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Abstract
Often the easiest way to discretize an ordinary or partial differential equation is by
a rectangular numerical method, in which n basis functions are sampled at m � n

collocation points. We show how eigenvalue problems can be solved in this setting by
QR reduction to square matrix generalized eigenvalue problems. The method applies
equally in the limit “m = ∞” of eigenvalue problems for quasimatrices. Numerical
examples are presented as well as pointers to related literature.
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Method of fundamental solutions · Lightning solver · Vandermonde with Arnoldi ·
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1 Introduction

Problems involving ordinary and partial differential equations (ODEs and PDEs) are
traditionally discretized by square matrices. Such methods are effective when a well-
conditioned basis is available in which to expand the numerical solution and good
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quadrature or collocation points are known at which to enforce the equations. Some-
times, however, these conditions do not hold, and it becomes advantageous to sample
the equation at more data points than there are basis functions and to solve the prob-
lem in a least-squares formulation. We call these rectangular numerical methods.
The aim of this paper is to propose rectangular numerical methods for ODE and PDE
eigenvalue problems.

Rectangular numerical methods have appeared in many areas, though they have
rarely taken center stage. When Fourier, Chebyshev, or related expansions are
involved, one can speak of rectangular spectral methods [11], though Boyd observes
that such methods are “relatively uncommon” [8, Section 3.1]. In the finite elements
literature there are Least-Squares Finite Element Methods [6, 20, 24]. With expan-
sion functions that satisfy the differential equation but not the boundary conditions,
one gets series methods [33] or the Method of Fundamental Solutions (MFS) [3, 13]
or lightning or log-lightning methods for PDE problems with corner singularities [16,
26]. Related expansions that do not satisfy the differential equation and hence need
fitting in the interior of a domain, not just on the boundary, lead to least-squares meth-
ods for radial basis functions (RBFs) or other kernels [10, 14, 21, 29]. RBF methods
are an example of the broad category of meshfree methods.

Our plan is to set forth some of the simplest methods for solving rectangular
eigenproblems and to illustrate them with a sequence of examples. The closest previ-
ous contributions we know of on this topic are by Manzhos and coauthors, who have
developed what they call “rectangular collocation” methods for eigenvalue problems
in quantum chemistry [21, 22], and by the first two authors [17]. The emphasis in [17]
is on spectral methods for ODEs, and the linear algebra is carried out by the method
of Ito and Murota [19], involving the singular value decomposition (SVD) of a matrix
with twice as many columns as there are basis functions. (Important earlier related
papers are [7] and [35].) Here we look at a wider range of problems and propose sim-
pler methods of linear algebra based on the QR decomposition of a matrix without
the doubled dimension.

We will mainly deal with fully discrete m × n rectangular matrices, always with
m > n. As pointed out in [17], however, it makes good sense conceptually to consider
the limit in which the columns are functions of one or more continuous variables,
so that instead of matrices, we have quasimatrices; see [4, 32] and [12, chap. 6].
Nothing essential changes here, and we shall include quasimatrices in the discussion
as the case “m = ∞”. For spectral ODE problems, the quasimatrices can be realized
numerically in Chebfun [12], and the first two of the examples of Section 3 follow this
path. After that, our computed examples are fully discrete, though the mathematical
derivations apply equally to m < ∞ or m = ∞.

Rectangular numerical methods for eigenvalue problems are related to ideas
going back a century, first associated with Rayleigh, Ritz, and Galerkin, in which
square matrix approximations are obtained by quadrature and projection. See
[30, Section 4.3], [31, Section 6.4], and the fascinating historical discussion in [15].
In the finite elements literature, Galerkin and Petrov-Galerkin methods can often be
interpreted this way. Arnoldi and Jacobi-Davidson iterative methods for computing
eigenvalues of large matrices are also of this nature. What is different in the present
paper is that no explicit quadrature or projection ideas are employed, just numerical
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algorithms applied to eigenvalue problems configured rectangularly. This diminishes
the need for case-by-case analysis and permits great flexibility in the choice of basis
functions and sample points.

