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RECIPROCAL-LOG APPROXIMATION AND PLANAR PDE
SOLVERS\ast 

YUJI NAKATSUKASA\dagger AND LLOYD N. TREFETHEN\dagger 

Abstract. This article is about both approximation theory and the numerical solution of
partial differential equations (PDEs). First we introduce the notion of reciprocal-log or log-lightning
approximation of analytic functions with branch point singularities at points \{ zk\} by functions of
the form g(z) =

\sum 
k ck/(log(z  - zk)  - sk), which have N poles potentially distributed on different

sheets of a Riemann surface. We prove that the errors of minimax reciprocal-log approximations
decrease exponentially with respect to N and that exponential or near-exponential convergence (i.e.,
at a rate O(exp( - CN/ logN))) also holds for near-best approximations constructed by linear least-
squares fitting on the boundary with suitably chosen preassigned singularities. We then apply these
results to derive a ``log-lightning method"" for the numerical solution of Laplace and related PDEs in
two-dimensional domains with corner singularities. The convergence is near-exponential, in contrast
to the root-exponential convergence for the original lightning methods based on rational functions.
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1. Introduction. In this paper we introduce a new problem in approximation
theory. On the interval ( - \infty , 0], it is known that functions F (s) like eas (Rea > 0)
with an essential singularity at s =  - \infty can be approximated by rational functions
r(s) with exponential convergence as a function of n, the degree of the rational func-
tion. Our starting point in section 2 is the change of variable z = es from s \in ( - \infty , 0]
to z \in [0, 1]. This gives us exponentially convergent approximations on [0, 1] of func-
tions f(z) like za (a > 0) with branch point singularities at z = 0 by functions of the
form g(z) = r(log(z)). In the generic case where the poles \{ sk\} of r are distinct, the
approximation can be written in the partial fractions form

(1.1) g(z) = c0 +

n\sum 
k=1

ck
log(z) - sk

.

We show that approximations of this kind can be computed by linear least-squares
fitting, and we note the equioscillatory characterization of the error in the case of min-
imax (best \infty -norm) approximations. With both best and near-best approximations,
one encounters the startling property that the oscillations typically cluster double-
exponentially near the singularity, readily coming as close (in theory) as a distance
of, say, 10 - 1000. This is in contrast to the well-known case of rational approximation,
where the clustering is just exponential [20].

Section 3 generalizes the discussion to domains in the complex z-plane with m \geq 1
singularities, typically at corners. Here we consider approximations of the generic form
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2802 YUJI NAKATSUKASA AND LLOYD N. TREFETHEN

(1.2) g(z) =

m\sum 
j=1

nj\sum 
k=1

cjk
log(z  - zj) - sjk

+ p0(z),

where p0 is a polynomial of degree n0 (possibly 0), with total number of degrees
of freedom N = 1 +

\sum m
j=0 nj . The least-squares method extends to this case too

and again gives exponentially or near-exponentially convergent approximations. (By
near-exponential, we mean at a rate O(exp( - CN/ logN)) with C > 0.) This and
other claims are first explained heuristically and illustrated numerically. Then they
are established rigorously by a succession of theorems in section 4, deriving accuracy
estimates from Hermite integrals, and section 5, showing how a problem with several
singularities can be decomposed into single-singularity problems by Cauchy integrals
over open arcs.

As is typical with computations based on redundant expansions, numerical in-
stability resulting from the use of ill-conditioned matrices may be a problem, and a
crucial part of our numerical algorithm is the use of the Vandermonde with Arnoldi
orthogonalization technique presented in [1]. The MATLAB code VAorthog.m we use
for this, copied from [2], is listed in the appendix. This technique does not elimi-
nate the ill-conditioning (unless one has just a single singularity and no polynomial
term), but it diminishes its impact greatly, and in particular often keeps the norms
of the coefficient vectors in reasonable bounds, an issue connected with the subject of
regularization [7].

Another numerical matter, more specific to the reciprocal-log approximation con-
text, is mentioned in section 6. This is a consequence of the ``10 - 1000"" effect mentioned
above, and we propose that it may be a good idea to constrain the singular part of a
reciprocal-log approximation to approach zero more rapidly at each singularity.

Up to this point, the paper is all approximation theory and algorithms. The
motivation, however, is numerical solution of PDEs by a ``log-lightning"" analogue
of the lightning solvers for Laplace, Helmholtz, and biharmonic equations presented
in [2, 5, 6]. An initial experiment is presented in section 7 to establish that, as intended,
these approximations can be used to derive exponentially convergent new methods for
solving PDEs in planar domains with corner singularities.

In a word, this is a paper about approximation by functions with logarithmic
branch points rather than just pole singularities. What starts out as a seemingly
arbitrary rearrangement of familiar rational approximation theory turns out to have
potentially significant consequences for scientific computing. Much more will need to
be done to make the method into a practical PDE solver, but we have included PDEs
in the title of the paper because this motivation is at the heart of this work.

A publication of Driscoll and Fornberg in 2001 proposed the introduction of a
logarithmic term to approximate functions with jumps, with coefficients computed in
the manner of quadratic Hermite--Pad\'e approximation [4]. Their technique is different
from what is being proposed here, but the use of logarithms to resolve singularities
gives a family resemblance.

2. Approximation on [0, 1]. A classical problem in approximation theory is
the rational minimax approximation of F (s) = es on the interval ( - \infty , 0]. To be
precise, for each n, let us consider rational functions r(s) of degree n, meaning that
r(s) can be written as p(s)/q(s) for degree n polynomials p and q. In the generic case
where the poles are distinct and finite, r can be written in partial fractions form as

(2.1) r(s) = c0 +

n\sum 
k=1

ck
s - sk

D
ow

nl
oa

de
d 

12
/2

2/
21

 to
 1

29
.6

7.
24

6.
57

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RECIPROCAL-LOG APPROXIMATION 2803

with coefficients \{ ck\} and poles \{ sk\} . Of course, some rational functions have conflu-
ent poles (i.e., poles of order > 1) and cannot be written in this form, and we shall
sometimes make use of such approximations.

Cody, Meinardus, and Varga showed in 1969 [3] that approximations r(s) to
F (s) = es exist with exponential convergence, meaning \| F  - r\| = O(C - n) as n \rightarrow \infty 
for some C > 1, where \| \cdot \| is the \infty -norm on ( - \infty , 0]. The optimal constant is
C = 1/H = 9.28903 . . . , where H is a number related to elliptic integrals known as
Halphen's constant; for a discussion with references, see Chapter 25 of [18]. Exponen-
tial convergence of best rational approximations at the same asymptotic rate applies
to F (s) = eas for any a with Rea > 0 and to certain other functions F (s) related to
eas by rational transformations [15]. Moreover, convergence at this rate occurs not
just on ( - \infty , 0] but throughout the complex plane [15].

