REAL VS. COMPLEX RATIONAL CHEBYSHEV APPROXIMATION ON COMPLEX DOMAINS

Martin H. Gutknecht and Lloyd N. Trefethen*

Let S be a Jordan region symmetric about the real axis, and consider best maximum norm approximation on S of an analytic (or merely continuous) function f satisfying $f(\overline{z}) = \overline{f(z)}$ by a rational function of type (m,n) with either real or complex coefficients. For m=0 and $n \geq 4$, the error in complex approximation can be arbitrarily much smaller than the error in real approximation. In contrast, for (m,n) = (0,1) the complex error can be better by at most a constant factor.

1. Introduction; statement of the result

Let $S \subset \mathbb{C}$ be a compact point set symmetric about the real axis, let C^r be the set of complex functions f defined and continuous on S and satisfying $f(\overline{z}) = \overline{f(z)}$, let $A^r \subset C^r$ be the subset of functions analytic in the interior of S, let $E^C_{mn}(f)$ be the error in best approximation (with respect to the maximum norm) of f on S from the set R^C_{mn} of complex rational functions with numerator degree at most m and denominator degree

^{*} Supported in part by a National Science Foundation Mathematical Sciences Postdoctoral Fellowship.

at most n, and let $E_{mn}^{r}(f)$ denote the corresponding error for the subset $R_{mn}^{r} \subset R_{mn}^{c}$ with real coefficients. Finally, set

$$\gamma_{mn}^{S} := \inf_{f \in A^{r} \setminus R_{mn}^{r}} \frac{\frac{E_{mn}^{C}(f)}{E_{mn}^{r}(f)}}{E_{mn}^{r}(f)}$$
.

For the case where S=I is an interval of the real line (and hence $A^r=C^r$), A.A. Gončar seems to have been the first to notice that for some $f\in C^r$, complex approximations are better than real ones. From the work of K.N. Lungu, E.B. Saff and R.S. Varga [4, 6], and A. Ruttan [3] various conditions (necessary or sufficient) are known for $E^c_{mn}(f) < E^r_{mn}(f)$, and in particular, it is known that $\gamma^I_{mn} < 1$ for all $m \geq 0$, $n \geq 1$. However, no triple (f,m,n) with $E^c_{mn}(f) < \frac{1}{2} E^r_{mn}(f)$ and no positive lower bound for any γ^I_{mn} have been known until recently, when we established the results

$$\gamma_{mn}^{I} = 0 \quad \text{for} \quad n \ge m + 3, \tag{1}$$

$$\gamma_{01}^{I} > 0 \tag{2}$$

[2, 5]. At the same time we showed that for the closed $\underline{\text{unit}}$ $\underline{\text{disk}}$ Δ

$$\gamma_{0n}^{\Delta} = 0 \quad \text{for} \quad n \ge 4 \tag{1'}$$

[2, 5], and we mentioned that our arguments for (1') and (2) can be extended to the case where S is the closure of a Jordan region symmetric about IR whose boundary is differentiable at the two points of intersection with the real axis:

$$\gamma_{0n}^{S} = 0 \quad \text{for } n \ge 4,$$

$$S \quad 0 \quad (1")$$

$$\gamma_{01}^{S} > 0$$
 . (2")

The proof of (1") is short, and it is described in [5]. In contrast, the proof of (2") is tedious, and the similar proof of (2) was only outlined in [5]. Here, we now want to state the whole

proof for the
f turns out
general resul

THE which is symm differentiable

<u>axis</u>.

inf f∈C^r.

Then

A fortiori,

we significance istic application and even if it will probably coefficients. associated furnishments.

||f -

In particular

2. Proof

and

Let approximation

Then

||ĉ*

c(z)

r for ⊦

real ne

con-

nn(f),

ntil

(1)

(2)

(1')

can

at

(1")

(2")

con-

of (2) ole proof for the case of a symmetric Jordan region. Analyticity of f turns out to be inessential, i.e. we prove a slightly more general result:

THEOREM. Let S C ¢ be the closure of a Jordan region which is symmetric about the real axis and whose boundary is differentiable at the two points of intersection with the real axis. Then

$$\inf_{f \in C^r \setminus R_{01}^r} \frac{E_{01}^c(f)}{E_{01}^r(f)} > 0.$$
 (3)

 \underline{A} fortiori, $\gamma_{01}^{S} > 0$.

