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Abstract. The usual way in which mathematicians work with randomness is by a rigorous formulation
of the idea of Brownian motion, which is the limit of a random walk as the step length
goes to zero. A Brownian path is continuous but nowhere differentiable, and this non-
smoothness is associated with technical complications that can be daunting. However,
there is another approach to random processes that is more elementary, involving smooth
random functions defined by finite Fourier series with random coefficients or, equivalently,
by trigonometric polynomial interpolation through random data values. We show here
how smooth random functions can provide a very practical way to explore random effects.
For example, one can solve smooth random ordinary differential equations using standard
mathematical definitions and numerical algorithms, rather than having to develop new
definitions and algorithms of stochastic differential equations. In the limit as the number
of Fourier coefficients defining a smooth random function goes to \infty , one obtains the usual
stochastic objects in what is known as their Stratonovich interpretation.
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1. Introduction. This paper is about random functions of the kind illustrated
in Figure 1. These functions are smooth, in fact band-limited, though they approach
nonsmooth form as the wavelength parameter \lambda approaches 0. They are defined both
in a standard normalization, where it is function values themselves that are of interest,
and in what we call the big normalization, of amplitude

\sqrt{} 
2/\lambda times larger, where it

is integrals that are of interest to drive smooth analogues of Brownian motion and
stochastic differential equations (SDEs).

We developed smooth random functions for practical computation in the soft-
ware package Chebfun [11, 46], whose aim is to enable MATLAB-style computing
with continuous functions and operators as opposed to discrete vectors and matrices.
Indeed, the starting point of this study was the question, what might be a continu-
ous analogue of a random vector generated by the MATLAB command randn(n,1)?
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Fig. 1 Smooth random functions on [ - 1, 1] with wavelength parameters \lambda = 0.1 and 0.025. The two
columns look the same at first glance, but their vertical scales are different, illustrating that
two different choices of normalization are appropriate depending on whether one is concerned
with function values (left column) or their integrals (right). In Chebfun, these functions can
be generated by the commands randnfun(lambda)and randnfun(lambda, flbigfl), respectively.

Our definitions allow the domain to be any interval [a, b], and extensions to multiple
dimensions are presented in section 7.

Nothing in this article is mathematically or scientifically new. The idea of Fourier
series with random coefficients (``Fourier--Wiener series"") goes back to Wiener in
1924 [48], with generalizations by Paley, Wiener, and Zygmund in 1933--34 [36]. A
leader in this subject for many years was Jean-Pierre Kahane [21, 22], and there is an
advanced monograph by Marcus and Pisier [30]. Random series have been used ex-
tensively for time series analysis [17], computational simulations [54], and theoretical
applications in a range of fields, both in one and in higher dimensions (see section 7).
Our aim in this paper is to present this idea in the form of a very concrete, easily
accessible tool that may be useful for those learning or exploring random phenomena.
Rather than starting with technicalities of Gaussian processes or SDEs, we go directly
to the smooth random functions, while giving references to published sources for fuller
and more rigorous treatments.

A key feature of this paper is a sequence of Chebfun-based examples illustrating
how smooth random functions can be used in applications. Further examples can be
found in Chapter 12 of [47], where these functions were first introduced, and in the
online examples collection at www.chebfun.org.

2. Periodic Smooth Random Functions. Let \lambda > 0 be a wavelength parameter,
and suppose we are interested in periodic random functions on the interval [ - L/2, L/2]
for some L > 0; an interval [a, b] is handled by the obvious translation. Our definitions
based in the Fourier domain are as follows. In a moment we shall give equivalent
definitions based in the space domain.

Definition 2.1. A complex periodic smooth random function for given \lambda , L > 0
is a function

(2.1) f(x) =

m\sum 
j= - m

cj exp

\biggl( 
2\pi ijx

L

\biggr) 
, m = \lfloor L/\lambda \rfloor ,

where each cj is an independent sample from N(0, 1/(2m+1))+ iN(0, 1/(2m+1)). A

www.chebfun.org
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real periodic smooth random function is the real part of a complex one. Equivalently,
it is a function

(2.2) f(x) = a0 +
\surd 
2

m\sum 
j=1

\biggl[ 
aj cos

\biggl( 
2\pi jx

L

\biggr) 
+ bj sin

\biggl( 
2\pi jx

L

\biggr) \biggr] 
, m = \lfloor L/\lambda \rfloor ,

where each aj and each bj is an independent sample from N(0, 1/(2m+ 1)).

As usual, N(\mu , V ) denotes the real normal distribution of mean \mu and variance
V , and \lfloor \cdot \rfloor is the floor function. According to standard terminology, f is a trigono-
metric polynomial of degree m [52]. To verify that (2.2) is equivalent to the real
part of (2.1), we can write cj = \alpha j + i\beta j , where \alpha j and \beta j are independent samples
from N(0, 1/(2m+ 1)), and note that exp(2\pi ijx/L) = cos(2\pi jx/L) + i sin(2\pi jx/L).
Grouping together real terms, we find that the real part of (2.1) can be expanded as

\alpha 0 +

m\sum 
j=1

\biggl[ 
(\alpha j + \alpha  - j) cos

\biggl( 
2\pi jx

L

\biggr) 
+ ( - \beta j + \beta  - j) sin

\biggl( 
2\pi jx

L

\biggr) \biggr] 
.

Since \alpha j and \alpha  - j are independent samples from N(0, 1/(2m+1)) for j \geq 1, their sum

is a sample fromN(0, 2/(2m+1)), hence equivalent to
\surd 
2aj with aj fromN(0, 1/(2m+

1)); similarly for the terms involving \beta j and \beta  - j .
A theorem summarizes some of the properties of these functions. We say that a

periodic function is k-band-limited if it can be written as a Fourier series with wave
numbers confined to [ - k, k].