By the change of variables z = es and the definitions f(z) = F (s) and g(z) = r(s),
we transplant this theory to a new setting. Now the domain is z \in [0, 1], and f is a
function such as za that may have a branch point singularity at z = 0. What is new
is that (2.1) now takes the form

(2.2) g(z) = c0 +

n\sum 
k=1

ck
log(z) - sk

,

where log denotes the standard branch of the logarithm. Thus, by the transplanta-
tion of existing theory, we know that a wide class of functions on [0, 1] with branch
point singularities at z = 0 can be approximated by functions of the form (2.2) with
exponential convergence at the rate O((9.28903 . . . ) - n).

More important for scientific computing are approximations that are not best but
readily computable, still with exponential convergence though not at the optimal rate.
One way to derive such approximations is by expressing F (s) as an integral along a
Hankel contour winding around ( - \infty , 0] in the s-plane. If the integral is approximated
by a truncation of the transplanted equispaced trapezoidal rule on the real axis, one
obtains rational approximations (2.1) to F (s), hence reciprocal-log approximations
(2.2) to f(z), which converge at rates O(C - n) with values of C on the order of 3
or 4 depending on details of contours and parameters. The leader in developing these
methods has been Weideman [22, 26]; for a review, see section 15 of [21].

The approach we shall take is a variation on this theme motivated by the lightning
PDE solvers of [2, 5, 6] and section 7. Rather than deriving coefficients from the trape-
zoidal rule, we will obtain them by solving a linear least-squares problem. Typically
this will be posed on a discrete subset of [0, 1], with exponential clustering of sample
points at z = 0. We have not attempted an analysis of the conditions that make
for effective sampling points, since in practice this part of the problem poses little
difficulty so long as there are plenty of points and they are clustered somewhat more
densely near corners than the singularities being employed in the approximations, as
discussed in [5].

Experiments show that an effective choice of singularities \{ sk\} for our approxi-
mations lies on a parabolic contour in the style of [22, 26],

(2.3) sk =
n

4
(1 + i\theta k)

2, \theta k =  - \pi + 2\pi (k  - 1
2 )/n, 1 \leq k \leq n.

For simplicity, however, we will also sometimes use a configuration in which all the
points sk are taken to be confluent at a single value s0 of scale O(n); we typically
take s0 = n/2 or n/6. In this case (2.2) changes to the confluent form

(2.4) g(z) = p

\biggl( 
1

log(z) - s0

\biggr) 
,
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2804 YUJI NAKATSUKASA AND LLOYD N. TREFETHEN

where p is a polynomial of degree n. As we shall prove in section 4, these methods
give exponential convergence as n \rightarrow \infty .

We illustrate these ideas with a MATLAB code segment for approximation of
\surd 
z

on [0, 1] whose fifth line realizes the distribution (2.3). Similar results are obtained
for other functions with branch point singularities such as z3/4,

\surd 
z cos(10z), z log z,

etc. The line invoking VAorthog (see the appendix) is a numerically stable alternative
to A = [z.\^0 1./(log(z)-sk)]: both matrices A have the same column space, but
with VAorthog the columns are orthogonal.

M = 2000;

z = logspace(-50,0,M)fl;

f = sqrt(z);

n = 10;

kk = 1:n; tk = -pi + 2*pi*(kk-.5)/n; sk = (n/4)*(1+1i*tk).\^2;

[\~,A] = VAorthog(log(z),0,--sk\H );

c = A``f;

g = A*c;

The maximum error on [0, 1] is 1.3\times 10 - 4, and this number decreases exponentially as
n \rightarrow \infty , as shown in the first image of Figure 2.1. There is a marked improvement in
comparison with the root-exponential behavior of the lightning rational approximation
of [5]. The second image shows the singularities \{ sk\} in the case n = 32. Note that
although the geometry in the s-plane is just an arc, the corresponding points zk =
exp(sk) in the z domain lie along a spiral on the Riemann surface of g(z) associated
with its definition in terms of the function log(z), clustering exponentially at both ends
at z = 0. With n = 32, the last value in the upper half s-plane is s32 \approx  - 66.1+48.7i.
The corresponding value z32 has modulus 1.0\times 10 - 31 and argument 15.5\pi , putting it
8 sheets above the main branch of the Riemann surface of g(z).

The second row of Figure 2.1 shows corresponding results for the confluent-pole
approximation (2.4) with s0 = n/2. These poles are further from optimal, and the
exponential convergence is about 15\% slower. Certain fine points associated with
confluent computations are discussed in section 6. To minimize the effects very near
the singularity discussed there and make the comparison of Figure 2.1 a fair one, the
least-squares fitting for this figure was done on a grid of 2000 points logarithmically
spaced in [10 - 100, 1].

Figure 2.2 shows error curves g(z) - 
\surd 
z, z \in [10 - 20, 1] for approximations (2.2).

On the left these are the approximations computed by least-squares fitting with the
singularities \{ sk\} of (2.3), as in the first row of Figure 2.1. Note that the maximal
error decreases exponentially with n and that the error is much smaller for z \approx 0
than for z \approx 1, because the clustered grid puts more weight there. The right column
shows error curves for approximations with the same \{ sk\} whose coefficients have
been modified to achieve L\infty optimality by 20 steps of a linear Lawson iteration,
also known as iteratively reweighted least-squares [9]. These equioscillatory error
curves are elegant, but we doubt whether the ``optimal"" approximations are superior
in practice. Their maximal error is lower by only about a factor of 2, at the cost of
greatly worsening the accuracy for z \approx 0. See Chapter 16 and Myth 3 of Appendix A
in [18].

The poles of our approximations g(z) lie exponentially close to the origin in the
z-plane, at least when the formula (2.3) is used. Exponential clustering of poles
is familiar in rational approximation theory [20]. Another phenomenon appears in
Figure 2.2 that is unfamiliar, however, and that is doubly exponential clustering of
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Fig. 2.1. Exponential convergence of approximations (2.2)--(2.3) (top row) and (2.4) (bottom
row) to

\surd 
z computed by least-squares fitting on an exponentially clustered grid in [0, 1]. (These data

are obtained with Arnoldi stabilization [1]; the numbers obtained without stabilization are shown by
the small dots.) A strong contrast is apparent with the root-exponential convergence of lightning
rational approximations [5] for the same problem. The right column shows the points \{ sk\} or s0 in
the s-plane for n = 32. Since the imaginary parts Imsk extend far beyond [ - \pi , \pi ] in the first case,
the values exp(sk), which are the poles of g(z), lie on many different sheets of a Riemann surface.
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Fig. 2.2. Error curves for reciprocal-log approximations (2.2) of
\surd 
z on [0, 1] with n = 2, 4, 8, 16

with singularities sk given by (2.3). In the left column, coefficients \{ ck\} are computed by least-squares
fitting on an exponentially clustered grid of 1000 points from 10 - 20 to 1. In the right column, the
fits are then improved to L\infty optimal for the given \{ sk\} by a Lawson iteration (iteratively reweighted
least-squares) [9]. This improves the maximal error by about a factor of 2 at the cost of eliminating
the enhanced accuracy for z \approx 0. Each pair shares a common vertical scale, with each curve showing
n+ 1 extrema of alternating sign.
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Fig. 2.3. Error curves for true minimax reciprocal-log approximations of
\surd 
z on [0, 1] with

n = 1, 2, 4, 8 on [0, 1] (left) and [10 - 20, 1] (right). Note that these values of n are half those of
Figure 2.2, reflecting the roughly squared accuracy of minimax approximations. Again each pair
shares a common vertical scale, and now there are 2n+ 2 equioscillating extrema.

