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Abstract. In this short, conceptual paper we observe that closely related mathematics applies in
four contexts with disparate literatures: (1) sigmoidal and RBF approximation of smooth
functions, (2) rational approximation of analytic functions with singularities, (3) hp-mesh
refinement for solution of PDEs, and (4) double exponential (DE) and generalized Gauss
quadrature. The relationships start from the change of variables s = log(x), and they
suggest possibilities for new analyses and new methods in several areas. Concerning (2)
and (3), we show that both problems feature the same effect of ``linear tapering"" near the
singularity---of clustered poles in rational approximation and of polynomial orders in hp-
mesh refinement. Concerning (4), we note that the tapering effect appears here too, and
that the change of variables interpretation sheds new light on why the DE and generalized
Gauss methods are effective at integrating arbitrary singularities.
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1. Introduction. A longstanding theme in numerical computation is the effective
treatment of singularities. In approximation theory, it is known that any branch
point singularity can be approximated by rational functions with root-exponential
convergence (i.e., convergence at a rate O(exp( - C

\surd 
n )) for some C > 0, where n is

the degree of the rational function), provided the poles are exponentially clustered
near the singularity. The first observation of this paper is that the mathematics of
this effect is the same as that of a seemingly very different well-known phenomenon:
that smooth functions can be approximated with great efficiency by translates of
a fixed smooth function such as a sigmoid or a radial basis function (RBF). This
equivalence is the subject of section 2, where we give references about root-exponential
convergence and consider implications for both rational approximation and smooth
approximation by sigmoids, and of section 6, where we generalize sigmoids to RBFs.

Section 3 turns to another relationship: between approximation of singularities
by rational functions and resolution of singularities (typically at corners) in hp-mesh
refinement in the finite element method (hp-FEM). Recently it has been recognized
that best and near-best rational approximations exploit a ``linear tapering"" effect, in
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which poles are exponentially clustered near singularities with a density that tapers
off linearly on a log scale [42]. In section 3 we show that this linear tapering appears
for the same reason that hp- rather than just h-mesh refinement is advantageous in
FEM calculations. The tapering is linear in both cases (in a 1D setting), and brings
a factor of 2 improvement over nontapered distributions. These observations lead to
the suggestion of an alternative method of hp-mesh refinement that should achieve
the same asymptotically optimal convergence rate.

We then go on to consider further aspects of the exponential resolution of singu-
larities. Section 4 discusses quadrature formulas designed for efficient integration of
functions with endpoint singularities, in particular the double exponential (DE) and
generalized Gauss methods. In both cases, tapered exponential clustering is seen, and
our analysis sheds a new light on why this happens and why both of these quadrature
methods are effective at treating a range of singularities all at once, and not just a
single targeted singularity such as x\alpha .

The significance of the change of variables s = log(x) is not just algebraic. Sec-
tion 5 explores its physical interpretation, showing how multiscale separation of scales
in the x variable is equivalent to the effect of exponential decay of influences along
channels for elliptic PDEs.

The aim of this paper is to point out new relationships and to suggest new explo-
rations. With the change of variables s = log(x), multiscale analysis becomes transla-
tion. Rational approximation, adaptive mesh refinement, and numerical quadrature
may all benefit from a consideration of the implications of this relationship.

2. Sigmoids \updownarrow Rational Approximation. An important result of rational ap-
proximation theory, which sets it far apart from polynomial approximation, is that
functions with branch point singularities can be approximated with root-exponential
convergence. For example, consider

(2.1) f(x) =
\surd 
x, x \in [0, 1].