Theorem 2.2. A periodic smooth random function f (whether real or complex)
is L-periodic, entire, and (2\pi /\lambda )-band-limited. The stochastic process from which f
is a sample is stationary (i.e., it has a distribution that is translation-invariant), with
values f(x) at each x distributed according to N(0, 1) + iN(0, 1) in the complex case
and N(0, 1) in the real case.

Proof. The periodicity is immediate from (2.1) or (2.2), and f is entire (i.e.,
analytic throughout the complex x-plane) since it is a finite sum of complex expo-
nentials or sines and cosines. Since | j| \leq m \leq L/\lambda , the maximum value of the
coefficients | 2\pi j/L| in (2.1) or (2.2) is bounded by 2\pi /\lambda , so f is (2\pi /\lambda )-band-limited.
Stationarity of the stochastic process follows from (2.1) since translating a function
cj exp(2\pi ijx/L) amounts to changing the argument but not the modulus of cj and the
distribution N(0, 1/(2m+ 1)) + iN(0, 1/(2m+ 1)) is argument-invariant. Hence any
translated process has an identical distribution to the original. The same argument-
invariance of N(0, 1/(2m+1))+ iN(0, 1/(2m+1)) also ensures that the sum in (2.1)
is distributed according to N(0, 1) + iN(0, 1) at each point x, and its real part ac-
cordingly has the distribution N(0, 1).

These definitions of random functions are rooted in the Fourier domain: they
describe a random function as a sum of Fourier modes with random amplitudes. (We
may think either of random complex amplitudes or of random real amplitudes coupled
with random phases.) Equivalently, as suggested in Figure 2, we can construct random
functions in the spatial domain. The essential point here is that there is an equivalence
between the 2m + 1 Fourier series coefficients \{ cj\} of (2.1) and the 2m + 1 function
values

dj = f(xj),  - m \leq j \leq m,
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Fig. 2 Two ways of viewing a smooth random function f . The Fourier domain view is that f is
a linear combination of a finite collection of sine waves with different wave numbers and
phases. The space domain view is that it is a trigonometric interpolant through random
data values at equally spaced points or, equivalently, a linear combination of translates of
the Dirichlet kernel (the periodic sinc function). Each column of this figure is intended to
suggest how the random function is obtained by adding up such pieces.

where the equispaced gridpoints xj are defined by

(2.3) xj = jh, h =
L

2m+ 1
,  - m \leq j \leq m.

If c = (c0, . . . , cm, c - m, . . . , c - 1)
T and d = (d0, . . . , dm, d - m, . . . , d - 1)

T , then d = Fc,
where F is the (2m+ 1)\times (2m+ 1) discrete Fourier transform matrix

F =

\left(     
1 1 1 \cdot \cdot \cdot 
1 \omega \omega 2 \cdot \cdot \cdot 
1 \omega 2 \omega 4 \cdot \cdot \cdot 
...

...
...

\right)     , \omega = exp

\biggl( 
2\pi i

2m+ 1

\biggr) 
.

This matrix, mapping coefficients to function values, is
\surd 
2m+ 1 times a unitary

matrix. In other words its inverse, mapping function values to coefficients, is F - 1 =
(2m+ 1) - 1F \ast , where \ast denotes the conjugate transpose.

Thus there are two equivalent ways to specify a (2\pi /\lambda )-band-limited L-periodic
function: as a linear combination of 2m+ 1 Fourier modes, or as the unique trigono-
metric interpolant through 2m + 1 data values. The idea of Lagrange interpolation
gives an explicit representation of such interpolants. The function

(2.4) D(x) =
sin((2m+ 1)\pi x/L)

(2m+ 1) sin(\pi x/L)

is the trigonometric interpolant through the data values 1 at x = 0 and 0 at the other
2m points xj , j \not = 0. (It is equal to the sum (2.1) in the case cj = (2m + 1) - 1 for
all j.) Thus D is the cardinal function associated with interpolation through a single
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data point, also known as a periodic sinc function or the Dirichlet kernel. From here
we see that any (2\pi /\lambda )-band-limited L-periodic function can be specified in the form

f(x) =

m\sum 
j= - m

djD(x - jh), m = \lfloor L/\lambda \rfloor .

The observations above depend only on the fact that F is nonsingular. The
equivalence we need for smooth random functions follows from the further fact that
F is a multiple of a unitary matrix. In the definition (2.1), the variables cj are
independent samples from N(0, 1/(2m + 1)) + iN(0, 1/(2m + 1)). By a standard
result of multivariate statistics, this is the same as saying that their joint probability
distribution is

p(c) = C exp( - (2m+ 1)\| c\| 2/2),

where \| \cdot \| is the 2-norm and the constant C > 0 normalizes the total probability to 1.
Since d = Fc and F is

\surd 
2m+ 1 times a unitary matrix, this is equivalent to saying

that the joint probability distribution of the values \{ dj\} is

p(d) = C \prime exp( - \| d\| 2/2),

where C \prime is again a normalization constant. Therefore the values dj are indepen-
dent samples from N(0, 1) + iN(0, 1). This observation establishes that the following
definition is equivalent to the earlier one.

Definition 2.3. A real or complex periodic smooth random function for given
\lambda , L > 0 is a function

(2.5) f(x) =

m\sum 
j= - m

djD(x - jh), m = \lfloor L/\lambda \rfloor ,

with h defined by (2.3), where each dj is an independent sample from N(0, 1) or
N(0, 1) + iN(0, 1), respectively.

It is worth emphasizing this equivalence. Fourier series with random coefficients
are the same as trigonometric interpolants through random data values. Though
we have made use of the particular choice (2.3) of gridpoints xj , it follows from
translation-invariance that this choice does not matter. Translation to any other
equispaced grid will produce the same distribution of smooth random functions.