Our eight numerical examples are intended to illustrate the simplicity and poten-
tial of rectangular eigenvalue discretizations, not as optimal or guaranteed numerical
methods for any particular problem. Their success depends on reasonable choices
of parameters such as numbers of expansion terms and numbers of boundary and
interior sample points, and they can be made to fail in certain other parameter
ranges. Apart from a few comments, our discussion does not explore these parameter
dependences systematically, as that would lengthen the presentation greatly.

2 The numerical method, three variants

Let L be a linear operator acting on functions in a univariate or multivariate domain
�, and suppose we seek eigenvalues λ and nonzero eigenfunctions u such that

Lu = λu. (1)

We shall consider three variants of this problem, in which (1) is coupled with no
boundary conditions, a finite number of boundary conditions, or boundary conditions
applied on a continuum. In all three cases we suppose that for some n ≥ 1, we have
a set of functions g1, . . . , gn defined in � whose span contains good approximations
to the eigenfunctions of interest, and we let G be the “∞ × n matrix” (also known as
a quasimatrix) whose columns are these functions. Setting

u = Gx, (2)

we seek a coefficient vector x ∈ C
n such that

LGx = λGx. (3)

This is an ∞×n generalized eigenvalue problem, which can also be described as the
eigenvalue problem for the∞×n quasimatrix pencilLG−λG. Like most rectangular
eigenproblems, it will not have exact solutions in general [7, 19, 35], but if G is
well chosen, we expect it to have approximate solutions accurate to many digits of
accuracy as measured, for example, in the sense of small residuals. In such contexts
G will often be highly ill-conditioned.

Usually we will discretize the problem by sampling in a subset �m ⊆ � of m

points of �, so that the quasimatrices become m × n matrices. Let S, of dimensions
“m × ∞,” denote the sampling operator. Then SG is the m × n matrix whose (j, k)

entry is gk sampled in �m, and SLG is the m × n matrix whose (j, k) entry is Lgk

sampled in �m. We will now attempt to solve the discretized variant of (3),

SLGx = λSGx. (4)

In cases where we wish to solve a problem in the original quasimatrix form (3),
without discretization, we can speak of “m = ∞,” and (4) and the following formulas
remain valid with S equal to the identity operator.
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Variant 1 No explicit boundary conditions. Suppose first that (1) is the whole
problem: as in [7] and [19], there are no explicit boundary conditions. An exam-
ple would be the harmonic oscillator −u′′ + x2u = λu defined on the real axis,
with eigenvalues 1, 3, 5, . . . . In this case our proposed numerical method begins by
computing the QR factorization of SG,

SG = QR, (5)

where Q is m×n and R is n×n and upper-triangular. (For details of QR factorization
in the quasimatrix case m = ∞, see [32].) Premultiplying (4) by Q∗ then gives

Q∗(SLG)x = λQ∗SGx = λRx. (6)

This equation enforces the condition that the residual (SLG)x −λSGx is orthogonal
to the range of SG. (Alternatively one could require

(SG)∗(SLG)x = λ(SG)∗(SG)x, (7)

though with less numerical stability, in analogy to the normal equations for least-
squares fitting problems; compare [21, eq. (6)] and the earlier [25, eq. (5)].)
Equation (6) is a square matrix generalized eigenvalue problem with dimensions
n × n, which we solve by the standard QZ algorithm. Note that (4) implies (6). Con-
versely, (6) implies (4) if the columns of SLG lie in the column space of SG. This
may or may not hold exactly, but in many applications it will hold to high accuracy,
making (4) and (6) effectively equivalent.

In the computation above, as in Variants 2 and 3 below, an alternative (mathe-
matically equivalent) possibility is to use the SVD instead of the QR decomposition
to construct an orthonormal basis of the columns of SG. In our experience this may
improve the accuracy slightly, typically by less than one digit, at the cost of a slight
increase in computing time. We have not investigated the matter carefully.