We do not claim that (1), (1'), and (1") have much significance for practical approximation problems. In a realistic application, $E_{mn}^{C}(f)$ will rarely be much less than $E_{mn}^{r}(f)$, and even if it is, an increase in degree of a real approximation will probably be more cost-effective than a switch to complex coefficients. In fact, if $f \in C^{r}$, than for any $c \in R_{mn}^{C}$ the associated function $r(z) := \frac{1}{2}[c(z) + \overline{c(\overline{z})}]$ lies in R_{m+n}^{r} , 2n and

$$||f-r|| = \frac{1}{2} \max_{z \in S} |[f(z) - c(z)] + [f(z) - \overline{c}(z)]| \le ||f-c||.$$

In particular, $E_{m+n,2n}^{r}(f) \leq E_{mn}^{c}(f)$, cf. [4, Prop. 1].

2. Proof

Let $f \in C^r$ be arbitrary, and let c^* be a best approximation of f from R^C_{mn} . For any $c \in R^C_{mn}$ set

$$\overline{c}(z) := \overline{c(\overline{z})}$$
, $\hat{c}(z) := \frac{1}{2}[c(z) - \overline{c}(z)]$.

Then

$$\|\hat{c}^*\| = \frac{1}{2} \max_{z \in S} \|[f(z) - c^*(z)] - [f(z) - \overline{c}^*(z)]\|$$

$$\leq ||f-c*|| = E_{mn}^{C}(f)$$
.

Since $E_{mn}^{r}(f) \leq E_{mn}^{c}(f) + ||c*-r||$ for every $r \in R_{mn}^{r}$, it follows

$$E_{mn}^{r}(f) \leq E_{mn}^{c}(f) + ||\hat{c}^{*}|| \frac{||c^{*} - r||}{||\hat{c}^{*}||} \leq E_{mn}^{c}(f) \left[1 + \frac{||c^{*} - r||}{||\hat{c}^{*}||}\right]$$
(4)

if $\|c^*\| \neq 0$, i.e. $c^* \notin R_{mn}^r$.

Now suppose that for any $c \in R_{mn}^c \setminus R_{mn}^r$ with no poles on S we can find $r_c \in R_{mn}^r$ (depending on c) such that

$$\frac{\|\hat{\mathbf{c}}\|}{\|\mathbf{c} - \mathbf{r}_{\mathbf{c}}\|} \ge \delta \tag{5}$$

for some fixed $\delta > 0$. According to (4) this implies

$$\frac{E_{mn}^{C}(f)}{E_{mn}^{r}(f)} \geq \frac{1}{1+1/\delta}$$
 (6)

whenever $c^* \notin R_{mn}^r$. But otherwise $E_{mn}^c(f) = E_{mn}^r(f)$ trivially. Therefore if (5) holds, (6) is true for all $f \in C^r \setminus R_{mn}^r$.

Our proof for the case (m,n) = (0,1) consists in defining a suitable mapping $c \mapsto r_{c}$ and in verifying (5) for this mapping.

First, without loss of generality we may assume that $\pm 1 \in \partial S$. Then, as in [5], $S^{C} := \overline{\mathbb{C}} \setminus S$ (where $\overline{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$) is split up into

$$A^{\pm} := \{z \in C ; |arg(-1 \pm z)| < \theta\} \cup \{\infty\} ,$$

$$C := \{z \in C ; |z| \ge \rho\} \setminus (A^{+} \cup A^{-}) ,$$

$$B := C \setminus (A^{+} \cup A^{-} \cup C \cup S) ,$$

as indicated in Fig. 1. θ \in (0, $\pi/4)$ and $\,\rho\,$ are assumed to be chosen such that

ollows

(4)

oles

(5)

(6)

lly.