Periodic smooth random functions define a Gaussian process with mean zero, as
we shall discuss in section 6. As a taste of this interpretation, we note here that
translation-invariance reveals how values of a smooth random function depend on
one another between gridpoints. The covariance of the stochastic process is the func-
tion C(x, y) defined as the expected value of the product f(x)f(y), or f(x)f(y) in
the complex case. Because of stationarity, this is equal to the expected value of
f(x - y)f(0). By (2.5), f(0) reduces to the random number d0, and since the coeffi-
cients dj are uncorrelated with d0 for j \not = 0, it follows from (2.5) that the expected

value of f(x - y)f(0) reduces to the expected value of d0d0D(x - y), that is, D(x - y)
in the real case and 2D(x - y) in the complex case.

Figure 3 shows an example of one kind of use of smooth random functions. In
many applications one would like to take random initial data to explore the typical
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Fig. 3 Solution of the Cahn--Hilliard equation (2.6) with a smooth periodic random function with
\lambda = 0.2 as the initial condition u(x, 0). As t increases, the solution coalesces into fewer
and fewer regions with values \approx \pm 1, always conserving the overall integral, until eventually
a steady state is reached with just one region of each sign in this periodic domain. Smooth
random functions are employed in applications for exploring the typical behavior of a dy-
namical system. As we shall see in section 7, sometimes that system may be the universe
itself.

behavior of a system. The figure shows a computation in which a periodic smooth
random function has been taken as the initial condition for the Cahn--Hilliard equa-
tion,

(2.6) ut =  - 10 - 2uxx  - 10 - 5uxxxx + 10 - 2(u3)xx,

which models phase separation in binary alloys and fluids [8]. We take periodic
boundary conditions on the interval x \in [ - 1, 1] for t \in [0, 3000], and the simulation
is carried out with the ``spin"" stiff partial differential equation (PDE) integrator in
Chebfun [31] in about 15 seconds of laptop time using essentially the following code:

S = spinop([-1,1],[0 3000]);

rng(6), S.init = -.5*randnfun(.2,fltrigfl);

S.lin = @(u) -1e-2*diff(u,2) - 1e-5*diff(u,4);

S.nonlin = @(u) 1e-2*diff(u.\^3,2);

spin(S,96,.04,fliterplotfl,250)

3. Nonperiodic Smooth Random Functions. The random functions discussed
above are periodic, but applications usually do not call for periodicity. As a practical
matter, we construct nonperiodic smooth random functions by forming periodic func-
tions on a longer interval [ - L\prime /2, L\prime /2] or [0, L\prime ] with L\prime > L and then truncating. In
principle one should take L\prime \rightarrow \infty , so that no trace of periodicity remains in the orig-
inal interval. A mathematically precise treatment of this limit would involve random
Fourier transforms as opposed to series, but we shall not pursue this. Accordingly,
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Fig. 4 A smooth random function with \lambda = 0.05 on [0, 10] together with its cumulative maximum
and minimum functions. With probability 1, these widen at a rate proportional to (logL)1/2

on [0, L] as L \rightarrow \infty .

in the remainder of this paper, when we speak of smooth random functions without
specifying periodicity, we refer to a construction based on a finite value L\prime \geq L. In-
formally, one should imagine L\prime \gg L, or more precisely L\prime  - L \gg \lambda , but formally, our
statements apply irrespective of the choice of any finite value L\prime \geq L. The Chebfun
randnfun function takes L\prime \approx 1.2L. Any fixed ratio L\prime /L > 1 is enough to ensure
that effects of periodicity go away as \lambda \rightarrow 0.

Smooth random functions have many properties that mimic those of the random
vectors randn(n,1) mentioned in the introduction. For example, Figure 4 shows a
smooth random function with \lambda = 0.05 on the domain [0, 10] produced by the Cheb-
fun command f = randnfun(0.05,[0,10]). What are its maximum and minimum?
Approximately speaking, both numbers will be of order 1, and more precisely, for any
fixed \lambda , according to the theory of extreme value statistics, one can expect them to
grow at a rate proportional to (logL)1/2 on [0, L] as L \rightarrow \infty because of the square-
exponential tail of the normal distribution. (A key mathematical result in this area
is the Borell--TIS inequality [1].) The figure gives some hint of this behavior by in-
cluding cumulative minimum and maximum curves drawn by the Chebfun command
plot([f; cummax(f); cummin(f)]). One could investigate precise formulations of
such observations, and that would be an interesting subject for research. As is cus-
tomary in probability theory, properties of smooth random functions will hold not
with certainty, but with probability 1. For example, a smooth random function for
any fixed L and \lambda \leq L is nonconstant---with probability 1.

Another example of the kind of exploration that is readily carried out with nonpe-
riodic smooth random functions is illustrated in Figure 5. If f and g are real functions
of t, then for any \varepsilon > 0 and any t, the symmetric matrix

(3.1) A(t) =

\biggl( 
f(t) \varepsilon 
\varepsilon g(t)

\biggr) 
has two distinct real eigenvalues (separated by at least 2\varepsilon ). If \varepsilon is small, however,
the two eigenvalues will have a near-crossing at points where f and g cross. The
figure illustrates this effect for a case where f and g are smooth random functions on
[0, 4] with \lambda = 1 and \varepsilon = 0.05. A generalization of this example, which goes by the
name of Dyson Brownian motion [12], is the effect that real symmetric matrices with
Brownian path entries also show eigenvalue level avoidance (with probability 1).

4. Big Smooth Random Functions, White Noise, and Brownian Paths. The
tempting question is always, what happens as \lambda \rightarrow 0? This is the white noise limit,
but one must be careful.
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Fig. 5 Eigenvalues of a 2 \times 2 real symmetric matrix function (3.1) with smooth random entries,
related to the process known as Dyson Brownian motion. When the values of f(t) and g(t)
cross, the eigenvalues come close together but do not cross.