Since Donald Newman in 1964 [30] it has been known that there are degree n rational
functions

(2.2) rn(x) = a0 +

n\sum 
k=1

ak
1 + x/\varepsilon k

, ak \in \BbbR , \varepsilon k > 0,

such that

(2.3) \| f  - rn\| = O(exp( - C
\surd 
n )), C > 0,

where \| \cdot \| is the supremum norm on [0, 1]. What makes this root-exponential conver-
gence possible is that the poles \{  - \varepsilon k\} are exponentially clustered near the singularity
at x = 0. This effect and the estimate (2.3) apply at any branch point singular-
ity [16, 21, 42] of a real or complex function and are the basis of ``lightning PDE
solvers"" for the Laplace, biharmonic, and Helmholtz equations in domains with cor-
ners [1, 6, 16, 17, 43]. For a specific result spelling out some of the generality of the
root-exponential convergence phenomenon, see Theorem 2.3 of [16]. Figure 1 illus-
trates root-exponential convergence and exponential clustering for this model problem.

The function 1/(1 + x/\varepsilon k) of (2.2) is monotonically decreasing for x \in [0, 1] and
takes values \approx 1 for x \ll \varepsilon k and \approx 0 for x \gg \varepsilon k. If we introduce the change of variables

(2.4) s = log(x) \in [ - \infty , 0], x = es \in [0, 1],
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Fig. 1 Root-exponential convergence ( left, 0 \leq n \leq 20) and exponential clustering of poles near
0 in ( - \infty , 0) (right, n = 20) for degree n minimax rational approximation of f(x) =

\surd 
x

on [0, 1]. Note that the horizontal axis in the first plot is
\surd 
n. These effects generalize to

rational approximation at any branch point singularity.

then this function is transformed into

(2.5)
1

1 + es/\varepsilon k
=

1

1 + es - sk
,

where sk = log \varepsilon k. This function, or more properly its flipped form 1/(1+esk - s) with
s  - sk replaced by sk  - s, is the most basic example of a sigmoid function, known
as the logistic function. In physics it goes by the name of the Fermi or Fermi--Dirac
function, and it is an elementary transformation of the hyperbolic tangent. Functions
of this kind are prototypical activation functions in neural networks, and the literature
of this area is vast [8, 14, 22, 25, 32]. (We make no claim here to significant links
with neural networks and machine learning, since the approximations of this paper are
univariate, noise-free, and involve just a single hidden layer rather than a composition
of several layers.)

With the change of variables (2.4), we may follow (2.1) and (2.2) to define

(2.6) F (s) = f(x) = es/2

and

(2.7) Rn(s) = rn(x) = a0 +

n\sum 
k=1

ak
1 + es - sk

.

Equation (2.3) then implies that there are approximations (2.7) such that

(2.8) \| F  - Rn\| = O(exp( - C
\surd 
n )), C > 0,

where \| \cdot \| is now the supremum norm on [ - \infty , 0]. Equation (2.8) is nothing more
than a claim about root-exponential approximation of a smooth function on [ - \infty , 0]
by linear combinations of translates of a standard smooth function, plus a constant.
Following results such as those of [11], this could be proved directly in this setting
rather than in the setting of rational functions, where the standard proof technique is
the relatively advanced Hermite contour integral formula [41]. The root-exponential
rate results from balancing discretization errors associated with separations \Delta sk =
O(1/

\surd 
n ) against truncation errors associated with a grid extent smin = min sk =

O(
\surd 
n ) [21]. Figure 2 illustrates the smooth functions in question for the problem of

Figure 1.
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Fig. 2 In the s = log(x) variable, the exponentially clustered poles of Figure 1 become sigmoid
functions (2.5) translated to various center points sk. Root-exponential convergence of ratio-
nal approximations becomes a statement about approximation of smooth functions by linear
combinations of translates of a fixed smooth function.

To summarize this section: with the change of variables s = log(x), the approxi-
mation of a smooth function by linear combinations of translates of a logistic function
becomes equivalent to the approximation of a function with a branch point singularity
by rational functions with exponentially clustered poles.

