TEN DIGIT ALGORITHMS
Lloyd N. Trefethen
Oxford University Computing Laboratory

1.  INTRODUCTION
For twenty-five years I have been developing numerical algorithms, teaching numerical analysis courses, and helping people solve numerical problems at Stanford, NYU, MIT, Cornell, and Oxford.  This proposal is an outgrowth of that experience.  Of course, any ideas related to computing must germinate in a changing world.  During my quarter-century we have seen the arrival of workstations and laptops, of ubiquitous graphics and visualization, of the World Wide Web, and of MATLAB and Maple and Mathematica; also the decline of numerical software libraries and an astonishing increase in the speed of everything we do. 

Over the years perhaps a thousand people have come to me for numerical advice.  On half of these occasions, inevitably, I have little to contribute.  As for the other half, however, it is remarkable how often the customer and I end up sitting down at the computer together and getting good numbers at surprisingly high speed.  That experience motivates this essay.  So does my experience in teaching.  Since arriving at Oxford in 1997, I have adopted the habit of including an online demonstration in each lecture.  I hand out hardcopies of the code for the students to look at as we go, and it is a matter of pride that the listing always fits on one page.  Of course, the program is also made available electronically, so they can download it later as a template for their own work.
A view has come into focus for me of a kind of computing which I summarize by the notion of a “ten digit algorithm”.  I believe that ten digit algorithms can be useful for education, for communication, and for research.  Many of the programs I’ve written in recent years are in this mode, and if you spend your time computing with numbers, I urge you too to make ten digit algorithms a part of your operating practice.
2.  THE DEFINITION
Ten digits,
Five seconds,
And just one page.
A ten digit algorithm is a little gem of a program to compute something numerical.  The jingle summarizes the three defining conditions.  The program can be at most one page long, and it has to solve your problem to at least ten digits of accuracy on your machine in less than five seconds.

For me, the programs are usually in MATLAB, but this is not part of the definition.  Maple and Mathematica, for example, are impressive alternatives. 
Strictly speaking, the term “ten digit program” might be more correct.  I chose “algorithm” because it is more interesting and serves as a reminder that although all aspects of a code are important, the preeminent one is the underlying numerical method.  
Of course, the three conditions are artificial, at least in their precise formulation if not in their general idea.  But I do not think this must count against them.  After all, the net in tennis is artificial, as are the days of the week and the convention that a sonnet has 14 lines.  Nevertheless, such constraints can guide our activities in fruitful ways.

3.  WHY FIVE SECONDS?

In computing with humans, response time is everything.  If a program runs in less than five seconds, its author will effortlessly adjust, improve, and experiment.  The process of scientific exploration becomes interactive and pleasurable.  If the program runs for a minute or an hour, on the other hand, it is a very different situation from the human point of view.  Of course, for some problems that’s unavoidable, but one’s likelihood of getting the science right falls quickly as one loses the ability to steer the computation on a human time scale.  I’ve seen this over and over again.  Visitors to my office who can’t run their programs fast often get numbers they aren’t sure of, and numbers you aren’t sure of are often wrong.
Many people believe that only “toy” problems can be solved in five seconds.  Indeed, this is the more or less universal objection I encounter when I first tell people about ten digit algorithms.  But I think it is mistaken.  Of course, there are many large-scale computations that will eventually have to be carried out in “production mode”, but the fact is, that is just a small part of the story of how numerical programmers can and should spend their time.  First of all, many computational problems can be solved without any of that kind of computing.   Secondly, even if production mode will be needed for the final results, it does not follow that the programmer doing the development should spend most of his or her development hours in this mode.  I’ve seen vast amounts of time wasted in that fashion. 
We can put it this way.  Maybe 90% or even 99% of numerical machine cycles are destined to be spent in big production runs.  From the programmer’s point of view, nevertheless, 90% of the jobs that get run should be quick ones.
Five seconds is not an absolute criterion; its significance changes as machines advance.  This is intentional.  Computing is a human activity, and the point is to keep humans in the loop.