Smooth random functions as we have defined them oscillate faster and faster as
\lambda \rightarrow 0, always with amplitude O(1). They do not converge pointwise. One might
imagine that a reasonable notion of a random function corresponding to \lambda = 0 would
be a function taking independent values from N(0, 1) at each point x. Such functions
would not be Lebesgue measurable, however, and hence would not even be integrable;
it is not clear what use they would be.

Another idea for \lambda \rightarrow 0 comes from the observation that integrals of smooth
random functions converge to zero in this limit because of sign cancellation.1 So one
could also speak of a limit function for \lambda = 0 in the form of a distribution. It would
be the zero distribution, however, which is not very interesting.

The mathematical and scientific substance for the limit \lambda \rightarrow 0 appears when the
functions are rescaled by O(\lambda  - 1/2). The precise definition we make is that a smooth
random function in the ``big"" normalization is the same as before, but with (2.1), (2.2),
and (2.5) multiplied by

\sqrt{} 
2/\lambda . Here are the definitions followed by the appropriate

restatement of Theorem 2.2.

Definition 4.1. A real or complex big periodic smooth random function is de-
fined as in Definitions 2.1 and 2.3, except with the variances 1/(2m + 1) of Defini-
tion 2.1 increased to 2/((2m+1)\lambda ) and the variances 1 of Definition 2.3 increased to
2/\lambda .

Theorem 4.2. A big periodic smooth random function f (whether real or com-
plex) is L-periodic, entire, and (2\pi /\lambda )-band-limited. The stochastic process from
which f is a sample is stationary, with values f(x) at each x distributed according
to N(0, 2/\lambda ) + iN(0, 2/\lambda ) in the complex case and N(0, 2/\lambda ) in the real case.

Note that since m \approx L/\lambda , we have 2/((2m + 1)\lambda ) \approx 1/L. Thus in the big
normalization, the random coefficients of the series (2.1) and (2.2) have variances
essentially independent of \lambda as \lambda \rightarrow 0.

The point of the rescaling emerges when we look at integrals. Figure 6 plots
indefinite integrals of three big smooth random functions on [0, 1] with parameters
\lambda = 1/5, 1/25, and 1/125. The seed used to initialize the random number generator
is set in the same way for each case, so these are successively finer approximations

1This statement holds with probability 1. In the remainder of the paper, we shall not always
mention this qualification.
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Fig. 6 Indefinite integrals of big smooth random functions give smooth random walks, which con-
verge to Brownian paths as \lambda \rightarrow 0.
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Fig. 7 A complex analogue of Figure 6 shows indefinite integrals of big smooth complex random
functions, that is, smooth random walks in two dimensions.

of the same random curve.2 One sees smaller-scale features appearing as \lambda decreases
and more terms are included in the series (2.2). We call such paths smooth random
walks, and as we shall state in Theorem 4.3 below, they converge to Brownian paths
as \lambda \rightarrow 0. One of our favorite references on mathematical Brownian motion is [32].

Figure 7 presents an analogous trio of images for indefinite integrals of complex
smooth random functions. These we call complex smooth random walks, again con-
verging to a familiar form of complex (or simply two-dimensional) Brownian paths as
\lambda \rightarrow 0.

Each sample path of a random process looks different (and it is striking how the
human eye is wired to see personalities in them!). Figure 8 shows ten examples each
of smooth real and complex random walks, all with \lambda = 0.001. Taking smaller values
of \lambda would have little visible effect. In Chebfun, one can generate a figure like this
with the command plot(cumsum(randnfun(.001,[0 1],10))).

The mathematics of Brownian paths began to be worked out by Einstein, Smolu-
chowski, and others in the first decade of the 20th century. The core of this subject
is the idea that Brownian paths are the integral of white noise, i.e., of a signal with
equal energy at all wave numbers. The paradox is that the notion of white noise does
not make sense, because for noise to be truly white, it would have to have infinite

2To ensure that setting the random number seed has the desired effect, Chebfun picks random
coefficients in the order c0, c1, c - 1, c2, c - 2, . . . , i.e., starting at the low wave numbers and then
increasing.
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Fig. 8 Real and complex smooth random walks, ten samples each with \lambda = 0.001. This value is
small enough that the curves are Brownian paths roughly to plotting accuracy.

amplitude and infinite energy. In a physical application, noise must be colored. There
must be a cutoff, a minimal space scale, and in the case of physical Brownian motion
of the kind observed in microscopes, this is provided by the finite size of the molecules
that randomly impact a small particle suspended in a liquid.

In the 1920s, nevertheless, Wiener found a way to make the notion of Brownian
paths rigorous without a small space scale cutoff: in our terms, to set \lambda = 0. (Other
mathematicians important in the early history include Kolmogorov and Levy.) The
essential idea is to take as the primary object not noise but its integral---the Brownian
path. Wiener showed that one can define such paths and the associated probability
measure in a mathematically rigorous way, giving what is now known as the Wiener
process. A Brownian path W (t) is continuous (with probability 1), but it is not
smooth. Its derivative exists nowhere (again with probability 1), which is to be
expected since the derivative would have to be white noise.

A remarkable property of Brownian paths is that, although the details of a path
from A to B are infinitely complicated, it is possible to get from A to B without track-
ing those details. A random walk with finite steps taken from a normal distribution
can be regarded as a sample of a Brownian path at discrete times, and if one needs
values at points in between, one can calculate them later (the Brownian bridge). Using
a term from computer science, we may say that the infinite complexity of Brownian
paths is not an obstacle because they can be computed by ``lazy evaluation.""