3. Rational Approximation \updownarrow \bfith \bfitp -mesh Refinement. Rational approximation
with poles exponentially clustered near singularities seems akin to the resolution of
functions near singularities by piecewise polynomials on exponentially refined meshes.
Such techniques of mesh refinement are well known in the literature of the FEM and
associated approximation theory [9, 19, 20, 26, 34, 35].

Exponential clustering of poles is reflected in the approximately uniform spacing
on the semilogx scale in the right image of Figure 1 or, equivalently, the approximately
uniform spacing of the sigmoid functions (2.5) in Figure 2. However, it is notable that
in both of these images the spacing is only approximately uniform, growing sparser
toward the left. This is the phenomenon of tapered exponential clustering investigated
in [42]. Quantitatively, one finds that the density of poles with respect to the s variable
decreases linearly as s decreases to some value smin . This distribution brings a factor
of 2 improvement in convergence rate as a function of n---because a uniform density
would have the same convergence rate but twice as many poles. (The more local
sparsification in the rightmost few points of Figures 1 and 2 is investigated in [21]
with an appeal to the asymptotic results of Stahl [36].)

Comparison reveals that this tapered exponential clustering corresponds closely
to what is known as hp-mesh refinement (h stands for grid spacing, p for order of
approximation). In particular, the standard hp-mesh refinement formula in one di-
mension has the same linear pattern described above, with polynomial order taking
the role of pole density on the logarithmic scale. A singular function such as

\surd 
x

on [0, 1] is approximated by piecewise polynomials on intervals of lengths decreasing
exponentially toward the singularity, with polynomial representations of linearly de-
creasing degrees . . . , 3, 2, 1, 0. It is the same pattern, and it brings the same factor of
2 speedup for the same reason.

One can explain linear tapering for hp-FEM in various ways in various settings.
In [42] an argument is given based on potential theory. Here is an outline of the
simpler argument that originates with DeVore and Scherer [9, 34] in the study of
piecewise polynomial approximations of x\alpha on exponentially graded meshes on [0, 1].
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For precise statements, see Theorem 1 of [9] and Theorem 3 of [34]. These authors
started from the consideration of a type of spline approximation with free knots and
showed that exponential clustering of knots was the optimal strategy. We speak for
simplicity in terms of mesh refinement by factors of 1/2, though the optimal factor
is actually (

\surd 
2  - 1)2 \approx 0.172. We show the reasoning for

\surd 
x, though the same

argument (with different constants) applies to x\alpha for any positive noninteger \alpha . The
observations of DeVore and Scherer were generalized to ODE and PDE discretizations
a few years later by Babu\v ska and his collaborators [19, 20]. In multiple dimensions,
the details change.

1. Approximation of
\surd 
x on [1/2, 1] is the same as approximation of

\surd 
2x on

[1/4, 1/2].
2. Therefore, approximation of

\surd 
x on [1/4, 1/2] is the same problem too, but

with an accuracy criterion loosened by a factor
\surd 
2.

3. Functions like these, bounded away from singularities, can be approximated
by polynomials with exponential convergence.

4. Therefore, that loosening by the factor
\surd 
2 allows one to lower the degree of

the polynomial by a constant increment and still obtain the same accuracy.
5. Repeat on [1/8, 1/4], [1/16, 1/8], . . . .

Note that if we skipped step 4 and fixed the same polynomial degree on all
intervals, the same overall accuracy would still be achieved but in an unbalanced
manner, with errors on [1/2, 1] dominating those on the other subintervals. The
number of free parameters would approximately double.

To summarize this section: the standard formula for hp-mesh refinement in 1D
involves a linear decrease of the polynomial degree toward the singularity, and this
corresponds to the linear decrease of the pole density on a logarithmic scale in tapered
exponential clustering of poles in rational approximation, resulting in the same factor-
of-2 speedup.

The link with rational functions highlights that the standard hp-mesh refinement
strategy is not the only way to achieve linear tapering. An alternative would be to
hold the polynomial degree p fixed and instead refine h superexponentially at the
singularity. We do not know whether such a prescription has been used in finite
element calculations.