oscillating extrema, visible especially in the Lawson column on the right. To see
this, consider the leftmost minimum of each error curve in the right column of the
figure. With n = 2, 4, and 8, these minima lie at approximately z = 10 - 1.5, 10 - 4.5,
and (as shown by computations on a longer interval) 10 - 25. A rough model of such
behavior would be zmin = exp( - 1.7n), which suggests values for n = 16 and 32
on the order of 10 - 2000 and 10 - 10,000,000. In the figure, we see nothing like this,
since the computations are carried out on [10 - 20, 1], and it would be impossible to
resolve much beyond [10 - 300, 1] in standard IEEE floating point arithmetic. However,
this probably does not matter, as the approximants on [0, 1] will not differ much from
those associated with a truncated interval such as [10 - 20, 1]. We discuss these matters
further in section 6.

All these approximants are linear, based on poles sk fixed a priori. What about
true minimax approximations, with \{ sk\} chosen optimally to minimize the error? For
the current setting of [0, 1], everything is known about such approximations since they
are transplants of minimax rational approximants on ( - \infty , 0] [18, Chapter 24]. As
illustrated in Figure 2.3, which was computed by the method outlined on pp. 217--219
of [18], the errors will be about the squares of what we have seen before, and now there
are 2n+ 2 equioscillatory extreme points. We shall not discuss such approximations
further, because they become impractical once one moves to planar domains.

3. Approximation on a planar domain. We now turn to domains in the
complex plane. In the basic case one has a closed Jordan region E with piecewise
analytic boundary \Gamma and a function f continuous in E and analytic in the interior.
We suppose that f is analytic on \Gamma except for branch point singularities at a finite
set of points \{ zj\} , 1 \leq j \leq m, which may, for example, be corners. As mentioned in
the introduction, we consider approximations to f of the generic form

(3.1) g(z) =

m\sum 
j=1

nj\sum 
k=1

cjk
log(z  - zj) - sjk

+ p0(z),
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where p0 is a degree n0 polynomial, with N = 1 +
\sum 

nj . Each function log(z  - zj)
denotes a fixed choice of a branch of the logarithm that is continuous in E. Since stan-
dard hardware puts the branch of the logarithm on the negative real axis, it is often
convenient in a computer code to work with rotated terms of the form log(ei\theta j (z - zj))
for certain real numbers \theta j . (Experienced programmers in the complex plane know
that branch cuts can be a source of confusion, but so far as we are aware they do
not pose any computational obstacles to these approximations in principle, even for
approximation on nonconvex domains.) We also employ the confluent variant

(3.2) g(z) =

m\sum 
j=1

pj

\biggl( 
1

log(z  - zj) - sj

\biggr) 
+ p0(z),

where each pj is a polynomial of degree nj . In both (3.1) and (3.2), we often take
n0 = 0, so that p0 reduces to a constant.

The essential point, to be proved in the next two sections, is that exponential
or near-exponential convergence is guaranteed so long as the numbers nj (for j \geq 1)
increase in proportion to N as N \rightarrow \infty , in the absence of rounding errors of course.
In this section we will explore just one example defined on the domain shown in
Figure 3.2, a two-thirds bite of the unit disk. The function is

(3.3) f(z) = z log( - 1
2z) \cdot (1 - z/\omega )1/2 \cdot (1 - z/\=\omega )3/2

with \omega = e\pi i/3, with branch point singularities at each of the corners. The boundary
\Gamma is discretized along each segment by 500 points exponentially clustered down to
distances from the corners of about 10 - 14.

As indicated in Figure 3.1, we computed three approximations to f for values
of N up to 150. One curve shows the accuracy of AAA rational approximations of
degree N  - 1. (AAA approximations are rational approximations that are computed
very quickly by an algorithm described in [12], implemented in the aaa command
of Chebfun; we calculated them with the ``cleanup"" option turned off.) The AAA
approximations are close to optimal when the degree is not too large, and this curve

0 50 100 150
10

-15

10
-10

10
-5

10
0

Fig. 3.1. Convergence of three approximants to the function f of (3.3) on the domain E shown
in Figure 3.2. One sees root-exponential convergence of the AAA and lightning approximations and
a reasonable approximation to exponential convergence of the log-lightning approximations. The
main reason the lightning curve is the smoothest is that its errors are so far from machine epsilon.
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2808 YUJI NAKATSUKASA AND LLOYD N. TREFETHEN

shows root-exponential convergence down to an error on the order of 10 - 8. Another
curve shows lightning rational approximations [5] of the form

(3.4) r(z) =

3\sum 
j=1

nj\sum 
k=1

cjk
z  - sjk

+ p0(z)

with
\sum 3

j=0 nj = N  - 1, where p0 is a polynomial of degree n0 ; we take n0 = N/4 - 1
and nj = N/4 for j = 1, 2, 3. (The choice n0 = 0, which is often a good one for
(3.1) and (3.2), tends to slow down convergence significantly for (3.4).) The poles
were fixed at distances djk = exp(4(

\sqrt{} 
k  - 

\sqrt{} 
nj )), 1 \leq k \leq nj from the corners zj [5,

equation (3.2)]. Note that the convergence is again root-exponential, at a rate five
or six times slower than with AAA with its adaptively determined poles. Clearly
AAA has some advantages, but it has drawbacks of sometimes greater sensitivity to
rounding errors and occasional placement of poles inside a domain where they are
not wanted. More fundamentally, as we shall discuss in section 7, lightning methods
generalize immediately to approximation of the real part for solving Laplace problems,
whereas AAA does not.

The final curve in Figure 3.1 shows log-lightning approximations (3.2) with sj =
nj/6, now with n0 = 0 and nj = (N  - 1)/3 for j = 1, 2, 3. The convergence appears
approximately exponential down to a level of around 10 - 13.

Figure 3.2 displays phase portraits [25] for f and its three approximations with
N = 100. The rational approximations simulate branch cuts by strings of poles,

Fig. 3.2. Phase portraits of the function f of (3.3) and three approximants with N \approx 100
degrees of freedom. All the approximations give many digits of accuracy in E. Outside E, the
branch cuts of f are approximated by strings of poles for lightning and AAA approximants and
by true branch cuts for the log-lightning approximant. The circus tent effect in the lightning plot
reflects the polynomial term p0 in (3.4).
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whereas the reciprocal log approximation incorporates true branch cuts. For f itself,
the shapes of the branch cuts are arbitrary. If we had coded the function differently,
their directions could have been altered, for example, but this would have had no effect
on the values of f on \Gamma and therefore on the three approximations and the other three
images. For the lightning and log-lightning approximations, the forms of the branch
cuts are fixed by our computation: they have been set to be straight lines bisecting
the exterior angles, the natural default choice in the absence of other information.
For the AAA approximation, the branch cuts are presumably more nearly optimal,
curved in a fashion analyzed by Stahl for the case of Pad\'e approximation [14].