The most fundamental virtue of the pointwise approach to stochastic analysis
initiated by Wiener is that, scientifically speaking, it is just the right idealization. By
way of analogy, the subject of continuum mechanics builds on the fact that although
the air in a pump, say, is composed of a vast number of discrete molecules, it can be
modeled as a continuum. We know that air is not really a continuum, yet most of us
would feel that interpreting it that way is not merely convenient, but in some sense
intellectually the right thing to do for many purposes. The pointwise, \lambda = 0 approach
to stochastic analysis has the same quality. Truly white noise may be a physical
impossibility, but we can make sense of its integral, and this seems intellectually right.
And just as with continuum mechanics, this model of stochastics has the particular
benefit that it connects the subject with PDEs. For example, the theory of harmonic
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measure associates exit probabilities of Brownian paths with solutions of the Laplace
equation. The basis of such connections is the fact that the density of an ensemble of
Brownian motions obeys a diffusion PDE, with spreading at a rate characterized by\surd 
t. This observation goes all the way back to Einstein.
The difficulty with the pointwise approach to stochasticity, however, is that it

is highly technical. In continuum mechanics we can write down the gas laws or the
Navier--Stokes equations without discussing the underlying molecules, but it is not
possible to state the principles of stochastic analysis so easily. Stochastic analysis
requires special foundations, and they are technically advanced. These in turn re-
quire special notations and special numerical methods, which are different from the
familiar methods of nonstochastic numerical computation [24]. This becomes an issue
particularly in the context of differential equations, the subject of the next section.

Ultimately, anyone working in this field will need to deal with the technicalities.
Smooth random functions, however, provide an elementary way to get started. Since
\lambda > 0 always, they build just on ordinary calculus and ordinary numerical methods
(quadrature in this section, solution of ODEs in the next).

The possibility of defining Brownian paths via Fourier series with random coeffi-
cients goes back a long way. As discussed by Kahane [21, 22], Wiener considered such
series in [48], and the discussion was generalized by him and Paley and Zygmund in
several papers including [36]. As these authors noted, the integral of the series (2.1) or
(2.2) contains coefficients mollified by the factor 1/j. Thus, for example, integration
of (2.1) gives \int x

0

f(s)ds = c0x+
L

2\pi i

m\sum 
j= - m
j \not =0

cj
j

\biggl[ 
exp

\biggl( 
2\pi ijx

L

\biggr) 
 - 1

\biggr] 
.

With m = \infty this becomes an infinite series whose convergence is not guaranteed,
since O(j - 1) coefficients do not decrease quite fast enough, but if the coefficients are
random, that ensures convergence with probability 1.

The central property of big smooth random functions is that their integrals con-
verge to standard Brownian paths as \lambda \rightarrow 0. (The term standard refers to a normal-
ization. The variance of the distribution of a Brownian path W (t) is equal to Ct for
some constant C, and the standard choices are C = 1 for the real case and C = 2 for
the complex case.) We designate this as a theorem for clarity, but the statement below
is not really precise, and indeed this paper does not present any of the definitions and
details needed for rigorous stochastic analysis. For a full treatment, we recommend
Chapter 16 of Kahane's book [21], particularly Theorem 2 on p. 236. Ultimately this
result is due to Wiener.

Theorem 4.3. As \lambda \rightarrow 0, indefinite integrals of big smooth random functions
(whether real or complex, periodic or nonperiodic) converge with probability 1 to stan-
dard Brownian paths.

For a fascinating presentation of the mathematical properties of Brownian motion,
see the book [32] mentioned earlier, and a more advanced treatment can be found
in [39]. The physical side of the subject is presented in [15], also with a discussion of
applications in finance.

5. Smooth Random ODEs. Having defined smooth random functions, we can
use them as forcing functions, or as coefficients, in ordinary differential equations
(ODEs). Sometimes this is interesting for fixed \lambda , typically with the standard nor-
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Fig. 9 Solutions to the bistable ODE with noise (5.1) for three values of \lambda , all starting from the
same random number seed. The solution alternates randomly between one state and the
other.

malization, when one is interested in systems with a macroscopic random character,
as illustrated in a PDE context by the Cahn--Hilliard example of Figure 3. Other
times the motivation is noise, and then the right choice will be small values of \lambda with
the big normalization. For example, the smooth random walks of the last section are
solutions of the trivial ODE u\prime = f , where f is a big smooth random function. It
is equally easy on a computer to incorporate smooth random functions in less trivial
differential equations.

First, Figure 9 shows three solutions to a bistable equation with noise,

(5.1) u\prime = u - u3 + 0.7f, t \in [0, 500], u(0) =  - 1,

where f is a big smooth random function with wavelength parameter \lambda . Without the
noise term, this ODE has stable steady states at u =  - 1 and +1. With the noise,
solutions tend to linger near one steady state before eventually making a transition
to the other (essentially a Poisson process), switching back and forth infinitely often
(with probability 1) as t \rightarrow \infty . In Chebfun, a suitable code is

f = randnfun(lambda,[0 500],flbigfl);

N = chebop(0,500);

N.op = @(u) diff(u) - u + u\^3 + .5*f; N.lbc = -1;

u = N``0; plot(u)

The figure plots solutions for three values of \lambda , revealing modest changes as \lambda de-
creases. In a scientific application one might be interested, for example, in the depen-
dence of the mean switching time on the noise amplitude.

The next example, in Figure 10, is a nonlinear pendulum equation with noise,

(5.2) \theta \prime \prime =  - sin(\theta ) + 0.05f, t \in [0, 200], \theta (0) = 3, \theta \prime (0) = 0,

where f is a big smooth random function with \lambda = 0.2. In Chebfun:
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Fig. 10 The nonlinear pendulum with noise (5.2), showing a function of time t on the left and
the corresponding phase plane trajectory for 47 \leq t \leq 97 on the right. The noise induces
transitions between bound states, in which \theta (t) oscillates around a multiple of 2\pi , and
unbound states, where the pendulum swings over and \theta (t) increases or decreases steadily.
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Fig. 11 Hopf bifurcation with noise in (5.3). With small noise (left), the bifurcation point is near
t = 0, but larger noise (right) brings it forward.