There are many other aspects of approximation theory that might be related to
this discussion. For example, Saff and coauthors showed the existence of polynomial
approximations that are exponentially good everywhere on a domain except near
singularities [23, 33]. There is an extensive literature of methods for ``overcoming the
Gibbs phenomenon,"" typically at points where f is discontinuous, which often start
from a Fourier representation that is then enhanced by nonlinear postprocessing [10,
18, 38]. There are also situations, arising, for example, in certain PDE problems on
domains with edges or corners, where the function to be approximated is unbounded.
Singularities are ubiquitous in computational mathematics, and many methods have
been advanced to treat them.

4. Double Exponential and Generalized Gauss Quadrature. In the area of
quadrature or numerical integration, many methods have been developed for dealing
with singularities. When a fixed endpoint singularity like x\alpha is known, a targeted
quadrature formula can be derived: the prototype is a Gauss--Jacobi formula. For
dealing with more complicated, mixed, or unknown singularities, however, more gen-
eral techniques have been proposed. One is double exponential or tanh-sinh quadra-
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Fig. 3 Nodes of a double exponential quadrature formula with standard parameters, showing tapered
exponential clustering near a singularity. (Figure adapted from Figure 13 of [42].)

ture [2, 29, 39]. As illustrated in Figure 3, the tanh-sinh formula with standard
parameter choices produces a tapered exponentially clustered distribution of quadra-
ture points. This figure is adapted from Figure 13 of [42], where full details can
be found. Such results indicate that DE quadrature is probably related to what is
seen with rational approximation and hp-mesh refinement, but as far as we know, no
analysis of this effect has yet been carried out.

Kirill Serkh (private communication) has shown us that similar effects also arise
with generalized Gauss and universal quadrature formulas [4, 5]. These are quadra-
ture formulas that are constructed by linear algebra methods related to Gauss quadra-
ture so as to be efficient at integrating not just a single singularity such as a fixed
power x\alpha , but also a range of singularities such as x\alpha , \alpha \in [0, 1]. Again it appears
that in important cases, the nodes are exponentially clustered near the singularity
with a tapered distribution. The arguments of this paper reveal that the ability of a
single such formula to handle a wide range of singularities is related to the ability of
a fixed set of exponentially clustered poles for a rational function to resolve arbitrary
branch point singularities [16, 21, 42].

In a similar vein one can compute Gaussian quadrature rules for spaces of ra-
tional functions with fixed clustered poles, such as those in Figure 1, using, for ex-
ample, the algorithm for rational quadrature of Gautschi [13]. One again observes
root-exponential convergence and, by now unsurprisingly, an exponential distribution
of the quadrature points with linear tapering. The difference between DE and the
Gaussian rules is that the former is optimized by tuning parameters, whereas Gaussian
quadratures are inherently optimal or optimized by linear algebra calculations---yet
both lead to similar distributions.

5. The Physics of \bfits = log(\bfitx ): Separation of Scales. The change of variables
s = log(x) is not just an algebraic trick. It also has a physical interpretation alluded
to in section 5 of [42]; see, for example, Figure 11 of that paper.

Even before introducing the change of variables, the point can be seen in the
x variable. The function 1/(1 + x/\varepsilon k), with its pole at distance \varepsilon k to the left of
x = 0, is essentially constant and hence inactive to the right of x = 0 for x \ll \varepsilon k
(taking the value 1) and x \gg \varepsilon k (taking the value 0). It is only for x \approx \varepsilon k that
this function is active. Thus, exponentially separated poles \{  - \varepsilon k\} \subseteq ( - \infty , 0) are
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Fig. 4 Sketch of the `` physics"" of the change of variables s = log(x). This is a conformal map
of the upper half x-plane to an infinite strip in the s-plane, with poles  - \varepsilon k and sample
locations \varepsilon k on exponentially separated scales mapping to poles sk +\pi i and sample locations
sk on opposite sides of the strip. The well-known exponential decay of influences along strips
explains why a pole at sk + \pi i has a significant effect at sk but a much smaller effect at a
different point sj with | sj  - sk| \gg 1.

physically decoupled, operating in independent regimes, with each pole at  - \varepsilon k < 0
affecting the approximation on (0,\infty ) nontrivially only for x \approx \varepsilon k.