4. Convergence theorems: One singularity. In this section we consider the
reciprocal-log approximation of a function f(z) with a branch point singularity at
z = 0. By arguments adapted from those of section 2 of [5], we show that if f can be
analytically continued along any contour in the complex plane avoiding z = 0, then
exponentially convergent approximations exist with the singularities \{ sk\} extending
a distance O(n) into the right half-plane (Theorem 4.2). If the analyticity assump-
tion holds just in a bounded neighborhood of 0, then near-exponentially convergent
approximations exist with \{ sk\} of bounded positive real part (Theorem 4.6).

To make these ideas precise the theorems of this and the next section use the
following definition, which covers the familiar singularities of type za(log z)b [10, 24].
The first condition, (4.1), essentially asserts that f can be analytically continued
along arbitrary contours in a punctured neighborhood of each singularity zk. But
all we really need is continuation along curves that spiral in logarithmically to zk,
so that after the s = log(z  - zk) change of variables they lie in a V -shaped wedge
in the s-plane, and that is why (4.1) takes the form it does. The second condition,
(4.2), asserts that f is H\"older continuous at zk, so that with s = log(z  - zk) we get
exponential decay as Res \rightarrow  - \infty . A function like (z  - zk)

a log(z  - zk), however, will
grow slowly as z winds around zk, and that is why (4.2) includes the factor involving
arg(z  - zk).

Definition 4.1. Let E be a closed set in the complex plane, which may or may
not have a nonempty interior. A function f is analytic on E with branch point
singularities at z1, . . . , zm on the boundary if f is analytic in the interior of E and
can be analytically continued to a neighborhood of each boundary point of E that is
not among the zk; and if moreover there is a neighborhood of each zk within which f
can be analytically continued to a multivalued function \~f along any curve that avoids
zk and satisfies

(4.1) | arg(z  - zk)| \leq | z  - zk|  - \tau 

for some constant \tau > 0, with \~f satisfying

(4.2) | \~f(z) - \~f(zk)| \leq c | z  - zk| a(1 + | arg(z  - zk)| b)

for some constants a, b, c > 0.

For our first theorem, it is enough to use confluent singularities and consider
approximations of the form (2.4) with s0 = \sigma n,

(4.3) g(z) = p

\biggl( 
1

log(z) - \sigma n

\biggr) 
,

where p is a polynomial of degree n and \sigma > 0 is a constant. This result is sharp in
the sense that faster than exponential convergence is in general not possible, as we
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2810 YUJI NAKATSUKASA AND LLOYD N. TREFETHEN

know from the equivalence of the problem of reciprocal-log approximation of za on
[0, 1] to that of rational approximation of eas on ( - \infty , 0]. The condition (4.4) looks
almost like a repeat of (4.2), but (4.2) is a local condition, only needing to apply for
z near zk, whereas (4.4) applies even as z \rightarrow \infty . With s = log z, it is designed to
ensure that F (s) is under control in the right half of the s-plane as well as the left.

Theorem 4.2. Let E be a compact set in C\setminus ( - \infty , 0) with 0 on the boundary;
more generally, E might be a multilevel surface wrapping around 0 a finite number of
times. Let f be an analytic function on E with a branch point singularity at z = 0 in
the sense of Definition 4.1, and assume further that f can be analytically continued
to a multivalued function \~f along all curves in the z-plane avoiding z = 0, satisfying
in addition to (4.2)

(4.4) | \~f(z)| \leq C(1 + | z| a
\prime 
)(1 + | argz| b

\prime 
)

for some constants a\prime , b\prime , c\prime > 0. Then for all sufficiently small \sigma > 0, there exist
functions of the form (4.3) satisfying

(4.5) \| f  - g\| \leq exp( - Cn) \forall n

for some C > 0, where \| \cdot \| is the supremum norm on E.

By the change of variables s = log z and subtraction of f(0), Theorem 4.2 is
equivalent to the following theorem on rational approximation. As just mentioned,
(4.6) constrains F (s) in the left half s-plane, and (4.7) in the right. The function
es + se2s, for example, satisfies the conditions with a < 1, a\prime > 2, and b, b\prime > 1.

Theorem 4.3. Let E be a subset of C with | ImE| bounded and ReE bounded
from above. Let F be an entire function of s satisfying for all sufficiently small Res

(4.6) | F (s)| \leq ceaRes(1 + | Ims| b)

and for all s

(4.7) | F (s)| \leq c\prime (1 + ea
\prime Res)(1 + | Ims| b

\prime 
)

for some constants a, b, c, a\prime , b\prime , c\prime > 0. Then for all sufficiently small \sigma > 0, there
exist type (n - 1, n) rational functions r of the form

(4.8) r(s) = p

\biggl( 
1

s - \sigma n

\biggr) 
,

where p is a polynomial of degree n, with

(4.9) \| F  - r\| \leq exp( - Cn) \forall n

for some C > 0, where \| \cdot \| is the supremum norm on E.

Thus our job is to prove Theorem 4.3. The proof will be based on the Hermite
integral formula for rational interpolation [23, Theorem 2, Chapter 8]. Neither the
poles \{ sk\} nor the interpolation points \{ \alpha k\} in the statement below need to be distinct,
and an interpolation point of multiplicity \nu > 1 is interpreted, as usual, to mean
interpolation at that point of f, f \prime , . . . , f (\nu  - 1). By a Hankel contour, we mean a
continuous curve winding counterclockwise around ( - \infty , 0] from \infty to \infty .

Lemma 4.4 (Hermite integral formula). Let F be an analytic function of s
satisfying (4.6) on and inside a Hankel contour \Gamma in the s-plane. Let interpolation
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RECIPROCAL-LOG APPROXIMATION 2811

points \alpha 1, . . . , \alpha n \in ( - \infty , 0] and poles s1, . . . , sn anywhere in the s-plane be given;
neither \{ \alpha j\} nor \{ sj\} need to be distinct. Let r be the unique type (n - 1, n) rational
function with poles at \{ sj\} that interpolates F at \{ \alpha j\} . Then for any s enclosed by \Gamma ,

(4.10) F (s) - r(s) =
1

2\pi i

\int 
\Gamma 

\phi (s)

\phi (t)

F (t)

t - s
dt,

where

(4.11) \phi (s) =

n\prod 
j=1

s - \alpha j

s - sj
.

