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REAL VS. COMPLEX RATIONAL CHEBYSHEV APPROXIMATION
ON COMPLEX DOMAINS

Martin H. Gutknecht and Lloyd N. Trefethen%*

Let § be a Jordan region symmetric about the real
axis, and consider best maximum norm approximation on S of an

analytic (or merely continuous) function f satisfying £f(z) =
T(z) by a rational function of type (m,n) with either real or

complex coefficients. For m=0 and n24, the error in com-
plex approximation can be arbitrarily much smaller than the error
in real approximation. In contrast, for (m,n) = (0,1) the com-

plex error can be better by at most a constant factor.

1. Introduction; statement of the result 4

Let S c ¢ be a compact point set symmetric about the
real axis, let ¢t be the set of complex functions £ defined
and continuous on S and satisfying £(z) = F(z2), let A c cF
be the subset of functions analytic in the interior of S, let
E;n(f) be the error in best approximation (with respect to the
maximum norm) of f on S from the set R;n of complex rational

functions with numerator degree at most m and denominator degree
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at most n, and let E;n(f) denote the correspoﬁding error for
the subset R;n = R;n with real coefficients. Finally, set

(o]

S Emn

Y 1= inf -
fe Ar\Rr Emn (£)
mn

(£)

For the case where S = I is an interval of the real
line (and hence AY = Cr), A.A. Gondar seems to have been the
first to notice that for some f € Cr, complex approximations
are better than real ones. From the work of K.N. Lungu,

E.B. Saff and R.S. Varga [4, 6], and A. Ruttan [3] various con-
ditions (necessary or sufficient) are known for E;n(f) < E;n(f)'
and in particular, it is known that Yin <1 for all m >0,
n > 1. However, no triple (f,m,n) with E;n(f) < % Egn(f)
and no positive lower bound for any Yin have been known until
recently, when we established the results

I

Yon = 0 for n >m+3, (1)

I
YOl >0 (2)

[2, 5]. At the same time we showed that for the closed unit
disk A

Y3n=0 for nz4 (L")

[2, 5], and we mentioned that our arguments for (1') and (2) can
be extended to the case where S is the closure of a Jordan
region symmetric about IR whose boundary is differentiable at
the two points of intersection with the real axis:

Yon =0 for n 4, (1)

S
Yo1 > 0 . (2")
The proof of (1") is short, and it is described in [5]. In con-

trast, the proof of (2") is tedious, and the similar proof of (2)

was only outlined in [5]. Here, we now want to state the whole
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v for proof for the case of a symmetric Jordan region. Analyticity of
€ £ turns out to be inessential, i.e. we prove a slightly more

general result:

THEOREM. Let S © ¢ be the closure of a Jordan region

M LT IS L e -

which is symmetric about the real axis and whose boundary is

differentiable at the two points of intersection with the real

real axis. Then
1e
c
ons . EOl(f)
inf —= > 0 . (3)

r_ T ET . (£)
rone £ec™~Ry, 01
an (£) A fortiori, Ygl > 0.

We do not claim that (1), (1'), and (1") have much

significance for practical approximation problems. 1In a real-

1til
istic application, E;n(f) will rarely be much less than E;n(fL
and even if it is, an increase in degree of a real approximation
(1) will probably be more cost-effective than a switch to complex
, coefficients. In fact, if £ € Cr, than for any c¢ € R;n the
(2) - ; .= L, ) ies i r
; associated function xr(z) : 2[c(z) + c(z)] lies in Rm+n,2n
and
£-xll = %—max [£(z) -c(z)]+1E(z) -1 < llf-ecll .
2€S
(1) . r c
; In particular, Em+n,2n(f) < Emn(f), cf. [4, Prop. 1].
can
! 2. Proof
at ‘
Let £ € ¢ be arbitrary, and let c* be a best
. . c c
(1) approximation of f from Rmn' For any ¢ € Rmn set
" 0 — — ~ —
(2") S(z) := o(z) , &(z) := 3lclz) -c(2)] .
con- Then
f (2) A : 1 _
ole le*l| = —2-ng [£(z) - c*(z))1-[f(z) - T*(z)]
z
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< llg-e*]l = B _(£) .
. r c r
Since E__(f) < E_(f) + |le* ~r|| for every r € R

—— it follows
that

lle* - x|l

o lle* - x|l
o S B () [1 + *T-]
x|l [lex |

EL (£) < BS (£) + |[c*]|

if >l # 0, i.e. c* ¢ R;n.

c r .
Now suppose that for any c¢ € Rmn\Rmn with no poles

on S we can find r, € R;n (depending on c¢) such that

el

lle -zl

(5)

for some fixed & > 0. According to (4) this implies

c
E- _(£f)
- 2 7 +ll/6 (6)
E__(f)
mn
% r . c I o o
whenever c ¢ Rmn . But otherwise Emn(f) Emn(f) trivially.