The change of variables s = log(x) suggests a physical explanation of this sepa-
ration of scales effect. A problem with a singularity at x = 0 can be motivated as
a model of a corner singularity in a PDE problem. Specifically, suppose a Laplace
problem is posed in the upper half complex x-plane with a singularity at x = 0.
Changing to s = log(x) transplants this problem to the infinite strip 0 < Ims < \pi in
the s-plane. The problem is now smooth, with the singularity moved to  - \infty . Expo-
nentially clustered poles  - \varepsilon k \in ( - \infty , 0) become well-separated poles sk + \pi i on the
upper side of the strip. And now, as sketched in Figure 4, it is a well-known effect
of potential theory (or elasticity, where it is called the Saint-Venant principle [40])
that influences decay exponentially with distance along a strip. In the field of nu-
merical conformal mapping, this goes by the name of the crowding phenomenon; see
Theorems 2--5 of [15].

The argument made above is tied to the Laplace equation, whose solutions are
conformally invariant. However, the essence of the matter will be the same for any
problem whose highest order derivative is the Laplacian, because close to a singularity,
this term will dominate. With the Helmholtz equation \Delta u + k2u = 0, for example,
the influence of the k2u term quickly shuts off to zero relative to that of the \Delta u term
as one comes exponentially close to a corner [17].

6. Radial Basis Functions and Other Activation Functions. A rational func-
tion r(x) as in (2.2) is a sum of simple poles, which in the s variable becomes a linear
combination of sigmoids as in Figure 2. The picture changes little for other activa-
tion functions. For example, if the poles (x + \varepsilon k)

 - 1 in (2.2) are replaced by powers
(x+ \varepsilon k)

 - a for an arbitrary a > 0, Figure 2 does not change very much. This echoes
theoretical and experimental results in neural networks, where choices between acti-
vation functions are typically based more on the efficiency of optimization algorithms
such as stochastic gradient descent than on approximation power.

As many authors have noted, a closely related topic is that of approximation by
radial basis functions (RBFs). Here again one approximates a complicated function
by a linear combination of translates of a simple fixed function, and convergence may
be very fast when the latter is smooth [7, 11, 12, 27, 28, 31]. For a specific result, see
Theorem 4.1 of [28]. To illustrate the application of the duality between x \in [0, 1]
and s \in [ - \infty , 0] to RBFs, Figure 5 constructs approximations to

\surd 
x on [0, 1] in the
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Fig. 5 Curves as in Figures 1 and 2 for the approximation of
\surd 
x for x \in [0, 1]. The approximating

functions are transplants to x \in [0, 1] of Gaussians exp( - (s  - sk)
2) for s \in [ - \infty , 0], with

the centers sk distributed in a tapered manner as specified in (6.1). Clean root-exponential
resolution of the singularity is observed.

form of transplants to x \in [0, 1] of Gaussians exp( - (s  - sk)
2) for s \in [ - \infty , 0]. The

centers sk are spaced in a tapered manner following the formula

(6.1) sk = log 2 + 3(
\surd 
k  - 

\surd 
n ), 1 \leq k \leq n,

as is shown for the case n = 20 in the right-hand image. Approximation is carried
out by linear least-squares fitting in the x variable in [0, 1] in 2000 sample points
logarithmically spaced from 10 - 12 to 1. The matrix involved is of dimensions 2000\times 
(n + 1) since a column is included to include constant functions in the fitting space
as in (2.2). Clean root-exponential convergence is observed for this very nonstandard
system of basis functions near a singularity.