or

hat

})

to be

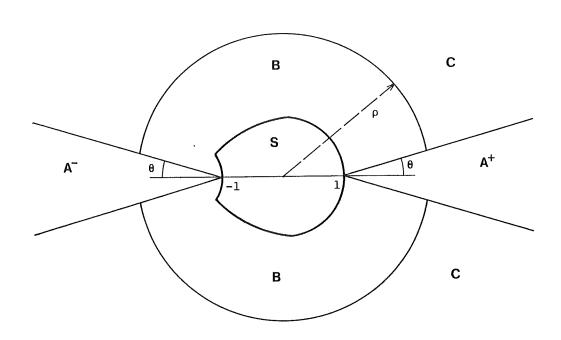


Fig. 1

2S
$$\cap$$
 C = \emptyset , i.e. $\frac{\rho}{2} > \rho_S := \max\{|z|; z \in S\},$ (7)

$$S \cap \{z \in C; |arg(-1+\sigma z)| < 2\theta\} = \emptyset, \sigma = \pm 1,$$
 (8)

$$\rho \ge 4/\sin\theta . \tag{9}$$

For any $c \in R_{01}^c \setminus R_{00}^c$,

$$c(z) := \frac{a}{1 - z/z_0},$$

we define r_c depending on the position of the pole z_0 by

$$\mathbf{r_{C}(z)} := \begin{cases} \frac{1 - 1/|z_{0}|}{1 \mp |z/|z_{0}|} & \text{Re } c(\pm 1) & \text{if } z_{0} \in \mathbb{A}^{\pm}, \\ 0 & \text{if } z_{0} \in \mathbb{B}, \\ \text{Re } a & \text{if } z_{0} \in \mathbb{C}. \end{cases}$$
(10)

Correspondingly, our verification of (5) is split into three cases. We may restrict a to have unit modulus since c, \hat{c} , and r_c can all be multiplied by an arbitrary real scale factor. The simplest case is

 $\underline{z_0 \in B}$. Let $z^* \in S$ be a point closest to z_0 , so that $|c(z^*)| = ||c||$. Then

$$||\hat{c}|| \ge |\hat{c}(z^*)| = \frac{1}{2} |c(z^*)| \left| 1 - \frac{\overline{c}(z^*)}{c(z^*)} \right|$$

$$= \frac{1}{2} ||c|| \left| 1 - \frac{\overline{a}}{a} \frac{\overline{z_0}}{z_0} \frac{z_0 - z^*}{\overline{z_0} - z^*} \right|. \tag{11}$$

Due to the differentiability of ∂S at ± 1 ,

$$\left|\frac{z_0 - z^*}{\overline{z_0} - z^*}\right| \le \cos \theta < 1 \tag{12}$$

whenever $z_0 \in B$ is close enough to $\pm l$, say, $z_0 \in U_B^\pm$. On the other hand, since $B \setminus (U_B^+ \cup U_B^-)$ has a positive distance from the real axis, there is a fixed $\gamma_B < l$ such that $|z_0 - z^*|/|\overline{z_0} - z^*| \le \gamma_B$ for all z_0 in this set. Therefore, in view of (10)-(12) we get for all $z_0 \in B$

$$||\hat{\mathbf{c}}|| \geq ||\mathbf{c} - \mathbf{r}_{\mathbf{c}}|| \delta_{\mathbf{B}} \quad \text{with} \quad \delta_{\mathbf{B}} := \frac{1}{2} \min\{1 - \cos \theta, 1 - \gamma_{\mathbf{B}}\}.$$

$$z_0 \in C$$
. In view of

$$c(z) = a + \frac{az}{z_0} [1 + h(z)]$$
 with $h(z) := \frac{z/z_0}{1 - z/z_0}$,

we get

$$\begin{split} \|\hat{c}\| & \geq \max_{z=\pm 1} |\hat{c}(z)| = \max_{z=\pm 1} |\operatorname{Im} c(z)| \\ & = \max_{\pm} \left| \operatorname{Im} \left[a \pm \frac{a}{z_0} \left(1 + h(\pm 1) \right) \right] \right| . \end{split}$$

Now, by (9), $|z_0| \ge \rho \ge 4/\sin \theta \ge 4$ for $z_0 \in C$, hence

A f

Lik

3/1

For ||c -

Now

lie $\frac{1}{2}$ si

the

Вус

ĉ,

so

(11)

(12)

On from

e, in

 $1-\gamma_{B}^{}$. (13)

$$|\ln(\pm 1)| \le \frac{1}{|z_0|(1-|z_0|^{-1})} \le \frac{2}{|z_0|} \le \frac{2}{\rho} \le \frac{1}{2}\sin\theta$$
 (15)