4.  WHY ONE PAGE?

Again it’s a matter of linking to people.  A code less than a page long can be read and studied.  I am convinced that for a good fraction of problems, studying the code is feasible and valuable.  And of course, a code that you study is one that you polish and perfect.  Print out a copy, step away from your computer, and grab a red pen!  The moment the listing spills onto page 2, the chance that you will look at it carefully cuts in half.
The matter of communication is overwhelmingly important.  It is often said that there are three kinds of science: theory, experiment, and computation.  Analogously, there are four kinds of scientific communication: words, figures, mathematics, and programs.  If you rely on the first three alone, you are handicapped.  For communicating algorithmic ideas, nothing can touch a short program in its precision and conciseness.  If you are like me, you have wasted exasperating hours studying journal articles, trying to figure out exactly how the author’s algorithm works and what parameter choices he or she prefers, when a short code would have answered these questions immediately.  Code segments appear in rather few journal articles these days, and this is a trend that I hope we can persuade publishers to reverse.
Like “five seconds”, “one page” is not an absolute criterion; its significance varies with the programming language.  The development of high-level languages like MATLAB has enabled us to do more than was possible with Fortran or C.  Thanks to these high-level languages, there is not much need any more to communicate with the old tools of flow charts and pseudocodes.  We can use the executable language directly.
5.  WHY TEN DIGITS?

The reasoning here is different.  It’s a matter of linking not to humans, but to the physical world.
To oversimplify a bit, there are two kinds of accuracy.  Engineering accuracy means two or three digits.  This is generally ample for the end user like the designer of a bridge or an airplane or a medical trial or an evaluation scheme for pricing financial options.  Getting more than two or three digits for end-user applications will typically be impossible, because the problem is too complex, and meaningless, since it is not defined precisely enough.

Scientific accuracy, by contrast, means five or ten digits.  This is what one aims for in solving fundamental problems upon which other ideas or computations will be built.  For example, the flow of air over a Boeing 767 is an engineering application, but the flow through an infinite idealized circular pipe is a scientific application.  Computing the natural frequencies of a symphony orchestra kettledrum is an engineering problem, but computing the eigenvalues of an L-shaped region is scientific.  One’s expectations can and should be different.

In physics, almost nothing is known to more than 10 digits.  We know the gravitational constant to about 5 digits, Planck’s constant to about 7, the speed of light to 8 or 9.  These precisions are not increasing very fast.  In twenty years our computers will be a million times more powerful, but physics will still not know much to more than 10 digits.

Ten digits is very different from three in the type of thinking and algorithms it forces upon you.  To get ten digits of accuracy in five seconds of computing, you have to have really “nailed” your problem, and in particular, to have worked around any singularities it may have.  It’s a challenging and exciting type of computing.
6.  CHALLENGE AND ENJOYMENT

This brings me to a key feature of ten digit algorithms.  Ten digits, five seconds, one page — this is a challenge!  By struggling to meet the challenge, we sharpen and improve our ideas and our codes.  This is the best possible route to understanding a problem, and besides, it’s fun.  Computing is one of the highest creative activities that humans indulge in, and it should be fun.  How else to induce people to engage their imaginations at the highest level?
7.  MUST A TEN DIGIT ALGORITHM BE EASILY READABLE?

The one-page restriction is designed to encourage gems of programming, and one would hope that a ten digit algorithm will be as clear and easy to read as possible.  Certainly one hopes for attractive structure and for useful, well laid-out comments.  Nevertheless, readability is not one of the defining conditions of a ten digit algorithm, for in the end, power is more important.  Think of the analogy of poetry.  Poems are gems of verbal expression.  Some can be read and appreciated instantly, and that is a wonderful thing.  Nevertheless, nobody would say that immediate accessibility is a requirement of a good poem.  On the contrary, what matters is that it repay repeated reading and reflection.

8.  SCRIPTS AND SUBROUTINES
Ultimately your program may be turned into a software tool or a production code.  We are concerned here not with that stage, but with the earlier phases of development and exploration. 

There’s a simple principle that makes a big difference to your productivity, and it surprises me how many people don’t use it.  The principle (expressed here in MATLAB terminology) is, when developing a numerical code, always drive your computation through a script.  Give it a short name like p49.m or stokes.m and keep a window on your screen with this file open for editing.  To run it, you just type “p49” or “stokes”.  Everything you need, such as plotting commands, will be in this program, and any detail can be quickly changed without the need for retyping the rest.  Don’t work at the command line!
Of course your code will often be a ten digit algorithm, so you can see most of it at once on the screen and run it over and over again quickly, improving it at every step.  And you can test and test and vary and plot and test and test again.  When things go wrong, you have immediate access to all the variables in your workspace. 