In the continuous case where S is the identity operator, the formulation (6) is par-
ticularly close to the Rayleigh-Ritz method, as mentioned in the introduction. Here
one has G = QR, hence Gx = QRx, so (6) reduces to the Rayleigh-Ritz form

Q∗LQv = λv, v = Rx. (8)

Before finishing with Variant 1 we should comment on what it means for a dif-
ferential equations problem to have “no boundary conditions.” On a domain with no
boundary, such as a periodic interval or a torus, this may be strictly accurate. On the
real axis as in the example of our harmonic oscillator, however, it would be more cor-
rect to say that there are implicit boundary conditions involving decay as |x| → ∞,
which practitioners may neglect to specify explicitly and which numerical methods
may enforce implicitly. In Example 1 of the next section, the implicit enforcement
results from L2-boundedness of computed eigenfunctions.

Variant 2 Finite set of boundary conditions. Suppose next that (1) is coupled
with a finite set of μ > 0 homogeneous linear boundary conditions, as is considered
(along with other possibilities) in [17]. An example would be −(4/π2)u′′ = λu on
[−1, 1] with boundary conditions u(±1) = 0, with eigenvalues 1, 4, 9, . . . . We can
write the boundary conditions in the form

Bu = 0, (9)
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whereB (“boundary”) is aμ×∞ quasimatrix and 0 is theμ×1 zero vector. Each row
of B is a linear functional, which might, for example, evaluate u or u′ at a boundary
point. Applying (2), this becomes the μ × n set of equations

(BG)x = 0. (10)

We can now combine (10) with (4) to get the (m + μ) × n rectangular generalized
eigenvalue problem

⎡
⎢⎢⎣

SLG

BG

⎤
⎥⎥⎦ x = λ

⎡
⎢⎢⎣

SG

0

⎤
⎥⎥⎦ x, (11)

where 0 denotes the zero matrix of dimensions μ × n. Various methods can be
employed to make this equation square, as discussed in [17] in the context of the
Ito-Murota formulation. The simplest, analogous to what is called the “tau method”
of imposing boundary conditions in spectral methods [8], is to let Q− denote the
m× (n−μ) matrix or quasimatrix consisting of Q with its final μ columns removed
and then consider ⎡

⎢⎢⎣
Q∗−SLG

BG

⎤
⎥⎥⎦ x = λ

⎡
⎢⎢⎣

Q∗−SG

0

⎤
⎥⎥⎦ x. (12)

This equation enforces the boundary conditions exactly while requiring the residual
(SLG)x − λSGx to be orthogonal to the range of the first n − μ columns of SG. It
is a square matrix generalized eigenvalue problem of dimensions n × n, which again
we solve by standard methods. For essentially the same structure but not based on a
QR factorization, see [11, Section 5] and [1, Section 5].

Variant 3 Continuum of boundary conditions. Finally, suppose (1) is coupled with
a continuum of homogeneous linear boundary conditions. Specifically, suppose we
have a PDE in a domain � of dimension d ≥ 2 and a boundary condition applied
on the boundary ∂� of dimension d − 1. An example would be −�u = λu on the
unit disk with boundary condition u = 0 on the unit circle, whose first eigenvalue is
5.7831859629 . . . , the square of the smallest root of the Bessel function J0(x).