A fortiori,

$$||\hat{c}|| \ge |\operatorname{Im} a| - \frac{2}{|z_0|}.$$
 (16)

Likewise, using (7) we get

$$||c - r_{c}|| = \max_{z \in S} \left| i \operatorname{Im} a + \frac{az}{z_{0}} \left[1 + \frac{z}{z_{0}} + \left(\frac{z}{z_{0}} \right)^{2} + \ldots \right] \right|$$

$$\leq |\operatorname{Im} a| + 2 \frac{\rho_{S}}{|z_{0}|}. \tag{17}$$

From (16) and (17) we conclude that for Im a \pm 0 and 3/|Im a| \leq |z_0| \leq ∞

$$\frac{||\hat{c}||}{||c-r_c||} \ge \frac{|\text{Im a}| - 2/|z_0|}{|\text{Im a}| + 2\rho_S/|z_0|} \ge \frac{1}{3 + 2\rho_S}.$$
 (18)

For Im a \pm 0 and $\rho \leq |z_0| \leq 3/|\text{Im a}|$ inequality (17) implies $||c-r_c|| \leq (3+2\rho_S)/|z_0|$, and therefore using (14) we get for $|z_0|$ in this range

$$\frac{\|\hat{\mathbf{c}}\|}{\|\mathbf{c} - \mathbf{r}_{\mathbf{c}}\|} \ge \frac{1}{3 + 2\rho_{\mathbf{S}}} \max_{\pm} \left| \text{Im} \left[a | \mathbf{z}_{0} | \pm \frac{a \overline{\mathbf{z}_{0}}}{|\mathbf{z}_{0}|} \left(1 + h(\pm 1) \right) \right] \right|$$
(19)

Now for $z_0 \in C$ $(z_0 \neq \infty)$ the two disks

$$D^{\pm} := \left\{ a | z_0 | \pm \frac{a \overline{z_0}}{|z_0|} (1 + \zeta) ; |\zeta| \le \frac{1}{2} \sin \theta \right\}$$

lie on opposite sides of the ray a \mathbb{R}^+ at a distance of at least $\frac{1}{2}\sin\theta$ from it, and also outside the disk $|z|\leq 2$, cf. Fig. 2. Therefore, at least one of them has a distance $\geq \frac{1}{2}\sin\theta$ from the real axis, and (18) and (19) imply

$$\frac{||\hat{\mathbf{c}}||}{||\mathbf{c} - \mathbf{r}_{\mathbf{c}}||} \ge \frac{\sin \theta}{6 + 4\rho_{\mathbf{S}}} \quad \text{if} \quad \mathbf{z}_{0} \in \mathbf{C} \quad \text{and} \quad \text{Im a } \neq 0. \quad (20)$$

By continuity, the same bound also holds if Im a = 0. (Note

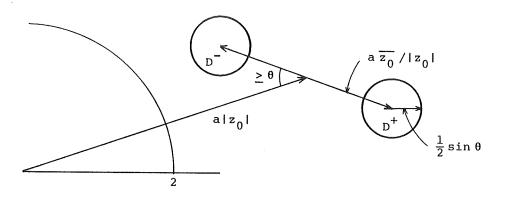


Fig. 2

that $\hat{c} \neq 0$ for $z_0 \in C$.)

 $\frac{z_0\in A^+. \text{ Here we again use the estimate } ||\hat{c}||\geq \max\{|\hat{c}(1)|,|\hat{c}(-1)|\}; \text{ now the case where } \hat{c}(1)=\text{Im } c(1)=0 \text{ , i.e. } a=\pm a_0 \text{ with }$

$$a_0 := \frac{1 - 1/z_0}{|1 - 1/z_0|}, \qquad (21)$$

will require special attention. In view of the invariance with respect to real factors of a mentioned above, we may restrict ourselves to the plus sign and set

$$a = a_0 e^{i\alpha} (|\alpha| \le \pi/2), \quad d := \frac{1}{2}(e^{-2i\alpha} - 1),$$

so that $\overline{a} = \overline{a_0} e^{-i\alpha} = \overline{a_0}$ (1 + 2d) $e^{i\alpha}$ and