In proving Theorem 4.3, we will suppose E = ( - \infty , 0] without loss of generality;
the estimates change only by constant factors for other domains since | ImE| and
ReE are assumed to be bounded whereas the poles of (4.8) and the interpolation
points of (4.12) below scale in proportion to n as n \rightarrow \infty . We will use this choice of
interpolation points in ( - \infty , 0]:

(4.12) \alpha j = n\sigma 

\biggl( 
1 + \gamma j
1 - \gamma j

\biggr) 2

, \gamma j = ei\pi j/(n+1), 1 \leq j \leq n,

where \sigma is the parameter in the denominator of (4.8). These are derived from potential
theory [11, 23], where poles and interpolation points are interpreted as point charges
of opposite signs, and a minimal-energy charge configuration gives asymptotically
optimal approximations as n \rightarrow \infty . The function

(4.13) s = n\sigma 

\biggl( 
1 + \gamma 

1 - \gamma 

\biggr) 2

maps the unit disk in the \gamma -plane to the s-plane slit along ( - \infty , 0], with \gamma = 0
mapping to s = n\sigma . Thus the equilibrium distribution of interpolation points on the
unit circle corresponding to poles at \gamma = 0, namely, the uniform distribution, maps
to the distribution determined by (4.13) in the s-plane slit along ( - \infty , 0] with poles
at s = n\sigma , as in the function (4.8). (The \{ \alpha j\} are called Fej\'er--Walsh points [16].)
The following lemma, illustrated in Figure 4.1, was provided to us by Peter Baddoo.

-4 -3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

Fig. 4.1. Level curves n - 1 log | \phi (ns)| = 0, 0.1, . . . , 1 for n = 100 to illustrate Lemma 4.5. As
n increases, the contours converge to radial lines, with the level 0 contour (red) narrowing toward
( - \infty , 0]. Thus | \phi (ns)| 1/n approaches a value >1 at each point s \in C\setminus \{ ( - \infty , 0]\cup \sigma \} and is bounded
by 1 for s \in ( - \infty , 0].
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2812 YUJI NAKATSUKASA AND LLOYD N. TREFETHEN

Lemma 4.5. With \alpha j defined by (4.12), sj = n\sigma , and s related to \gamma by (4.13),
the function \phi (s) of (4.11) can be written as

(4.14) \phi (s) =
\gamma  - n - 1  - \gamma n+1

(n+ 1)(\gamma  - 1  - \gamma )
=

\gamma  - n + \gamma  - n+2 + \cdot \cdot \cdot + \gamma n

n+ 1
.

For s \in ( - \infty , 0],

(4.15) | \phi (s)| \leq 1.

For s \in C\setminus \{ ( - \infty , 0] \cup \sigma \} ,

(4.16) | \phi (ns)| 1/n \rightarrow eu(s) as n \rightarrow \infty ,

where

(4.17) u(s) = | log | \gamma | | > 0,

with uniform convergence on compact subsets of C\setminus \{ ( - \infty , 0] \cup \sigma \} .

Proof. The formulas (4.15)--(4.17) follow readily from (4.14), so (4.14) is what
must be established. First we note that each complex number s \not = n\sigma corresponds
under (4.13) to two numbers \gamma and \gamma  - 1, and the right-hand side of (4.14) gives the
same value for both, so (4.14) does indeed define a function of s. This is a meromorphic
function with n zeros at the points \alpha j and a pole of order n, it can be verified, at
s = n\sigma , corresponding to \gamma = 0. But at s = \infty , corresponding to \gamma = 1, this function
is analytic. Thus it is a degree n rational function with the same zeros and poles as
\phi (s) as defined by (4.11), and since it takes the value 1 at s = \infty , it must be the same
function.

Proof of Theorem 4.3. As mentioned above, we take E = ( - \infty , 0] without loss
of generality, and we choose \Gamma for Lemma 4.4 as a V-shape passing through n\sigma at a
fixed acute angle, as sketched in Figure 4.2. (Any acute angle will suffice.) We divide
\Gamma into a ``head"" in the right half-plane, a ``tail"" with Ret \leq  - n, and a ``middle"" with
 - n \leq Ret \leq 0, and show that their contributions Ihead, Itail, and Imiddle to (4.10)
are each exponentially small. (A quantity depending on n is exponentially small if it
is O(exp( - Cn)) as n \rightarrow \infty for some C > 0 and exponentially large if its reciprocal is

Fig. 4.2. Hankel contour \Gamma for the proof of Theorem 4.3 with E = ( - \infty , 0], with all poles at
s = n\sigma . In the tail, F (t) in (4.10) is exponentially small. In the middle, F (t) is at most algebraically
large and 1/\phi (t) is exponentially small. In the head, F (t) is exponentially large, but its exponential
growth rate is limited by \sigma , so if \sigma is small enough, F (t)/\phi (t) is still exponentially small.
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RECIPROCAL-LOG APPROXIMATION 2813

exponentially small.) Note that the denominator t - s of (4.10) is bounded below in
absolute value, | \phi (s)| is bounded by 1 by (4.15), and 2\pi is just a constant. Thus it is
enough to show that each of the three integrals

(4.18)

\int 
| F (t)| 
| \phi (t)| 

dt

is exponentially small. In the tail, F (t) is exponentially small and decreases exponen-
tially as Ret \rightarrow  - \infty by (4.6), whereas 1/| \phi (t)| is bounded by Lemma 4.5, since (4.16)
and (4.17) ensure | \phi (t)| \geq 1 for all sufficiently large n (cf. Figure 4.1); thus Itail is
exponentially small. In the middle, F (t) grows at most algebraically with n by (4.6),
whereas 1/| \phi (t)| is exponentially small by Lemma 4.5 again, since in this range the
values u(s) on the right-hand side of (4.16) are bounded above 0 and thus the values
exp(u(s)) are bounded above 1, making their nth powers exponentially large; thus
Imiddle is exponentially small. In the head, F (t) is exponentially large, but by (4.7),
at most O(exp(A\sigma n)). On the other hand, by Lemma 4.5 again, 1/| \phi (t)| is exponen-
tially small. In particular, | \phi (t)| > exp(dn) uniformly in this region for some d > 0
that is independent of \sigma . It follows that if \sigma < d/A, then Ihead too is exponentially
small.

We now turn to the second theorem about approximation near z = 0, assum-
ing analyticity only in a bounded domain. As before, our prototypical example for
discussion without loss of generality is E = [0, 1]. For the argument we again use
a V-shaped contour \Gamma for the Hermite integral, as shown in Figure 4.3, but now, \Gamma 
must be fixed rather than growing with n. This necessitates a change in the choice
of poles. If the poles are all at the apex, then the same argument as before ensures
exponentially small contributions to the error from Ihead and Imiddle, but no longer
so small (just root-exponential) from Itail. Instead it is necessary to distribute poles
along \Gamma , and a successful strategy is to distribute them along segments extending a
distance \sigma L = \sigma \rho n from the apex on the two sides of \Gamma , for any constant \rho > 0.

Specifically, one way to distribute poles is by solving a potential theory problem
in the infinite V domain. As suggested by the contour lines u = 0.1, 0.2, . . . , 0.9 in
Figure 4.3, let u be the unique harmonic function in the infinite slit wedge taking
values u = 0 on ( - \infty , 0] and u = 1 on the segments of length \sigma L just mentioned,
with a homogeneous Neumann condition on the remainder of the boundary. This
function u can be calculated by means of a conformal map of the lower half of the
slit wedge onto a rectangle  - K < Rew < K, 0 < Imw < K \prime in the complex w-
plane, with the Dirichlet boundary components mapping to the vertical sides and
the Neumann components to the top and bottom; the ratio K \prime /2K is known as the
conformal module of the rectangle. If the interior angle of the wedge is \pi /\mu for some
\mu > 1, the map has the explicit representation

(4.19) s(w) = \sigma  - \sigma 

\biggl( 
b+ y

1 + 2b - y

\biggr) \mu 

, y = sn(w | M - 2),

where sn is the Jacobi elliptic sine function and

(4.20) M = 1 + 2b, b = L\mu +
\sqrt{} 
L\mu + L2\mu .