In this continuous case equations (9)–(11) continue to apply, but now the lower
part of (11) needs discretization too. Let Sb be the μ × ∞ operator that samples �

in a subset of μ points on the boundary. (As before we could take “μ = ∞” for a
quasimatrix formulation.) The discretized variant of (11) becomes

⎡
⎢⎢⎣

SLG

SbBG

⎤
⎥⎥⎦ x = λ

⎡
⎢⎢⎣

SG

0

⎤
⎥⎥⎦ x. (13)

Now that μ is large or infinite, it is no longer normally appropriate to attempt to
enforce the boundary conditions exactly. Instead, the natural thing to do is to treat
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all of (13), both the upper and lower parts, in a least-squares fashion. We do this as
follows. Let G denote the (m + μ) × n structure

G =

⎡
⎢⎢⎣

SG

SbG

⎤
⎥⎥⎦ . (14)

Thus each column of G is an object whose upper part is the m-point discretization of
a function of d dimensions and whose lower part is the μ-point discretization of the
same function along the boundary ∂�. We now compute a QR factorization of G,

G = QR, (15)

in which Q has the same structure as G,

Q =

⎡
⎢⎢⎣

Q

∂Q

⎤
⎥⎥⎦ , (16)

and R is an n × n upper-triangular matrix. The columns of Q are orthonormal with
respect to an inner product that combines sums (or integrals, when m or μ is infinite)
associated with both � and ∂�. For discussions of QR factorization and singular
value decomposition of such mixed objects, see [17]. One could analyze what rela-
tive weighting is most appropriate in balancing the two halves, but the expectation is
that in applications it will not make much difference since we are aiming for residuals
close to zero. In our fully discrete computed examples we give equal weights to all
sample points, both the m points in the interior and the μ points on the boundary. At
another extreme, if one gave infinitely more weight to boundary points than interior
ones, Variant 3 would reduce to Variant 2, except with the “finite set of boundary con-
ditions” corresponding to the discretization rather than to the underlying continuous
mathematical problem.

To square up the eigenvalue problem, we left-multiply (13) by Q∗ to obtain
[
Q∗(SLG) + (∂Q)∗(SbBG)

]
x = λQ∗SGx. (17)

This equation enforces the condition that a combined boundary-interior residual is
orthogonal in the mixed inner product to the basis vectors (columns of SG) and their
boundary traces (columns of SbG). Like (6) and (12), (17) is an n × n generalized
eigenvalue problem, and again we solve it by standard numerical methods.

We now turn to computed examples. The ODE problems of Section 3 illustrate
variants 1 and 2, and the PDE problems of Section 4 illustrate variant 3.

3 One-dimensional examples (ODEs)

Example 1 Harmonic oscillator with no boundary conditions. We begin with the
harmonic oscillator mentioned on p. 4, −u′′ + x2u = λu on the real axis. Using
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Chebfun for the quasimatrices, and approximating the real axis by [−8, 8], we
can compute eigenvalues based on an ∞ × 40 rectangular Chebyshev spectral dis-
cretization with the code below, just six lines long. The first three eigenvalues come
out as 1.0000000008, 3.0000000113, and 5.0000005634, and this accuracy can be
improved by increasing n up to about n = 50 in standard floating-point arithmetic.
(After about n = 75, spurious eigenvalues appear for reasons related to the Chebfun
implementation of quasimatrices.)

n = 40;

L = chebop(@(x,u) -diff(u,2) + xˆ2*u,[-8,8]);

G = chebpoly(0:n-1,[-8,8]);

[Q,R] = qr(G);

A = Q'*(L*G); C = R;

lam = sort(eig(A,C))

By adjusting a few of the commands we get a code for the corresponding fully dis-
crete computation with 100 × 40 matrices, 100 being the default number of points
in the linspace command. Chebfun is still used in this code segment, but only
because it offers a convenient way to construct a matrix of sampled Chebyshev
polynomials scaled to [−8, 8] and their second derivatives. The first three eigen-
values come out with approximately the same accuracy as before as 1.0000000004,
3.0000000050, and 5.0000002819. (This time there is no problem with much larger
values of n, so long as m � n points are used in the discretization.)

n = 40;

L = chebop(@(x,u) -diff(u,2) + xˆ2*u,[-8,8]);

G = chebpoly(0:n-1,[-8,8]); LG = L*G;

X = linspace(-8,8)'; SG = G(X); SLG = LG(X);

[Q,R] = qr(SG,0);