N = chebop(0,200);

N.op = @(theta) diff(theta,2) + sin(theta); N.lbc = [3;0];

f = .05*randnfun(0.2,[0 200],flbigfl);

theta = N``f; plot(theta)

Without the noise, the trajectory would oscillate forever around 0, but the noise has
the effect of increasing the energy so that \theta increases steadily up to around t = 60;
the pendulum is swinging over and over. Then the energy happens to diminish a bit,
giving a couple of bound oscillations, before at around t = 90 it increases again and
the pendulum starts swinging over in the other direction. As in all such experiments,
a new choice of f would change the details completely, but it would not change the
qualitative behavior.

Our third example in Figure 11 concerns a Hopf bifurcation in a two-variable ODE
system that can be found in a number of references; we adapted this from Example 79
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Fig. 12 Solutions to the multiplicative noise equation (5.4) for small and large values of \sigma , both
with \lambda = 0.05. As analyzed in [20], the two behaviors are qualitatively different.

of Appendix B of [47]. The equations are

(5.3) u\prime =  - v + u(t/T  - u2  - v2) + \varepsilon f, v\prime = u+ v(t/T  - u2  - v2),

where f is a big smooth random function with \lambda = 1. With \varepsilon = 0.01, a bifurcation
occurs near t = 0, as one would expect from a standard analysis, but the larger value
\varepsilon = 0.1 advances the bifurcation point noticeably:

T = 100; dom = [-T,T];

N = chebop(@(t,u,v) [diff(u)+v-u*(t/T-u\^2-v\^2); ...

diff(v)-u-v*(t/T-u\^2-v\^2)],dom);

N.lbc = [0;0]; rng(0), f = 0.01*randnfun(1,dom,flbigfl);

[u,v] = N``[f;0]; t = chebfun(fltfl,dom); plot3(t,u,v,LW,lw)

All these examples involve what is known as additive noise, where a random term
is added to an ODE as a forcing function. Smooth random functions can also be used
to approximate multiplicative noise. In the simplest case the ODE is u\prime = fu, where
f is a big smooth random function, and this leads to a smooth approximation of
geometric Brownian motion. For a more substantive example we follow Horsthemke
and Lefever [20, p. 123] and consider the equation

(5.4) u\prime = (1 + \sigma f)u - u2, t \in [0, 20], u(0) = 1,

where f is a big random function. With \sigma = 0, this system has a stable fixed point at
u = 1 and an unstable one at u = 0. With \sigma \not = 0, as analyzed in [20], the trajectories
stay mainly near u = 1 when \sigma is small but are often near u = 0 when \sigma is large.
Figure 12 illustrates this difference.

None of what we have done in this section has made use of the theorems, notations,
or algorithms of stochastic calculus and SDEs. Everything has involved ODEs of the
usual kind computed by the usual numerical methods, so no technical issues have
arisen. But of course it is necessary to know how computations like these relate to
stochastic analysis. There are two standard formulations, originating with It\^o (in the
1940s) and Stratonovich (in the 1960s). The mathematical relationships between the
It\^o and Stratonovich formulations are fully understood, and an equation written in
either form can be converted into an equivalent equation in the other; when there
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is only additive noise, they are identical. Details can be found in many texts on
stochastic analysis, such as [15, 24, 35]. In a word, smooth random ODEs as we have
set them up correspond to the Stratonovich formulation. Equation (5.1), for example,
is a smooth approximation to this SDE written in the standard notation:

dXt = (Xt  - X3
t )dt+ 0.5dWt.

In this case, as there is only additive noise, the It\^o and Stratonovich settings coincide.
An example with multiplicative noise is (5.4), and in this case the convention is to
include a `` \circ "" symbol to indicate that the formulation is Stratonovich. Equation (5.4)
is a smooth approximation to this SDE:

dXt = (Xt  - X2
t )dt+ \sigma Xt \circ dWt.

The central property of solutions of ODEs containing a big smooth random func-
tion is that they converge to solutions of Stratonovich SDEs as \lambda \rightarrow 0. As with The-
orem 4.3, we state this as a theorem, but the statement is not precise, for that would
require details of stochastic analysis. The result is essentially due to Wong and Zakai
in a pair of papers from the mid-1960s [50, 51], of which an account is given in the
book by Wong and Hajek [49]. ``Wong--Zakai theory"" is more general than this result,
however, not requiring smoothness in the random functions, a property that would be
regarded as needlessly restrictive by many mathematicians. Our recommended refer-
ence on this material is the paper [43] by Sussmann and its short summary [42], which
connect SDEs and ODEs at the level of individual solutions paths (see also [25]). A
popular reference for SDEs is [35], in which these matters are briefly discussed. For
recent developments, see [18] and [54]. A fundamental generalization of some of these
ideas is the theory of rough paths introduced by Lyons [14, 28].

Theorem 5.1. As \lambda \rightarrow 0, solutions to random ODEs containing a big smooth
random function converge with probability 1 to solutions of Stratonovich SDEs.

Note that the theorem allows for just one big smooth random function, not several.
When more than one random variable is involved, the relationship with the theory of
SDEs is not as simple. New issues also arise when there is more than one independent
variable, i.e., with stochastic PDEs. For information on these and many other matters
in the approximation of stochastic systems by differential equations, see [9, 10, 23, 37,
43, 54].

6. Smooth Random Functions and Gaussian Processes. A smooth random
function is a sample path from a particular Gaussian process. Informally, a Gaussian
process is a stochastic process depending on a continuous variable t in which for each
fixed t, the value is a Gaussian random variable, and moreover, for any finite set
t1, . . . , tk, the joint distribution is multivariate Gaussian. Gaussian processes are an
old idea, but in recent decades interest in them has increased greatly with the advance
of Bayesian reasoning in general and machine learning in particular [19, 29, 34, 38, 41].