Therefore if (5) holds, (6) is true for all £ € cr\RIfm .

Our proof for the case (m,n) = (0,1) consists in
defining a suitable mapping c p r, and in verifying (5) for
this mapping.

First, without loss of generality we may assume that
+1 € 3S. Then, as in [5], 8® := T~S (where @ := CU {=})
is split up into

At .= {z € ¢ ; larg(=1x2z)| < 6} U {=} ,
C :={z €C; Izl 2 p}~(a"uaT) ,
B := ¢~@'ua"uvcus) ,

as indicated in Fig. 1. o € (0, n/4) and p are assumed to be
chosen such-that




‘ollows

(4)

wles

(5)

(6)

1lly.

to be

we define
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Fig, 1
2 nC=¢g, i.e. §> pg = max{lzl; z €S}, (7)
s ni{zed¢; larg(-1+oz)l < 20} = ¢, o =1z1, (8)
p > 4/sine . » (9)
For any ¢ € Rgl\\Rgo,

_ a
C(Z) = '1—-:—2-7"2—6 ¢

r, depending on the position of the pole z, by

1 - l/lzol +
—————— Re c(%1) if z, € A,
13 z/lz4l

rc(Z) = 0 if ZO €B ' (10)

Re a if z, € C .
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Correspondingly, our verification of (5) is split into three
cases. We may restrict a to have unit modulus since ¢, é,
and r, can all be multiplied by an arbitrary real scale factor.
The simplest case is

Zg € B. Let z* € S be a point closest to zZy ¢ SO
that Jc(z*)| = }|c|| . Then
A 1 c(z*) |
* [ — * -
el 2 18GM1 = 5 te(@n) |1 - g2
az. z, -gz*
1
=gzllelljr--2 2 ‘ (11)
K -k
az, zy-z
Due to the differentiability of 3S at 1,
2g = z*
— < cos B <1 (12)
zg = z*
whenever z, € B is close enough to *1, say, 2, € U; . On

the other hand, since B‘\(UE(JUQ) has a positive distance from
the real axis, there is a fixed Yg < 1 such that
Izo-z*I/IEE-z*l < vg for all zy in this set. Therefore, in
view of (10)-(12) we get for all =z, € B

0
~ , I
”Cll > HC-—rc!IGB with GB =5 min{l-cos 8, 1—yB}.
(13)
z0 € C. In view of
z/2
c(z) =a+ 22 [1+h(z)] with h(z) := 0
Z
0 1—z/z0
we get
lIEll > max (8(2))] = max |Im c(z)|
z=z1 z=%1
= max IIm[a + EL( 1+-h(1l)>], .
+ 20
Now, by (9), leI >2p > 4/sin® > 4 for z, € C, hence

Lik

Froi

3/1

Now

lie
5 si
Thez
the

By c

— 0



‘actor.

SO

(11)

(12)

Oon

+ from

1 2 2 1, ‘
'h(il)l 5 TZ I(l"lZ l_‘)i ‘Z I f_ B i -is:LnG (]_5)
0 0 0
A fortiori,
el > i al - 2 . (16)
0

Likewise, using (7) we get

2
lle - rcH max liInla + %5 [l + 2y <i£> + ...]'

Z€S 0 z
P
|Im al + 2 l_z(S)T . (17)

From (16) and (17) we conclude that for Ima * 0 and
3/1Imal < lzgl < e

IA

P

[t&]l Imal - 2/lzgl 1
>

> > . (18)
lle - x|l lIm al + 2pg/lzyl = 3 + 20g

For Ima #%# 0 and p < Iz,l < 3/1Im a| inequality (17) implies
fle-x |l < (3+2pg)/lzyl, and therefore using (14) we get for
[zol in this range

el Z
1 l [ aZO ]
O e max | Im| alz,| * —F (l+h(:tl_)) |
Hc—r “ 3+2pS + 0 |ZO|
c (19)

Now for =z

0 € C (zO # ) the two disks

azg
p* := {alz, | + —& (1+2); 18] < L sine }
0 leI =2
lie on opposite sides of the ray a®Rt at a distance of at least

-%sin 6 from it, and also outside the disk |z| < 2, cf. Fig. 2.
1

Therefore, at least one of them has a distance Z'iSin 6 from
the real axis, and (18) and (19) imply
el -
' sin © .
——— > ti4p- Iif 25 €C and Ima % 0. (20)
lle -zl s