A = Q'*SLG; C = R;

lam = sort(eig(A,C))

For both of the computations just presented, the accuracy of the computed eigen-
values is undiminished if the formulation (7) without the QR factorization is used
instead of (6). This makes sense since G is a matrix of Chebyshev polynomials on
[−1, 1], hence well-conditioned.
Example 2 Wave oscillator with two boundary conditions.Our second example, men-
tioned on p. 5, is −(4/π2)u′′ = λu on [−1, 1] with u(±1) = 0. The following code
implements an∞×30 quasimatrix discretization, computing the first ten eigenvalues
1, 4, 9, . . . , 100 to 11–14 digits of relative accuracy.

n = 30;

L = chebop(@(x,u) -(4/piˆ2)*diff(u,2));

G = chebpoly(0:n-1);

[Q,R] = qr(G);

A = [Q(:,1:n-2)'*(L*G); G(-1); G(1)];
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C = [R(1:n-2,:); zeros(2,n)];

lam = sort(eig(A,C))

Here is the adjustment needed for a fully discrete 200× 30 discretization using equi-
spaced points in [−1, 1]. (It makes little difference if Chebyshev points are used
instead, since we are in the regime m � n with plenty of sample points. With m ≈ n,
it would be important to be careful about the distribution of sample points, but rect-
angular numerical methods make it unnecessary for m to be small.) The relative
accuracy of the first ten eigenvalues is now 9–14 digits, which returns to 11–14 digits
if n is increased to 34.

n = 30;

L = chebop(@(x,u) -(4/piˆ2)*diff(u,2));

G = chebpoly(0:n-1); LG = L*G;

X = linspace(-1,1,200)'; SG = G(X); SLG = LG(X);

[Q,R] = qr(SG,0);

A = [Q(:,1:n-2)'*SLG; SG(1,:); SG(end,:)];

C = [R(1:n-2,:); zeros(2,n)];

lam = sort(eig(A,C))

As with the last pair of computations, there is again little difference in accuracy here
if one bypasses the QR factorization and uses (7) instead of (6).

These examples are of a Chebyshev spectral flavor, and in such cases, at least in
simple domains, square discretizations are often readily available. Now we turn to
problems related to the Method of Fundamental Solutions or RBF or other meshfree
discretizations, where the need for rectangular formulations is more pressing. The
reason is that the representation of the solution involves n points that do not lie in the
domain, hence have no naturally associated grid for interpolation or quadrature.
Example 3 Wave oscillator, method of fundamental solutions. Our third example is
the problem −(4/π2)u′′ = λu on [−1, 1] with u(±1) = 0 again, but now solved by
a kind of method of fundamental solutions, with the solution represented as a linear
combination of point charges. The following code implements a 150 × 35 matrix
discretization involving a constant term plus 34 point charge potentials log |x − pj |
with pj equally spaced from −1.5 + 0.5i to 1.5 + 0.5i. The first ten eigenvalues
1, 4, 9, . . . , 100 are computed to 12–15 digits of relative accuracy. A similar 150×35
discretization based on 17 dipoles equally spaced from −1.5+0.5i to 1.5+0.5i, that
is, real and imaginary parts of complex poles 1/(x − pj ) (not shown), gives 10–11
digits.

n = 35;

pts = linspace(-1.5+.5i,1.5+.5i,n-1);

X = linspace(-1,1,150)';

SG = [X.ˆ0 log(abs(X-pts))];

SGpp = [0*X -real(1./(X-pts).ˆ2)];

SLG = -(4/piˆ2)*SGpp;

[Q,R] = qr(SG,0); A = [Q(:,1:n-2)'*SLG;
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SG(1,:); SG(end,:)];

C = [R(1:n-2,:); zeros(2,n)];

lam = sort(eig(A,C));

For this problem, the QR factorization makes a big difference. If we use (7) instead
of (6), some spurious eigenvalues appear and the first ten nonspurious computed
eigenvalues fall to 2–10 digits of accuracy.
Example 4 Quantum oscillator with singularity: lightning discretization. We now
look at a problem with a singularity,