Re c(1) = Re
$$\frac{e^{i\alpha}a_0}{1-1/z_0}$$
 = $\frac{\cos\alpha}{|1-1/z_0|}$ = $\frac{e^{i\alpha}(1+d)}{|1-1/z_0|}$. (22)

Then

$$\hat{c}(z) = \frac{1}{2} \frac{e^{i\alpha}}{|1 - 1/z_0|} \left[\frac{z_0 - 1}{z_0 - z} - (1 + 2d) \frac{\overline{z_0} - 1}{\overline{z_0} - z} \right],$$

or,

$$\hat{c}(z) = \frac{e^{i\alpha}|z_0|}{|z_0 - 1|} \cdot \frac{i(1-z) \operatorname{Im} z_0 - d(z_0 - z)(\overline{z_0} - 1)}{(z_0 - z)(\overline{z_0} - z)}, (23)$$

and by (22),

$$c(z) - r_{c}(z) = c(z) - \frac{|z_{0}| - 1}{|z_{0}| - z} \operatorname{Re} c(1)$$

$$= \frac{e^{i\alpha}}{|1 - 1/z_{0}|} \left[\frac{z_{0} - 1}{z_{0} - z} - (1 + d) \frac{|z_{0}| - 1}{|z_{0}| - z} \right]$$

$$= \frac{e^{i\alpha}|z_{0}|}{|z_{0} - 1|} \cdot \frac{(z_{0} - |z_{0}|)(1 - z) - d(z_{0} - z)(|z_{0}| - 1)}{(z_{0} - z)(|z_{0}| - z)}.$$
(24)

In particular,

$$|\hat{c}(1)| = \frac{|z_0||d|}{|z_0 - 1|}$$
 (25)

Now for $z_0 > 1$ (24) yields

$$||c-r_c|| = \frac{z_0 |d|}{|z_0-1|} \sup_{z \in S} \frac{z_0-1}{|z_0-z|} \le \frac{z_0 |d|}{|z_0-1|} \cdot \frac{1}{\sin 2\theta}$$

and, since $d \neq 0$ if $c \notin R_{mn}^{r}$, we get, using (25),

$$\frac{\|\hat{\mathbf{c}}\|}{\|\mathbf{c} - \mathbf{r}_{\mathbf{c}}\|} \ge \sin 2\theta \quad \text{if} \quad \mathbf{z}_0 > 1. \tag{26}$$

Likewise, using additionally (8) and the relation

$$z_0 - |z_0| = \frac{i e^{i\phi/2}}{\cos(\phi/2)} \text{ Im } z_0$$
, where $\phi := \arg(z_0 - 1)$,

we obtain asymptotically for $|\operatorname{Im} z_0| = \beta |d| \to 0$ with fixed $\beta > 0$

$$\frac{||\hat{c}||}{||c-r_c||} \ge \sin 2\theta \left[1 + \frac{\beta(1+\rho)}{\sin\theta\cos(\theta/2)(|z_0|-1)^2}\right]^{-1} + o(1).$$
(28)

1 0

(21)

ith ict

(22)

On the other hand, if d = 0, we get from (23) and (24)

$$\frac{||\hat{c}||}{||c-r_c||} \geq \inf_{z \in S} \left| \frac{\hat{c}(z)}{c(z) - r_c(z)} \right| = \frac{|\operatorname{Im} z_0|}{||z_0 - |z_0||} \inf_{z \in S} \left| \frac{|z_0| - z}{\overline{z_0} - z} \right|$$
$$\geq \frac{1}{2} \cos \frac{\theta}{2} \quad \text{if} \quad z_0 \in A^+, \quad \alpha = d = 0. \quad (29)$$

Now, clearly, $||\hat{c}|| > 0$ unless $\alpha = 0$ and Im $z_0 = 0$, which means that $c = r_c \in R_{01}^r$. Conversely, $c = r_c$ implies $\alpha = 0$, Im $z_0 = 0$, $||\hat{c}|| = 0$. Hence $||\hat{c}|| / ||c - r_c||$ is a positive continuous function of

$$(z_0, \alpha) \in (\overline{A}^+ \setminus \{1, \infty\}) \times [-\frac{\pi}{2}, \frac{\pi}{2}]) \setminus \mathbb{R} \times \{0\}$$
 (30)

