
ples of @ = 24). Not knowing the exact definition of Clayton
and Engquist’s wave function, we took initial data corre-
sponding to a wave pulse of the form sin r cos!® r centered at
a point at a distance 0.1 above the middle of the domain.
Figure 10a shows this computation on a 160 x 80 grid (mini-
mum ®Ax = 0.3), and Figure 10b shows it on a 320 x 160
grid (minimum ®Ax = 0.15), both with the B2 boundary con-
dition. The first computation appears stable, while the second
is clearly unstable. In their paper, Clayton and Engquist pres-
ent results for only Bl and B3, but it appears that their grid
was closer to that of Figure 10a than Figure 10b, so a B2
calculation would have looked good also. Making the grid

_finer, however, is obviowusly dangerous.

Figure 10c repeats the computation on the 320 x 160 grid
with the B3 boundary condition. Now the result is-evidently
stable, and in addition, the spurious reflections of Figure 10a
have been nearly eliminated.

B3, wAz =2

1

B2, wAz =1
G s A

| S T

1

(a) Dependence onz

RMS Energy

AR

4

| -1 Tt L JwAzr = wAz

0.5

1.0

1 I
1.5 2.0

(b) Dependence on ®AXx = wAz at fixedz = 2

F1G. 9. Computed rms energy as a function of z and ®Ax = wAz for boundary conditions B2 and B3,
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(a) B2, 160 x 80 grid

(¢) B3, 320 x 160 grid

F1G. 10. 45° seven-frequency migration calculations with a base frequency of w = 24 (after Clayton and Engquist,
1980).
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CONCLUSIONS

We have shown theoretically and by numerical experiments
that the combination B2/45° (the B2 Clayton-Engquist bound-
ary condition coupled with the 45° migration equation) is ill-
posed. As proven in the Appendix, the same is true of any
combination that has a higher order of accuracy than B3/45°.
Therefore, we recommend the B3/45° combination whenever
its implementation is convenient.
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APPENDIX
A WELL-POSEDNESS BARRIER

In this Appendix we show that well-pdsed migration formu-
las with absorbing boundary conditions of the Clayton-
Engquist kind can only have a limited order of accuracy: the
B3/45° combination is the best possible. Our argument is
based on identifying Kreiss ill-posed modes. This result is
mainly of theoretical interest, since B3 and 45° are accurate
enough for most purposes. If it were important to obtain
higher-order approximations, well-posed variations on the
Clayton-Engquist theme could very likely be devised.

Consider a migration formula derived from a dispersion
relation as in equation (2),

k, ('kx>
L= —rl{—=}, (A-1)
® ®

where r is a rational function of exact type (2m, 2n), i.c., it has
numerator of degrée 2m and denominator of degree 2n
[equation (1)]. We assume that r is an even function, i.e.,
#{(—s) = 1(s), that #(0) € (0, oo), that r(s) interpolates ++/ 1—s?
at 2m + 2n + 2 points of (—1, 1), counted with multiplicity,
and that n < m < n + 1. All of the equations used in practice
satisfy these conditions (Trefethen and Halpern, 1986). The
order of the migration formula is defined to be its order as a
partial differential equation, namely, d =m+n + 1. The 5°,
15°, and 45° equations have multiple interpolation points at
s=0andordersd = 1, 2,3, respectively.

By an absorbing boundary condition of Clayton-Engquist
type, we mean a boundary condition derived from a disper-

sion relation as in equations (8)—(11),

ke R<&>, (A-2)

[1)] [

where R is a rational function of exact type (M, N) [equation
(8)]. We assume that R(S) interpolates +./ 1—5% at
M + N + 2 points of [—1, 1], counted with multiplicity, or
M + N + 1 points if M + N is odd, that R(0) € (0, o), and
that N < M < N + 2. The order of the boundary condition is
defined to be D = M + N + 1; its order as a differential equa-
tion is (D + 1)/2 if M + N is even, or D/2 if M + N is odd
(Trefethen and Halpern, 1986). The boundary conditions Bl,
B2, and B3 satisfy these conditions with D =1, 2, 3, respec-
tively.

We now consider a migration initial boundary-value prob-
lem consisting of the interior equation derived from equation
(A-1) together with at least one left-hand boundary on which
the boundary condition derived from equation (A-2) is ap-
plied. Although far more specialized, the following result is
analogous to Dahlquist’s theorem in numerical analysis which
states that no A-stable linear multistep formula for dis-
cretization of ordinary differential equations can have an
order of accuracy greater than two (Dahlquist, 1963)."

Theorem 2. The initial boundary-value problem described
above must be ill-posed if it has interior order d = 4 and bound-
ary condition order D = 2.
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Proof. By lemmas 1 and 2 of Trefethen and Halpern (1986),
r(sy must have the form

2
b,s

"s) =a—cs® + i s (A-3)
s

k=187 — 5
with a>0, c=0, b, >0 for k>1, and 1 <5, <s,<:**

< s, < oo. The coefficient ¢ will be zero if m = n, nonzero if
m = n + 1. Similarly, R(S) must have the form

B.S

N .
RS)=A+BS—CS*+ Y , (A-4)

k=1 - Sk

with A >0, B arbitrary, C>0, B, >0 for k>1, and
—0 <8 <5, << Sy < o0,
If d > 4, then either n>2, or n =1 and ¢ > 0. In either

‘ case, equation (A-3) implies that the graph of —r(s) contains at

least one component with s < 0 that runs from + o0 to —o0
with negative slope, which corresponds to a positive group
velocity. Similarly, if D > 2, then equation (A-4) implies that
the graph of R(S) contains at least one component that runs
from a positive value to —oco. When the graphs of —r(s) and
R(S) are superimposed with s and S at right angles to each
other, as in Figure 3, the two components of —r(s) and R(S)
just mentioned must intersect somewhere. This point of inter-
section corresponds to a Kreiss ill-posed wave.