− 0.01u′′ + |x|1/2u = λu, u(±1) = 0, (18)

posed on the interval [−1, 1]. This is a Schrödinger equation with the singular poten-
tial V (x) = |x|1/2. Smooth discretizations will have difficulty achieving more than
2 or 3 digits of accuracy, but we can do much better with a “lightning discretization”
involving poles on the imaginary x-axis exponentially clustered near the singular
point x = 0. Specifically, following eq. (3.2) of [16], a formula that is justified
in [34], we fix a number npoles ≥ 0 and define

dj = exp(4(
√

j − √
npoles )), 1 ≤ j ≤ npoles. (19)

The columns of G will include both the real and imaginary parts of the simple pole
functions d3

j /(x − idj ), making 2npoles columns all together. (The constant d3
j is

included for scaling, since the second derivative of this function is 2d3
j /(x − idj )

3.)
In addition we fix a number npoly ≥ 0 and include the Chebyshev polynomials Tk(x)

with 0 ≤ k ≤ npoly as further columns of the matrix.
Figure 1 shows results for this scheme for 0 ≤ npoly ≤ 20 and 0 ≤ npoles ≤ 25. The

interval [−1, 1] is discretized by 1000 points exponentially spaced from 10−10 to 1
and their negatives, so the matrices have 2000 rows and between 1 and 71 columns.
(This space discretization could undoubtedly be improved.) Neither poles nor smooth
polynomials alone give good accuracy, but in combination they achieve up to 12
digits on this difficult problem.

If Fig. 1 is recomputed based on the formulation (7) without QR factorization, the
accuracy falls to 2 digits and spurious eigenvalues appear. For our further examples
we will report results only from the stable formulation (6).

4 Two-dimensional examples (PDEs)

Now we move to two-dimensional (2D) domains and PDE eigenvalue problems.
Though problems without boundaries can certainly be considered (such as the 2D
harmonic oscillator in the x-y plane), we shall look at examples where� has a bound-
ary ∂� with explicit boundary conditions, leading to rectangular discretizations in
the Variant 3 form (17).
Example 5 Circular drum, RBF discretization. Consider the planar Laplace problem
mentioned on p. 6,

− �u = λu, |z| < 1, (20)
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Fig. 1 Error (log base 10) in the first computed eigenvalue λ1 ≈ 0.42185900459401 of the singular
Schrödinger problem (18) as a function of the polynomial degree npoly and the number of exponentially
clustered “lightning” poles npoles. The rectangular discretization combining the polynomial and the poles
converges rapidly to 12 digits of accuracy with a basis matrix G with 2000 rows and about 50 columns.
Note that the horizontal axis is

√
npoles, to highlight the root-exponential convergence investigated in [34];

the white line marks npoly = 2.5
√

npoles. Examination of the data along the two axes shows that neither the
polynomial nor the clustered poles alone get better than 2 digits

with u(z) = 0 for |z| = 1. The eigenvalues are the squares of the zeros of the Bessel
functions Jk(r), k ≥ 0. For k = 0, the eigenfunctions are axisymmetric and the
eigenvalues are simple, whereas for k ≥ 1, the eigenfunctions are not axisymmetric
and each eigenvalue is of multiplicity 2.

Our first rectangular discretization will be based on RBFs. We follow [28] and
take as a radial basis function the multiquadric

