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FEATURES 49

Notes of a Numerical Analyst

What’s the degree of xn?

NICK TREFETHEN FRS

The degree of xn , of course, is n. But computational
mathematicians keep running up against the fact
that its e�ective degree on a real interval, as de�ned
by approximations, is only O (

√
n ) as n → ∞. This

e�ect was made precise in a 1976 paper by Newman
and Rivlin [3], and another treatment has been sent
to me by Nicholas Marshall and Vladimir Rokhlin
(unpublished).

Figure 1. The Chebyshev polynomial Tn (2x − 1) and
the monomial xn for n = 32, both considered on
[0,1]. The �rst has degree n by any measure, but
xn has e�ective degree only O (

√
n ).

For example, in the Chebfun system for numerical
computing with functions, a function f is
approximated to about 15-digit accuracy by
polynomials expressed as Chebyshev series (after
transplantation of the interval of interest to [−1,1]).
The function e x on [0,1] becomes a polynomial of
degree 12. For xn , the Chebfun degree is equal to n
up to n = 26, but after this it is smaller, approximately
5
√
n. For n = 64, 256 and 1024, the degrees are 43,

90 and 177.

Intuitively, what’s going on is that on [0,1], all
high powers of x look the same, so that in the
set {1,x , . . . ,xn}, the higher powers can be well
approximated by lower ones. The �ip side of this
observation is the phenomenon that to expand a
more general degree n polynomial in this basis, you
may need huge coe�cients, potentially of sizeO (C n)
with C as large as 3 + 2

√
2 ≈ 5.8. In particular this

is true for the transplanted Chebyshev polynomial
Tn (2x − 1) shown in Figure 1 for n = 32. It is of
degree n by any measure; it cannot be approximated

by lower degree polynomials. However, its leading
coe�cient when expanded in the basis {1,x , . . . ,xn}
is 1

24
n , and its largest coe�cient in this expansion is

even bigger.

To cook up even worse bases, we need look no
further than the Müntz approximation theorem [1].
This theorem asserts that a necessary and su�cient
condition for an in�nite set of monomials xUk with
unbounded exponents 0 = a1 < a2 < a3 < · · · to be
dense in C ( [0,1]) is

∞∑
k=1

1
Uk

= ∞.

For example, the set {1,x2,x4, . . . } is dense in
C ( [0,1]). Now, suppose you want to approximate
the function f (x) = x on [0,1] in this basis to 6-digit
accuracy. This is equivalent to the classic problem of
polynomial approximation of |x | on [−1,1]. It turns
out you’ll need 140,000 terms in the series, with
coe�cients as large as 10100,000.

The e�ective rational as opposed to polynomial
degree of xn is much less than O (

√
n ): just

O (1), for the best rational approximants converge
exponentially. But that is another story [2].
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