The numbers K and K \prime are the complete elliptic integrals of the first kind with
parameters M - 2 and 1 - M - 2, respectively [13]. Our Fej\'er--Walsh choice of poles and
interpolation points for the theorem will be

(4.21) sk = s(wk) wk = K + i(k  - 1
2 )K

\prime /n, 1 \leq k \leq n
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2814 YUJI NAKATSUKASA AND LLOYD N. TREFETHEN

Fig. 4.3. Hankel contour \Gamma for the proof of Theorem 4.6 with E = [0, 1], together with level
curves u = 0.1, . . . , 0.9 for the associated potential theory problem obtained from the conformal
map (4.19)--(4.20). Poles are distributed according to (4.21) along segments of length \sigma L = O(n)
on each side of \Gamma . In the tail, F (t) in (4.10) is exponentially small. In the head, \phi (s)/\phi (t) is
near-exponentially small.

and

(4.22) \alpha k = s( \~wk) \~wk =  - K + i(k  - 1
2 )K

\prime /n, 1 \leq k \leq n.

Theorem 4.6. Let E be a simply-connected compact set in C\setminus ( - \infty , 0); more
generally, E might be a multilevel surface wrapping around 0 a finite number of times.
Let f be an analytic function in E with a branch point singularity at z = 0 in the
sense of Definition 4.1 with an exponent \tau . Then there exist functions

(4.23) g(z) = c0 +

n\sum 
k=1

ck
log(z) - sk

satisfying

(4.24) \| f  - g\| \leq exp( - Cn/ log n) \forall n

for some C > 0, where \| \cdot \| is the supremum norm on E. If E = [0, 1], a suitable
choice of \{ sk\} is (4.21) for any \mu with tan(\pi /2\mu ) < \tau and sufficiently small \sigma .

Proof. As with Theorem 4.3, the proof is carried out via the Hermite integral
formula for the equivalent problem of rational approximation of a function F (s) on the
domain log(E) in the s = log z variable; again we first remove f(0) from the problem
by setting c0 = f(0). If E is a compact set in C\setminus ( - \infty , 0), or a multilevel surface
wrapping around 0 a finite number of times, then log(E) is a closed subset of C\cup \{ \infty \} 
with upper-bounded ReE and | ImE| . We take E = [0, 1] and log(E) = [ - \infty , 0] for
simplicity, as sketched in Figure 4.3; the more general case is treated by an adjustment
of the contour \Gamma and the conformal map. By the assumption (4.1), F can be extended
to a single-valued analytic function throughout a V-shaped region in the s-plane, as
in the figure, for any inner angle \pi /\mu with tan(\pi /2\mu ) < \tau and sufficiently small \sigma .
As in the proof of Theorem 4.2, we now estimate the Hermite integral (4.10) over the
``head"" region of \Gamma , consisting of the two segments of length \sigma L = \sigma \rho n touching the
apex, and the remaining ``tail."" The contribution Itail is exponentially small because
of (4.2), which in the s variable becomes (4.6). The contribution from Ihead is near-
exponentially small, which we establish as follows. The factor F (t)/(t  - s) in (4.10)
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is bounded as a consequence of (4.6) and the contour \Gamma being fixed, so we need to
show that \phi (s)/\phi (t) is near-exponentially small. From potential theory related to
Theorem 19 of Chapter 9 of [23], it is known that this selection of \{ sk\} and \{ \alpha k\} 
as Fej\'er--Walsh points ensures | \phi (s)/\phi (t)| \approx exp( - n(K/K \prime )) as n \rightarrow \infty . The result
follows from the estimate K \prime /K \sim (4\mu /\pi ) log n as n \rightarrow \infty , which can be derived
from [13, equation (19.9.5)].

5. Convergence theorem: Multiple singularities. Theorems 4.2 and 4.6 are
local assertions, establishing exponential and near-exponential resolution of isolated
singularities. It remains to show that global approximations can be constructed by
adding together these local pieces. We do this in the style of Theorem 4.6, requiring
analyticity just in a neighborhood of E. The argument is adapted from the discussion
around Theorem 2.3 in [5] and illustrated schematically in Figure 5.1.

Theorem 5.1. Let E be a simply connected compact set in C, and let f be an
analytic function in E with branch point singularities in the sense of Definition 4.1 at
boundary points z1, . . . , zm; more generally, E might be a multilevel surface wrapping
around each branch point a finite number of times. Then there exist functions

(5.1) g(z) = c0 +

m\sum 
j=1

nj\sum 
k=1

cjk
log(z  - zj) - sjk

satisfying

(5.2) \| f  - g\| \leq exp( - Cn/ log n) \forall n

for some C > 0, where \| \cdot \| is the supremum norm on E.

Proof. The function f can be represented on E as a Cauchy integral

(5.3) f(z) =
1

2\pi i

\int 
\Gamma 

f(t)

t - z
dt,

where \Gamma is any fixed contour that lies outside E and within the region of analyticity
of f , except that \Gamma touches E at each of the points \{ zk\} . We split up \Gamma into m pieces
\Gamma k, with \Gamma k touching just zk, giving

Fig. 5.1. Illustrations for the proof of Theorem 5.1. A function f on E is decomposed into
m pieces, with fk defined by a Cauchy integral of f over an arc \Gamma k touching the branch point
zk; \Gamma k is a pair of logarithmic spirals on a Riemann surface to which f is extended by analytic
continution. The right image shows the configuration near a branch point after a change of variable
s = log(ei\alpha (z - zk)). The arc defining fk becomes a disjoint pair of rays log(\Gamma k) in the s-plane, and
poles \{ sk\} of the rational approximation will be placed along segments of length O(n) on a V-shaped
contour lying between log(\Gamma k) and ( - \infty , 0].
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2816 YUJI NAKATSUKASA AND LLOYD N. TREFETHEN

(5.4) f(z) = f1(z) + \cdot \cdot \cdot + fm(z),

where fk is the Cauchy integral evaluated over the arc \Gamma k,

(5.5) fk(z) =
1

2\pi i

\int 
\Gamma k

f(t)

t - z
dt.

For the mathematics of Cauchy integrals over open arcs, see Chapter 14 of [8].
We are done if we can show that each function fk can be approximated on E with

near-exponential accuracy by a function of the form (4.23), with log(z) replaced by
log(z - zk) (that is, a continuous branch of log(z - zk) in E). This will be ensured by
Theorem 4.6 if fk satisfies the conditions (4.1) and (4.2) in our definition of a branch
point singularity. At this stage, the choice of \Gamma becomes crucial. A choice of \Gamma as a
closed, nonintersecting contour in the z-plane will not do; the corresponding functions
fk will not be defined along curves winding around zk as required by (4.1). Instead,
\Gamma must be taken to be a spiral on a Riemann surface for f whose projection on the
z-plane is a self-intersecting contour with logarithmic spiral behavior at each zk, as
sketched in Figure 5.1. The integrals defining each fk now make sense since each zk is
a branch point around which f can be analytically continued. Condition (4.2) holds
since it holds for f by assumption and fk differs from f by a function that is analytic
near zk, namely, the sum of the contributions fj with j \not = k.