φ(r) =
√

c2 + r2 (21)

for a fixed parameter c, so that each eigenfunction is approximated by a sum

u(z) = a0 +
n−1∑
k=1

akφ(|z − ζk|), (22)

where {ζk} is a set of n − 1 centers. In [28], as in most RBF literature, the emphasis
is on obtaining square discretizations based on interpolation. This requires care in
selecting the centers, which must be clustered near the boundary to avoid a Runge
phenomenon [27]. In rectangular mode, however, with m � n sample points, one
can be more relaxed. To illustrate the method, Fig. 2 shows a square grid of sample
points in the unit disk |z| ≤ 1 with spacing 0.04 as well as a sparser square grid
of RBF centers in the disk |ζ | ≤ 1.25 with spacing 0.08. We take c = 0.4 for the
constant of (21). Figure 3 shows that the resulting 2241×770 rectangular eigenvalue
problem gives 5–8 digit accuracy in the first eight eigenvalues.
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Fig. 2 RBF discretization of
Example 5. The dots show 1941
interior sample points in the unit
disk, and the circles show 769
RBF centers in the disk
|z| ≤ 1.25. The unit circle
boundary is discretized by 400
equispaced points. The resulting
rectangular eigenproblem is of
dimensions 2241 × 770

Example 6 Circular drum, Fourier extension discretization. Consider (20) for a
circular drum again, but now discretized by a Fourier extension method. For a rect-
angular discretization of (20), we start from a 41 × 41 square grid in [−1, 1]2 (i.e.,
grid spacing 0.05) and discard the points outside the unit disk; the 1245 points that
remain are our interior sample points. On the boundary we take 300 equispaced sam-
ple points. The basis functions are the products cos(kx) cos(my), cos(kx) sin(my),
sin(kx) cos(my), and sin(kx) sin(my) with 0 ≤ k + m ≤ 10 (discarding those that
are exactly zero). This leads to an eigenvalue problem of dimensions 1545 × 221,

Fig. 3 First 8 computed eigenvalues and eigenfunctions of a disk, based on an RBF discretization defined
by (21)–(22) with the RBF and sampling grids of Fig. 2. The rectangular eigenvalue problem is of dimen-
sions 2241 × 770. Correct digits are printed in black and incorrect ones in a smaller font in red. The
eigenvalues of multiplicity 2 are identified correctly, but the associated eigenfunction pairs do not come
out orthogonal, reflecting the fact that the numerical method is not self-adjoint
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and Fig. 4 shows the first eight computed eigenfunctions, with eigenvalues accurate
to 9–11 digits.
Example 7 Elliptical drum, Fourier extension discretization. Figure 5 shows results
for another 2D Fourier extension computation, this time involving an elliptical drum
of length 1 and width 1/2. Although it doesn’t make much difference for this
problem, we have switched here to a representation in which the basis functions
are orthogonalized by a Vandermonde with Arnoldi process [9, Example 3]. Two-
dimensional Vandermonde with Arnoldi has been utilized previously for bivariate and
trivariate polynomials in [2, 18], and [36], and here we do it for Fourier extension. (In
separate experiments not reported here, we have successfully computed eigenmodes
of the ellipse in this manner by bivariate polynomials.) Setting X = eix and Y = eiy ,
we note that the real part of XkY±m is cos(kx) cos(my) ∓ sin(kx) sin(my) and the
imaginary part is ± cos(kx) sin(my) + sin(kx) cos(my), so these real and imaginary
parts span the necessary space of bivariate trigonometric polynomials. To be precise,
we fix K ≥ 1 and work with integers k and m with 0 ≤ k ≤ K and 0 ≤ m ≤ K for
k = 0, k − K ≤ m ≤ K − k for k ≥ 1. Arnoldi orthogonalization is carried out in
the order 1, Y, X, Y 2, XY, X2, Y 3, XY 2, X2Y, X3, . . . (compare the paragraph after
eq. (7) of [2]). The rectangular matrix whose eigenfunctions are shown in the figure
is of dimensions 1399 × 313.