A Gaussian process is determined by a mean function \mu (t) (here, just the zero
function) and a covariance function C(t, t\prime ), defined (when the mean is zero) as the
expected value of f(t\prime )f(t). If C(t, t\prime ) depends just on t\prime  - t, the process is stationary
(another term is homogeneous). For smooth random functions, we showed in sec-
tion 2 that C(t, t\prime ) is the Dirichlet kernel (2.4): C(t, t\prime ) = D(t\prime  - t), or 2D(t\prime  - t)
in the complex case. Other choices of covariance function also make sense and, in-
deed, they have advantages. A particularly attractive choice is a Gaussian kernel,
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which is positive rather than oscillatory and decays square-exponentially rather than
just inverse-linearly. We could have defined smooth random functions in terms of a
Gaussian kernel, or with various other choices, both in Chebfun and in this article,
and it would not have made much difference. The disadvantage is that it would have
entailed the use of infinite Fourier series rather than finite ones. Ultimately we have
been swayed by simplicity: the idea of a finite Fourier series with random coefficients
all from the same distribution could hardly be more elementary.

Instead of the covariance function, engineers and physicists often speak equiva-
lently of its Fourier transform, the power spectrum of a Gaussian process, that is, the
function describing the rate of decay of the variances of the random coefficients as the
wave number k increases. For our smooth random functions, the power spectrum is
a step function taking a constant value for | k| \leq 2\pi /\lambda and the value 0 for | k| > 2\pi /\lambda .

Gaussian processes have a link with data fitting that is one of the starting points of
machine learning. (Related ideas were introduced in the geostatistics literature under
the name of kriging in the 1950s and 1960s and are also connected with radial basis
functions and smoothing splines [16].) Traditionally, we may think of data fitting as
beginning with the method of least-squares approximation going back to Gauss and
Legendre. What is distinctive with the Gaussian process point of view is the central
role of probability. To explain this we now outline how one might interpolate a set of
data using smooth random functions.

Suppose that for some \mu \geq 0 we have 2\mu +1 data values at points equispaced in the
interval [ - L/2, L/2] and we know that these data come from an L-periodic function.
Then there is a unique trigonometric interpolant of degree \mu through these data, that
is, of the form (2.1) or (2.2). The same holds if the points are not equispaced, so long
as they are distinct.

A more flexible alternative, however, is to consider interpolants of higher degrees
m > \mu . For example, suppose we take m = 2\mu . There are infinitely many interpolants
of degree m; which one shall we pick? Here is where probability enters the discussion.
In the Gaussian process framework, each interpolant is associated with a probability
(more precisely a probability density), and a natural choice is to take the mean of
all the interpolants with respect to these probabilities. Roughly speaking, this means
we choose as our interpolant the trigonometric polynomial of degree m that is most
likely---or as one may also think of it, least surprising.

What does it mean to be least surprising? For a Gaussian process with mean
zero, it means that the Fourier coefficients are as small as possible, and the choice
of covariance function or power spectrum comes into play in determining the balance
between smallness of coefficients at different wave numbers. For our definition of
smooth random functions, all the Fourier coefficients have the same variance, so small
coefficients are favored no more strongly in the high wave numbers than in the low
wave numbers. This means that interpolants based on smooth random functions as
we have defined them tend to have a lot of energy in the high wave numbers, making
them prone to oscillations. A Gaussian kernel, on the other hand, puts more pressure
on the high wave number coefficients than on the low wave number coefficients to
be small. This introduces a bias toward low wave numbers that makes interpolants
smoother. Figure 13 illustrates this effect, which also generalizes to data fitting in the
presence of noise.

Thus, when it comes to data fitting, more standard covariance functions such as
the Gaussian will be preferable to the Dirichlet kernel of our smooth random functions.
In Chebfun, there is a gpr command for Gaussian process regression (with or without
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Fig. 13 Gaussian process interpolation of 2\mu + 1 data values with \mu = 8 by a trigonometric poly-
nomial of degree m = 16: equispaced sample points on the left, perturbed sample points on
the right. (The data are samples of f(x) = exp(sin(\pi x))/(1+10 cos2(\pi x)), shown in gray.)
The dashed curves correspond to the Dirichlet kernel that is the basis of smooth random
functions as defined in this article, and the continuous curves to a periodic Gaussian ker-
nel. The latter is better for this kind of application because it is biased toward low wave
numbers rather than treating all wave numbers below a certain cutoff equally.

noise), and it uses a Gaussian kernel by default. In the periodic case, the kernel is
made periodic in a fashion proposed in [29].

7. Smooth Random Functions in Multiple Dimensions. Smooth random func-
tions are readily generalized to multiple dimensions; we focus on the two-dimensional
case for concreteness. The new issue that arises here is that as well as being sta-
tionary, one would like the distribution to be isotropic. We achieve this by taking a
finite bivariate Fourier series with random coefficients in a ball, not a square, of wave
numbers:

(7.1) f(x, y) =

m\sum 
k= - m

mk\sum 
j= - mk

cjk exp

\biggl( 
2\pi i(jx+ ky)

L

\biggr) 
, mk =

\sqrt{} 
m2  - k2.

(For random functions on a rectangle, the ball becomes an ellipse.) This provides
approximate isotropy for finite m, improving as m \rightarrow \infty . The analogue of a Gaussian
process in multiple dimensions is called a Gaussian random field, and stationarity
together with isotropy amount to the condition that the covariance function C(x,x\prime )
depends only on \| x - x\prime \| .