By continuity, the same bound also holds if Im a = 0. (Note
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e}
ai
Fig. 2
that & # 0 for z, € C.)
0 I3
z, € at. Here we again use the estimate ||&| > -
max{1&(1)!, 18(-1) 1 }; now the case where &(1l) = Im c(l) = 0,
i.e. a = iao with
1 - l/z0 N
a, = —, (21)
1 - l/zol
will require special attention. In view of the invariance with
respect to real factors of a mentioned above, we may restrict
ourselves to the plus sign and set a
a=a, e*®  (|aj < w/2), d := %(e-Zla-l),
so that a = a_ e 1% = 3~ (1+2d) e!® ana
0 0 L
ia ia
- e ap - COS o - e (1+4d)
Re c(l) = Re -7 T-1/z.7 ~ TI=1/z.1- (22
0 0 0
Then
io _ = _ W
R 1 e z 1 zq 1
c(z) = 5 - (1+ 24) ,
11-1/z | | 2z, -z z, -z
0 0 0
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or,
e lzgl  i(l-2z) Mz, -a (z - 2)(zg - 1)
&(z) = . — . (23)
Izo—ll (zo—z)(zo-z)
and by (22),
Izoi—l
c(z) = rc(z) = ¢c(z) - ——— Re c(1)
Izol-z
eia zo-l lzol—l
= - (1+4d)
ll—l/zol z2g -z Izol—z
_ ezl (g lzgh (1-2) —d(zg - 2) (2l = 1)
Izo—ll (zo-z)(lzol—z)
(24)
In particular,
Izolldl
[8(1) | = =, (25)
lzo-ll
Now for z, > 1 (24) yields
z. |4} z,~1 z. |di 1
0 0 0
lo-rgll = -2 sup < S
Izo-ll Z€S Izo—zl |zO—lI sin 26
and, since 4 # 0 if ¢ ¢ lem, we get, using (25),
el :
_ sin 28 if zg > 1. (26)
lo-r,ll

Likewise, using additionally (8) and the relation

i ei¢/2

0~ 120l = Coste/2y ™2

z where ¢ := arg(zo-—l) R

(27)

0 1
we obtain asymptotically for |Im zol = Bldl -0 with fixed B8 > 0

_len B(1+p)

-1
sin 20 | 1 + — ] + 1) .
Toceal 2 21+ smvsbie A ")
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On the other hand, if d = 0, we get from (23) and (24)

el &(z) ITIm 2| lzl-2
— > inf = inf [—
Hc—rcn z€S | c(z) - r (2) lzg = lzgll z€5 1z -z
1 o, + o
> 5 cos 3 if z €Ean , a=d=20 ., (29)
Now, clearly, ||&]| > 0 unless o = 0 and Im zp = 0,

which means that ¢ = r, € RS, . Conversely, ¢ = r, implies

o =0, Imz, =0, |[&]=0. Hence H6[|/Hc-rCH is a positive

0
continuous function of

(zgr 0 € (A N1, x 1= F, 51) SR (0} . (30)

Since AT x [-m/2, m/2] is a compact subset of € xR, it suf-
fices to establish positive lower bounds for |[|&}|/]lc - rcH
that hold in the three cases

(zgr @) - Rrx {0}, z

But for 1 < |zO
(26), (28), (29) are appropriate bounds, except that zg should

| < » the first case has just been treated, and

not approach 1 in (28). Hence we are left with the two other

cases and may assume z, {R:

For zg 1 and ¢ = arg(zo-l) +#+ 0, one can deduce

from (23), (24), and (27) that for fixed =z *1 asymptotically

- indte/2
Iisinqa—delq)l 2151n2e d

1&(z) | le(z) =x (z) | ~

11 -zl ' I1-z|

Hence |[&[| ~ 18(1)I, |[e-x Il ~ lc(1) = r (1)I; but &(1) =
c(l)-—rc(l) (Vz

lrell

O) as is easily checked, and therefore

- 1. (31)

lfe -zl

Mart:
Semil
Eidg.

ETH-!
CH-8!




Izol—z

-2

. (29)

2y = 0,

mplies

positive

(30)

t suf-

ted, and
should

o other

deduce
ically

ai¢/2 -d

z|

(31)
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Finally, for 2g > @, (23) and (24) imply

1é(z) | - ldl, le(z) ~r(2)1 - |4} (32)

uniformly for all =z € S. Hence (31) holds again if d # 0. The

case d = 0 1is covered by (29).
This concludes the proof. o

Except for the case 1z, € B this proof remains valid

0
if 8 is replaced by an interval I ¢ R. In fact, in the two

other cases we have used very few properties of § except its

symmetry, namely (7), (8), and 1 € 3dS.
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