Fourier approximations of analytic functions on analytic domains should con-
verge exponentially, and for Examples 6 and 7, the data confirm this nicely, as shown
in Fig. 6. (Here and in the next example, the correct eigenvalues are not known
analytically but are determined numerically by higher-resolution calculations.) For
more complicated domains, however, especially if they are nonconvex, the exponen-
tial rate becomes very slow because the solution can only be analytically continued
a short distance outside the boundary. Such effects have been studied by Barnett and
Betcke [3], and for more on the theory of analytic continuation of Helmholtz fields,

Fig. 4 Like Fig. 3 but for a Fourier extension discretization. The rectangular eigenvalue problem is of
dimensions 1545×221. The degenerate pairs 2–3, 4–5, and 7–8 again show orientations at arbitrary angles
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Fig. 5 Like Fig. 4 but for an elliptical drum of axis lengths 1 and 1
2

see [23]. This difficulty pertains to the choice of expansion functions, not to the
method of dealing with them by rectangular eigenvalue problems.
Example 8 L-shaped region with singular terms. Solutions to PDEs in regions with
corners usually have corner singularities, which make it challenging to get high accu-
racy. In the context of the global representations explored in this paper, a natural idea
for such problems would be to combine a general purpose set of basis functions to
capture the “smooth part” of the solution with additional singular terms near the cor-
ners. For Laplace Dirichlet or Neumann problems, representations of this kind led to
the lightning and log-lightning solvers introduced in [16] and [26]. Here we illustrate
that such an approach may be effective for eigenvalue problems too. This is a PDE
analogue of Example 4 for ODEs.

Our example, shown in Fig. 7, is the planar drum (20) in the form of the L-
shaped region well known from the MATLAB logo, the square [−1, 1]2 with one
corner removed. (For numerical eigenvalues of this and other drums calculated by
a more specialized method to an accuracy of 8 digits, see [5].) The boundary has
been discretized by 420 points exponentially clustered near the reentrant corner,
and the interior by a square grid of spacing 1/20. This gives a 1617 × 313 matrix,

0 5 10 15
10-15

10-10

10-5

100

Fig. 6 Convergence curves for the two examples involving Fourier extension discretizations. Exponential
convergence is observed to around 14 digits for the disk and 11 digits for the ellipse
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Fig. 7 Eigenfunctions of an L-shaped region computed by a 1617 × 343 eigenvalue problem, with 30 of
the matrix columns devoted to resolving the singularity at the reentrant corner

to which a further 30 columns are added corresponding to the corner singular-
ity. These 30 terms are chosen to capture the dominant behavior of the functions
J(2/3)j (

√
λr) sin((2/3)ijθ) that arise in series expansions of eigenfunctions near

reentrant right-angle corners, where r is the distance from the corner and θ is the
angle measured from one of the adjacent sides. Specifically, we used discretizations
of the 30 functions ra sin(bθ) with a and b given by

a = 2/3, 4/3, 8/3, 10/3, 14/3, 16/3, 20/3, 22/3, 26/3, 28/3

and
b = a, a − 2, a − 4, · · · > 0.

The figure shows that this rectangular discretization computes the first 8 eigenvalues
to about 4 digits of accuracy. So far as we know, discretizations of this kind have not
been considered before for eigenvalue problems, and we hope to present them more
fully, and improve them, in a future publication.

5 Discussion

The most robust discretizations of differential equation eigenvalue problems, and
the ones with the strongest theoretical support, often involve square matrices, espe-
cially in the self-adjoint case. The theory of finite element methods has brought such
discretizations to an advanced state.

For some problems, however, whether because of irregular geometry, nonself-
adjointness, or the presence of singularities, a good square matrix discretization may
not be readily available. The aim of this paper has been to show that in such cases
rectangular matrices may offer an eminently practical alternative, often making pos-
sible high accuracy solutions with a global representation (hence perfectly smooth in
the interior, and very fast to evaluate). We make no claim of guaranteed success, and
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indeed, in most of our experiments, which are based on new kinds of discretizations
with little previous literature, it has been necessary to try several parameter choices
to get good accuracy and avoid spurious modes. With further work, more may be
learned about these matters and rectangular eigenvalue methods may be developed
with guarantees of robustness and accuracy. These methods are easy and flexible and
deserve ongoing attention.
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