Since $\overline{A^+} \times [-\pi/2, \pi/2]$ is a compact subset of $\overline{\mathbb{C}} \times \mathbb{R}$, it suffices to establish positive lower bounds for $||\hat{c}||/||c-r_c||$ that hold in the three cases

$$(z_0,\ \alpha)\ \rightarrow\ \mathbb{R}^{x^*}\{0\}\ ,\qquad z_0^{}\rightarrow 1\ ,\qquad z_0^{}\rightarrow\infty\ .$$

But for $1 < |z_0| < \infty$ the first case has just been treated, and (26), (28), (29) are appropriate bounds, except that z_0 should not approach 1 in (28). Hence we are left with the two other cases and may assume $z_0 \notin \mathbb{R}$:

For $z_0 \to 1$ and $\phi = \arg(z_0 - 1) \neq 0$, one can deduce from (23), (24), and (27) that for fixed $z \neq 1$ asymptotically

$$|\hat{c}(z)| \sim \frac{|i \sin \phi - d e^{-i\phi}|}{|1 - z|}$$
, $|c(z) - r_c(z)| \sim \frac{|2 i \sin \frac{\phi}{2} e^{i\phi/2} - d|}{|1 - z|}$.

Hence $\|\hat{c}\| \sim \|\hat{c}(1)\|$, $\|c - r_c\| \sim \|c(1) - r_c(1)\|$; but $\hat{c}(1) = c(1) - r_c(1)$ ($\forall z_0$) as is easily checked, and therefore

$$\frac{\|\hat{\mathbf{c}}\|}{\|\mathbf{c} - \mathbf{r}_{\mathbf{c}}\|} \to 1 . \tag{31}$$

unifo

if some

1. El in va

2. Gi

3. Ru de be

a. Ar

6. Va

Mart: Semin Eidg Zi ETH-

CH-8

Finally, for $z_0 \rightarrow \infty$, (23) and (24) imply

$$|\hat{c}(z)| \rightarrow |d|$$
, $|c(z) - r_c(z)| \rightarrow |d|$ (32)

uniformly for all $z \in S$. Hence (31) holds again if $d \neq 0$. The case d = 0 is covered by (29).

This concludes the proof.

Except for the case $z_0 \in B$ this proof remains valid if S is replaced by an interval $I \subset \mathbb{R}$. In fact, in the two other cases we have used very few properties of S except its symmetry, namely (7), (8), and $\pm 1 \in \partial S$.

References

- 1. Ellacott, S.W.: A note on a problem of Saff and Varga concerning the degree of complex rational approximation to real valued functions. Bull. Amer. Math. Soc. 6 (1982), 218-220.
- 2. Gutknecht, M.H., Trefethen, L.N.: Real and complex Chebyshev approximation on the unit disk and interval. Bull. Amer. Math. Soc. β (1983), 455-458.
- Ruttan, A.: The length of the alternation set as a factor in determining when a best real rational approximation is also a best complex rational approximation. J. Approx. Theory 31 (1981), 230-243.
- Saff, E.B., Varga, R.S.: Nonuniqueness of best complex rational approximations to real functions on real intervals. J. Approx. Theory 23(1978), 78-85.
- 5. Trefethen L.N., Gutknecht, M.H.: Real vs. complex rational Chebyshev approximation on an interval. Trans. Amer. Math. Soc. (1983, in print).
- Varga, R.S.: Topics in Polynomial and Rational Interpolation and Approximation. Montréal, Les Presse de l'Université de Montréal, 1982.

Martin H. Gutknecht Seminar für Angew. Mathematik Eidg. Techn. Hochschule Zürich ETH-Zentrum CH-8092 Zürich, SCHWEIZ Lloyd N. Trefethen
Courant Institute of
Mathematical Sciences
New York University
251 Mercer Street
New York, N.Y. 10012, USA

 $\left| \frac{\left| z_0 \right| - z}{\overline{z_0} - z} \right|$

(29)

z₀ = 0, mplies positive

(30)

t suf-

ted, and should o other

deduce

ically $\frac{|\dot{\phi}/2 - d|}{|\dot{\phi}|}.$

(31)