As mentioned in section 2, although sigmoidal and other activation functions are
important in neural networks and deep learning, the present paper touches only the
surface of that discipline. The approximation (2.7) is not composite, but involves only
what is conventionally called a single hidden layer. Smooth activation functions have
accuracy advantages for single-layer approximation, but in the multilayer setting of
deep learning, that advantage diminishes and the simpler nonsmooth function known
as ReLU is used more often [25, 37]. We cannot resist mentioning that the univer-
sal approximation power of ReLU units was exploited by Henri Lebesgue at age 23
in his first published paper, in which he presented a new proof of the Weierstrass
approximation theorem [24].

7. Conclusion. This paper started from a fundamental equivalence:

(\ast ) The change of variables s = log(x) gives an equivalence between
smooth approximation for s \in [ - \infty , 0] and approximation with a singu-
larity at x = 0 for x \in [0, 1].

Considering this relationship in various contexts has led us to a number of observations
and proposals.

1. Rational approximation near singularities and smooth sigmoidal approxima-
tion. In the simplest case, (\ast ) gives an equivalence between rational approximation
of x\alpha and other functions with branch point singularities on [0, 1] and approximation
of smooth functions rapidly approaching a constant as s \rightarrow  - \infty on [ - \infty , 0] by linear
combinations of translates of a smooth sigmoidal function (Figure 1). The litera-
tures of these fields are largely disjoint, and this connection opens up the prospect
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that techniques used in one area, such as the Hermite contour integral in rational
approximation, could be applied to obtain new results in the other.

2. The ``tapering"" effect in rational approximation is the same as the `` p"" part
of hp-FEM. hp-mesh refinement dates back 40 years, whereas recognition of tapered
exponential clustering of poles in rational approximation is recent [42]. We have
shown that the mechanisms behind these effects are the same, and that, in particular,
each brings a factor-of-2 speedup (in 1D) for the same reason (Figures 1 and 2).
This analysis of the source of the factor of 2 reveals that other strategies of hp-
FEM should be able to achieve the same optimal asymptotic convergence rate. In
particular, instead of regular exponential mesh refinement combined with linearly
tapered polynomial order, one could use fixed polynomial order combined with a
tapered schedule of exponential refinement.

3. Multiscale separation of scales at a singularity can be interpreted as the Saint-
Venant or ``crowding"" phenomenon of elliptic PDEs (Figure 4). Two points at dis-
tances 10 - 10 and 10 - 5 from a corner singularity may seem to be close together, for
example, but in fact they are only weakly coupled in the same way as the points
s = log(10 - 10) \approx  - 23.0 and s = log(10 - 5) \approx  - 11.5 on the side of an infinite strip of
width \pi (Figure 4).

4. Singularities can be approximated with root-exponential convergence by many
different kinds of exponentially clustered RBFs. Sigmoid functions are the archetype,
corresponding to poles 1/(x  - xj) of a rational function, but as shown in section 6,
other smooth functions of s correspond to other singular functions of x, and the
approximation powers are comparable (Figure 5).

5. DE and generalized Gauss quadrature. Quadrature of functions with endpoint
singularities can exploit the same principles of tapered exponential clustering and
insensitivity to the precise nature of a branch point singularity (Figure 3).

Our arguments have been univariate, whereas both approximation and solution
of PDEs are also important problems in multiple dimensions. In the case of PDEs,
this side of the subject is highly developed, and it would be interesting to see whether
results in this area could be transferred to new ideas for multivariate rational or
related approximation. Conversely, one approach to the use of rational functions for
multivariate approximation is presented in [3].

Acknowledgment. We are grateful to Kirill Serkh of the University of Toronto
for showing us the tapered exponentially clustered nodes of generalized Gauss and
universal quadrature formulas.
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