6. Behavior near singularities. As mentioned in the penultimate paragraph
of section 2 and illustrated in Figure 2.3, reciprocal-log approximations have surpris-
ing properties near the singularities. Whereas error curves for rational approximations
vary over a scale exponentially close to the singularity, for reciprocal-log approxima-
tions this becomes doubly exponential. Fortunately, so far as we are aware, these
effects need not cause difficulties in using these approximations, and in particular, it
appears that they do not necessitate the use of extended-precision arithmetic. We
shall now explain our understanding of these matters with reference to Figure 6.1,
which presents four approximations of

\surd 
z for z \in [0, 1]. In each case the approxima-

tion is computed over [10 - 20, 1], and then the absolute value of the error is plotted
over [10 - 80, 1]. For comparison, fine dots show the corresponding results for compu-
tations over [10 - 80, 1]. Our continued use of

\surd 
z as the basic example of a function to

be approximated is justified by both numerical experience and theory showing that
different branch point singularities dominated by fractional powers do not behave too
differently; the starting point of this phenomenon appeared in the second sentence of
this paper with the function eas depending only inessentially on a.

Image (a) shows the best (minimax) reciprocal-log approximation with n = 4.
We see here that the best approximation over [10 - 20, 1] is by no means optimal over
[10 - 80, 1]. The error is 10 times larger there (6.2e - 4 versus 5.0e - 5), and this ratio
will grow rapidly with increasing n. One might think this implies that reciprocal-log
approximations must be ineffective at approximating all the way up to the singular-
ity, but the small dots in the figure, corresponding to the best approximation over
[10 - 80, 1], contradict this expectation, showing an error of just 7.6e - 5. As can be
seen in Figure 2.3, the error in best approximation over all of [0, 1] is also not much
larger, just 8.7e - 5.

Image (b) shows the error for reciprocal-log approximation (2.2) with poles posi-
tioned on a Hankel contour according to (2.3), now with n = 8. Again the error in the
left-hand part of [10 - 80, 1] is larger than it needs to be, but this may be less important
for these approximations since the error is dominated by that at larger values of z.
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Fig. 6.1. Four approximations of
\surd 
z computed on [10 - 20, 1] and then plotted over [10 - 80, 1]

(the absolute value of the error). The fine dots show corresponding results for an approximation
computed over [10 - 80, 1]. See the text for discussion.

Image (c) shows a very different situation for reciprocal-log approximation (2.4)
with confluent poles at s0 = n/2. Now the approximation over [10 - 20, 1] gives an
error over [10 - 80, 1] that is orders of magnitude too large.

It is at this point that we wish to pause and ask, what might be the practical
implications of such behavior? It certainly seems disturbing if an approximation is
much less accurate on [10 - 80, 1] than on [10 - 20, 1]. There are three rather disparate
observations to be made, which combine to an encouraging picture.

First we note that in IEEE floating point arithmetic, whereas one can represent
numbers near 0 smaller than 10 - 300, the resolution near other points zk is only on the
order of 16 digits. Thus even if we wanted to compute approximations by least-squares
fitting on a grid in zk + (0, 10 - 20 ], we could not do so. This might seem worrying if
one takes Figure 6.1 to suggest that such domains will be required.

The second observation is that as a purely practical matter, they should not
be required. On a planar domain E such as that of Figure 3.2, for example, if a
function f is approximated to a satisfactory precision everywhere except at distances
< 10 - 20 from the vertices \{ zk\} , what difference does it make? What is wrong with an
approximation that is mathematically inaccurate in theory but only at points where
it will never be evaluated?

And yet the use of such approximations would be troubling. This brings us to
the third observation, which is the basis of image (d) of Figure 6.1: it may be possible
to make an approximation accurate on zk + (0, 10 - 20 ] without doing any arithmetic
there. The trick is to forget least-squares gridding in zk + (0, 10 - 20 ] and instead
impose additional conditions at zk, forcing the singular part of the approximation
to decay there at a rate O(1/(log | z  - zk| )J) for some power J > 1. This is natural
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since in floating point arithmetic, all of zk + (0, 10 - 20 ] rounds to zk anyway. Image
(d) corresponds to an approximation of this kind with J = 2: we approximate in the
n-dimensional space spanned by 1/(log(z)  - n/2)j with 2 \leq j \leq n + 2. The work
and the number of degrees of freedom are unchanged, and now least-squares fitting on
[10 - 20, 1] gives an approximation that is accurate on all of [0, 1]. We call this a pinned
approximation, since certain terms of the approximation are constrained to be zero
at the singularity. In this example J = 2 is effective, but for larger n a choice closer
to J = n/2 will be called for. To estimate this number, one can use analysis such as
that of (4.12) or (4.22) to monitor how many interpolation points might be expected
to fall closer to zk than about machine precision. For the problem of image (d) with
n = 8, (4.12) gives distances exp(\alpha j) \approx 0.8, 0.6, 0.3, 0.06, 0.003, 10 - 5, 10 - 13, 10 - 56,
and our pinned approximation might be thought of as effectively replacing the last
two of these numbers by zero. There are many mathematical questions here, and it
would be interesting to investigate them.

7. Log-lightning PDE solvers. The motivation for this work has been the
development of numerical methods for the solution of PDEs on planar domains with
corners, beginning with the Laplace equation with Dirichlet boundary conditions. For
these problems we do not know an analytic function on E, just its real part on the
boundary. This is no difficulty for linear least-squares fitting, however, where all
that matters is having an efficient approximation space. The idea of solving Laplace
problems in this fashion was presented in [5], where root-exponential convergence of
approximations based on rational functions is established theoretically and experimen-
tally. Here we move to reciprocal-log approximations, and the theorems of sections 4
and 5 assert that the convergence should improve to exponential or near-exponential.

Figure 7.1 presents a pair of curves confirming this expectation. The solutions
computed here are for the problem posed on NA Digest in December 2018, defined
by the L-shaped region with vertices 0, 2, 2 + i, 1 + i, 1 + 2i, 2i and boundary data
u(z) = Re(z2) [17]. As usual, N denotes the total number of degrees of freedom,
which in this plot is a number of the form 14n+1 with n = 2, 4, 6, . . . . For each n, the
approximating function consists of the real part of a polynomial of degree n together
with n singularities \{ sk\} at each of the six corners as defined by (2.3), though with
a factor n/3 instead of n/4 in front. This gives 7n + 1 complex degrees of freedom,
hence 14n+ 2 real ones, and the number reduces to 14n+ 1 since the imaginary part
of the constant term of the polynomial does not affect the fit.