Random functions have been employed for a wide variety of scientific applications,
and there has been great interest in elucidating their properties. Early work on the
one-dimensional case was due to Steve Rice [40] during World War II, motivated
by applications such as shot noise in signal processing, and two-dimensional random
functions were investigated a decade later by Longuet-Higgins in an analysis of ocean
waves [27]. In cosmology, three-dimensional random functions have been investigated
to shed light on the distribution of galaxies in the universe and the structure of the
cosmic microwave background; a celebrated paper in this area is that of Bardeen et
al. [3]. ``Random energy landscapes"" are a basic notion in fields including condensed
matter physics [7], and string theorists are considering random functions in a higher-
dimensional parameter space as a model to explain how a universe such as our own may
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Fig. 14 Random functions with \lambda = 0.1 on the square [ - 1, 1]2 and the unit sphere computed with
randnfun2 and randnfunsphere in Chebfun. The ``zebra"" plotting mode shows positive and
negative values as white and black, respectively.

have arisen [7, 13]. Bowen, Strong, and Golden have investigated random functions
in two dimensions as models of the fractal geometry of Arctic melt ponds [6], and
for random functions in biology, see [44]. Mathematicians have also investigated
properties of random functions extensively, and a leader in this area has been R.
Adler [1, 2]. In this context random functions can be considered not just in Euclidean
space but also on manifolds.

A particularly down-to-earth example of a manifold is the unit sphere, and to
construct smooth random functions on this domain, one can use a spherical harmonic
series with random coefficients. For isotropy, it is appropriate to use coefficients in a
triangular array:

(7.2) f(\varphi , \theta ) =

m\sum 
\ell =0

\ell \sum 
j= - \ell 

c\ell ,jY\ell ,j(\varphi , \theta ).

Here, \varphi is longitude, \theta is colatitude (i.e., \pi /2 minus the latitude), and Y\ell ,j denotes
the spherical harmonic of degree \ell and order j,

Y\ell ,j(\varphi , \theta ) = P j
\ell (cos(\theta ))e

ij\varphi ,

where P j
\ell is the (normalized) associated Legendre function. Since the circumference of

the unit sphere is L = 2\pi , we take m = \lfloor 2\pi /\lambda \rfloor in analogy to (2.1) [26]. In Chebfun,
smooth random functions on the sphere have been implemented by Grady Wright
using Spherefun [45].

We shall not give further details of multidimensional smooth random functions but
illustrate the subject in Figures 14 and 15. Incidentally, for dimensions greater than
1, there is an alternative notion of smooth random function of interest to physicists:
a Fourier series in which all wave number vectors are =\lambda rather than just \leq \lambda in
magnitude for some \lambda > 0; the orientations of the waves, however, are not fixed.
We call these monochromatic smooth random functions, and they arise in the study
of quantum chaos as models of random high energy eigenfunctions of the Laplace
operator [4, 5, 33]. In Chebfun, one can write, e.g., randnfun2(lambda, flmonofl).

8. Discussion. Our ``standard"" smooth random functions are Gaussian processes
(or Gaussian random fields in multiple dimensions), but for simplicity they are very
simple ones, defined by a finite Fourier series with random coefficients, all from the
same normal distribution. This is certainly not the only reasonable choice, but we
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Fig. 15 This image, which reminds the authors of the engravings of M. C. Escher, is a zebra plot
of the function x + f on the rectangle  - 2 \leq x \leq 2, 0 \leq y \leq 1, where f is a 2D random
function with \lambda = 0.05. The properties of surfaces like these have been investigated for
applications in fields including cosmology, condensed matter physics, oceanography, climate
modelling, image processing, and pure mathematics.

offer it for simplicity and concreteness, to emphasize that useful explorations can be
carried out without requiring the user to first confront the possibly daunting question,
``what is your covariance function?"" Many applications will involve some smoothing---
the Cahn--Hilliard equation of Figure 3, for example---and in such cases the choice of
covariance function may not matter much anyway.

Our ``big"" smooth random functions are the same, except with a different nor-
malization appropriate to taking integrals to model stochastic effects. Again, our
aim has been simplicity. The usual foundation of stochastic analysis among mathe-
maticians is a pointwise conception of noise, as discussed in section 4, even though,
if white noise truly took values at points, they would have to be discontinuous and
of infinite amplitude. The use of smooth random functions follows the alternative
approach of conceiving noise as smooth and finite, with a small wavelength param-
eter \lambda > 0. This offers a way to explore stochastic effects without employing the
special definitions of stochastic calculus (It\^o, Stratonovich) or the associated special
SDE algorithms (Euler--Maruyama, Milstein, . . . ). As recorded in Theorem 5.1, this
corresponds to the Stratonovich calculus as \lambda \rightarrow 0, at least in cases with a single
random variable.

As we stated at the outset, none of the ingredients we have put together are new.
Fourier series with random coefficients have been investigated for a century, the idea
of band-limited white noise is a familiar one, and many variations on these themes
have been exploited for a wide range of scientific and engineering problems.

We emphasize that we do not advocate smooth random functions for reasons of
computational efficiency. On the contrary, existing algorithms of stochastic compu-
tation will be faster in many cases and, in particular, working with smooth random
functions with L/\lambda \gg 1000 is unwieldy in Chebfun. The point of smooth random
functions is conceptual and computational simplicity, not speed. Indeed, even in the
realm of approximating Brownian paths and SDEs via random ODEs with smooth
coefficients, more accurate approximations are possible with the use of alternative
random Fourier series derived from the Karhunen--Lo\`eve expansion [53].

Although this presentation has avoided the details of stochastic analysis, there is
no doubt that these are indispensable for a full understanding of stochastic effects---
starting with the fundamental distinction between the It\^o and Stratonovich integrals.
The perspective of this paper is that, given the associated technical challenges, perhaps
there is a place for simpler tools too. Imagine if we told students they had to learn
measure theory before they could talk about integrals!
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