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contour integrals via
trapezoid rule

Exponential accuracy of trapezoid
rule for analytic functions

Periodic interval
Poisson 1826, Davis 1959

Real line
Turing 1943, Goodwin 1949,
Martensen 1968, Stenger 1981

Circle
Davis 1959

(trap. rule after change of variables)

Inverse Laplace
transform contour
Talbot 1979, Weideman 2005

error e −2πa /Δx



rational
approximation

In complex analysis a particular
interest is Cauchy integrals

where  C encloses a 

where  C encloses spec(A ).  

, or for a matrix or operator,

Use of a quadrature formula such
as the trapezoid rule turns these into rational approximations:

← resolvent
integral

r(a) r(A)



A special case of a Cauchy integral is the
inverse Laplace transform eA of ( z −A )−1 :

This formula is valid
if A  is a matrix or
hermitian operator
with spectrum  ≤ 0 .
Generalizations e.g.
to sectorial operators.

>

<

C winds around ( −∞, 0]

This talk is about this and similar problems
with  ez or  etz in the integrand, for which
we consider two types of numerical method:

TW = Talbot/Weideman based on quadrature
formulas on contour

CMV = Cody-Meinardus-Varga based on best approximation
of  ez on  ( −∞, 0]

“Bromwich integral”
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Plan for the rest of the talk:
(1) Describe and compare TW contours vs. CMV best approxs.
(2) Show a couple of computed examples

and similar integrals



TALBOT-WEIDEMAN COTANGENT CONTOUR

Talbot (1979) proposed transplanting the trap. rule from [−π,π]:

Weideman (2005) optimized the parameters:

with the exponential convergence rate

Error  ≈ e −1.36N  ≈ 3.89−N



Weideman has also found an optimal PARABOLIC CONTOUR

with convergence rate

Error  ≈ e−1.05N  ≈ 2.85−N

and an optimal HYPERBOLIC CONTOUR

with convergence rate

Error  ≈ e−1.16N  ≈ 3.20−N

These formulas are again written for  θ ∈ [−π,π].  
(Artificial periodicity: exponentially small

integrand at  |θ| ≈ π.) 

cf. Sheen & Sloan & Thomée 03
López-Fernández & Palencia 04

López-Fernández & Palencia & Schädle 05
McLean & Thomée 04

cf. Sheen & Sloan & Thomée 99
Gavrilyuk & Makarov 01



INTERPRETATION AS RATIONAL
APPROXIMATIONS TO  ez

type (N −1, N ) rational    approximation to  ez
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USE OF  BEST APPROXIMATIONS ON  (−∞,0]

Instead of obtaining rational approximants implicitly from 
quadrature formulas, we could construct them directly.

Cody, Meinardus & Varga (1969) made famous the problem of 
best approximation of  ez in the sup-norm on  (−∞,0].

Here the convergence rate is famous:

Notice this is around twice as fast
as for the quadrature methods.

Error  ≈ e−2.2288N  ≈ 9.28903−N

Gonchar & Rakhmanov 1987

Aptekarev, Magnus, Saff, Stahl, Totik, …



machine epsilon

In practice we can compute these approximants effortlessly with
CF = Carathéodory-Fejér approximation, based on SVD of
Hankel matrix of transplanted Chebyshev coefficients.

expx_cf.m

Some CMV best
approximation
error curves
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SUMMARY OF THE TWO APPROACHES

Given: inverse Laplace integral

( C winds around ( −∞, 0]  )

(1) Deform  C to contour  Γ
(2) Evaluate integral by quadrature

formula (typically trapezoid rule 
after change of variables)

(3) Interpret this as evaluation by 
residues of a contour integral 
involving a rational function r (z )

Quadrature contours (“TW”)

(1) Replace ez by r (z )
(2) Deform  C to contour  Γ

enclosing poles
(3) Evaluate integral by residue 

calculus

Best approximation (“CMV”)



EXAMPLES
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Recall:

Here are some references for these five applications:



Luke 69
Talbot 79
Temme 96

Gil & Segura & Temme 02

Schmelzer 05

Gallopoulos & Saad 89, 92

Sidje 98
Kellems 05

Lu 98

Gavrilyuk & Makarov 01
Sheen & Sloan & Thomée 99 & 03

Mclean & Thomée 04
López-Fernández & Palencia 04

Varga 61
Cody & Meinardus & Varga 69

Cavendish & Culham & Varga 84
Gallopoulos & Saad 89, 92

Kassam & T. 03 Lu 05

TW = quadrature
over contours

CMV = best approximation
on  (−∞, 0]

Laplace transforms
& special functions

matrix exponential
(eA or eAv )

parabolic PDE

stiff nonlinear PDE
Krylov subspace its.

+ related work by Baldwin, Calvetti, Druskin, Eiermann,
Freund, Hochbruck, Knizhnerman, Krogstad, Lubich, Minchev,

Moret, Novarti, Ostermann, Reichel, Sadkane, Schädle,
Sorensen, Tuckerman, Tal-Ezer, Wright…



SPECIAL
FUNCTIONS

computational
applications

MATRIX
EXPONENTIAL

PARABOLIC
PDE

KRYLOV
SUBSPACE

ITERATIONS

STIFF
NONLINEAR

PDE

gamma_talbot
gamma_cmv

frag



IN CONCLUSION

Rational approximations, quadrature formulas, the 
complex plane… these sound old-fashioned!

But they are still the basis of some of
the most powerful algorithms.
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