0 500 1000 1500

10
-10

10
-5

10
0

lightninglog-lightning

Fig. 7.1. Convergence of lightning and log-lightning solutions to the NA Digest problem of the
Laplace equation on an L-shaped region [17]. The difference between root-exponential and exponential
convergence is evident.
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This experiment is a long way from the software that has been developed for light-
ning approximation [19]. The boundary has been resolved simply by 500 exponentially
clustered points on each side, whereas adaptive software can make the gridding both
more efficient and more careful. More importantly, each corner has been allocated
the same number n of singularities, whereas adaptive software will put more singular-
ities at vertices with stronger singularities. So although the log-lightning convergence
curve of Figure 7.1 is promising, the reliable fast way to solve Laplace problems at
this date is still by means of the laplace code at [19]. This code also addresses a
number of variations such as Neumann boundary conditions, discontinuous data, and
piecewise smooth curved boundaries.

The number of degrees of freedom N is not a direct measure of computer time.
For reasons of linear algebra, the work actually increases in proportion to N2 or N3,
depending on whether the grid is fixed or refined with N , which tends to make the
difference between the lightning and log-lightning computations greater than it may
appear in Figure 7.1. A consideration pushing in the other direction is that computer
evaluation of a complex logarithm log z is typically slower than that of a reciprocal
1/z by a factor such as 3 or 4.

In developing software for solving PDEs by the log-lightning method, an issue
deserving of attention will be the appropriate weighting of sample points in the least-
squares problems. There are two reasons why uniform weighting may not be optimal.
First, since the sampling grids are exponentially clustered, uniform pointwise weight-
ing introduces a nonuniform weighting in an integrated sense, which one may wish
to compensate. Second, the singularities in the solution may require nonuniform
weighting; they will certainly do so when the solution is discontinuous. As a practical
matter, we find that weighting seems less important than one might expect, essen-
tially because it is covered by the great speed of the exponential or near-exponential
convergence, but this matter will certainly need attention as the PDE side of this
subject is developed.

It was shown in [6] that the original lightning Laplace solver can be generalized
to a lightning Helmholtz solver by replacing poles by Hankel functions. Possibly
there is a Helmholtz generalization of the log-lightning method too, but we have not
investigated this.

8. Conclusion. Exponential or near-exponential convergence of approximations
to branch point singularities is a newly discovered phenomenon. Reciprocal-log ap-
proximations are interesting in theory and may have consequences in practice if good
software can be developed.

Philosophical questions are attached to this kind of approximation. It is an old
idea that polynomials and rational functions have a special status since ``the only
operations that can really be carried out numerically are the four elementary opera-
tions of addition, subtraction, multiplication and division.""1 This point of view has
contributed to the dominance of polynomials and rational functions in approximation
theory, with other classes of approximating functions seeming less fundamental. We
are not ourselves immune to the impression that there is something contrived about
approximations of the forms (1.1) and (1.2). But their power is undeniable, and the
philosophical distinction that may have seemed sharp before the arrival of computers
seems less sharp today.

1This quote comes from the PhD thesis of Hilbert's student Kirchberger in 1902 [18, pp. 196--197].
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A fascinating aspect of reciprocal-log approximations is their exploitation of the
behavior of a function on a Riemann surface. As one of the smallest consequences
of this feature, these approximations have no difficulty at all in treating domains
with slits, and the prospects for further adventures with multivalued functions seem
enticing.

Appendix: Vandermonde with Arnoldi codes. Figure 8.1 lists the codes
VAorthog and VAeval from [2] that we use for numerical stability. The mathematics

function [Hes,R] = VAorthog(Z,n,varargin) \% Vand.+Arnoldi orthogonalization
\% Input: Z = column vector of sample points
\% n = degree of polynomial (?`= 0)
\% Pol = cell array of vectors of poles (optional)
\% Output: Hes = cell array of Hessenberg matrices (length 1+length(Pol))
\% R = matrix of basis vectors
M = length(Z); Pol = []; if nargin == 3, Pol = varargin--1\H ; end
\% First orthogonalize the polynomial part
Q = ones(M,1); H = zeros(n+1,n);
for k = 1:n

q = Z.*Q(:,k);
for j = 1:k, H(j,k) = Q(:,j)fl*q/M; q = q - H(j,k)*Q(:,j); end
H(k+1,k) = norm(q)/sqrt(M); Q(:,k+1) = q/H(k+1,k);

end
Hes--1\H = H; R = Q;
\% Next orthogonalize the pole parts, if any
while \~isempty(Pol)

pol = Pol--1\H ; Pol(1) = [];
np = length(pol); H = zeros(np,np-1); Q = ones(M,1);
for k = 1:np

q = Q(:,k)./(Z-pol(k));
for j = 1:k, H(j,k) = Q(:,j)fl*q/M; q = q - H(j,k)*Q(:,j); end
H(k+1,k) = norm(q)/sqrt(M); Q(:,k+1) = q/H(k+1,k);

end
Hes--length(Hes)+1\H = H; R = [R Q(:,2:end)];

end

function [R0,R1] = VAeval(Z,Hes,varargin) \% Vand.+Arnoldi basis construction
\% Input: Z = column vector of sample points
\% Hes = cell array of Hessenberg matrices
\% Pol = cell array of vectors of poles, if any
\% Output: R0 = matrix of basis vectors for functions
\% R1 = matrix of basis vectors for derivatives
M = length(Z); Pol = []; if nargin == 3, Pol = varargin--1\H ; end
\% First construct the polynomial part of the basis
H = Hes--1\H ; Hes(1) = []; n = size(H,2);
Q = ones(M,1); D = zeros(M,1);
for k = 1:n

hkk = H(k+1,k);
Q(:,k+1) = ( Z.*Q(:,k) - Q(:,1:k)*H(1:k,k) )/hkk;
D(:,k+1) = ( Z.*D(:,k) - D(:,1:k)*H(1:k,k) + Q(:,k) )/hkk;

end
R0 = Q; R1 = D;
\% Next construct the pole parts of the basis, if any
while \~isempty(Pol)

pol = Pol--1\H ; Pol(1) = [];
H = Hes--1\H ; Hes(1) = []; np = length(pol); Q = ones(M,1); D = zeros(M,1);
for k = 1:np

Zpki = 1./(Z-pol(k)); hkk = H(k+1,k);
Q(:,k+1) = ( Q(:,k).*Zpki - Q(:,1:k)*H(1:k,k) )/hkk;
D(:,k+1) = ( D(:,k).*Zpki - D(:,1:k)*H(1:k,k) - Q(:,k).*Zpki.\^2 )/hkk;

end
R0 = [R0 Q(:,2:end)]; R1 = [R1 D(:,2:end)];

end

Fig. 8.1. MATLAB codes from [2] for Vandermonde with Arnoldi orthogonalization and evalu-
ation. The polynomial part and each string of poles are orthogonalized separately, with the resulting
Hessenberg matrices of coefficients stored in the cell array Hes.
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is described in [1]. These codes were designed for rational functions, not reciprocal
logs, but as shown in the example of section 2, they can be applied to the latter case
by supplying log(z) as one of the arguments.
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