Functions and subroutines are powerful and important.  But these are for operations you’ve finished debugging, black boxes, not for development work.
9.  ACADEMIC NUMERICAL ANALYSIS

Years ago, numerical analysts were the main people trained to solve numerical problems on computers.  Indeed, there was a time when anyone at Oxford who wanted to use the computer had to get permission from Leslie Fox, the Professor of Numerical Analysis!  Since the 1960s, however, computation has spread to all scientists and engineers, and the field of numerical analysis has grown mature and academic.  Most papers published in this field concentrate on advancing some particular algorithm for some particular problem, often by proving a new theorem about convergence or accuracy.  These are genuine advances, a necessary part of our continuing progress into the future, but there is no denying that such papers are of interest mainly to specialists.  Now in part, this specialization of our publications is an inevitable consequence of the maturing of a discipline, but something uninevitable has also happened along the way: many numerical analysts have also grown specialized in their interests and abilities.  If you have a seemingly ordinary enough problem to solve and you ask a numerical analyst for help, too often you’ll go away disappointed.
Imagine if the medical establishment had only specialists, no general practitioners!  I don’t recommend the creation of a new class of GP numerical analysts, but it would be a good thing for our field if each of us developed our “GP side” a little further.  If ten digit algorithms become a familiar signpost, they will encourage that kind of breadth.
10.  PROOFS AND “ENGINEERING PROOFS” 
Roughly speaking, numerical analysts like to establish correctness of a computation by a theorem, whereas practitioners like to do it by numerical tests such as varying parameters to confirm that the computed answer doesn’t change.  There is no doubt that ten digit algorithms have a natural link to this second kind of correctness test, thanks to the five-second condition.  When a program runs fast, you will inevitably run it in various modes and with various parameter choices.  It would be a sloppy person indeed who did not examine the performance of a ten digit algorithm from so many angles as to acquire good confidence in its correctness.  By contrast, even a careful programmer will find it daunting to test a program that runs for hours.
My view is that all people doing numerical computations, including numerical analysts, should routinely perform this kind of testing.  In other words, though there is a place for the theorist who doesn’t compute, there is no place for a computing person who doesn’t check his or her results.  This is a sine qua non.  In addition, since numerical analysis is a branch of mathematics, we can also have recourse to theorems, and the best algorithms will be developed in the light of both practice and theory.
Most ten digit algorithms will contain parameters that have been tuned.  One might decide to use a grid spacing of 1/150 since 1/100 is not good enough, or 60 terms in a series expansion because 50 will not do. The testing that leads to such parameter choices will have been done by the programmer in the course of developing the program, and that is fine.  By the time you show anybody your t.d.a., you will have run it a hundred times in various forms.  Thus there is no requirement that the final ten digit algorithm must explore dependence on parameters or demonstrate that ten digits have been achieved, though in many cases, where time and space permit, you may choose to include such features.

11.  NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 

One of the core methodologies of applied mathematics is asymptotic analysis, a tool that springs from the observation that in many scientific problems, the important phenomena are dominated by a nearby singularity.  By understanding the singular behaviour, one may solve the problem to sufficient accuracy, and even more important, one may understand the scientific essence of the matter.  
Much of numerical analysis has taken more or less the opposite line: singularities and asymptotics are fine in their place, but it is our business to design general tools that do not depend on special features of the problem at hand.
I think ten digit algorithms can help to build a bridge between these two outstandingly successful traditions.  Very often, a certain kind of method proves effective for ten digit algorithms.  This is: eliminate the singularities, then do something relatively simple for the rest of the problem, e.g. involving a least-squares fit with some free expansion parameters.  For conformally mapping a polygon, for example, you don’t always need the Schwarz-Christoffel formula; sometimes you can “roll your own” elementary solution that’s equally effective (see trapmap).  Other t.d.a.’s in this booklet that fit this pattern include two_disks, many_disks, and  jaisson.
12.  IN CONCLUSION

Ten digit algorithms can

· Improve our publications
· Speed up program development

· Make our numerical methods faster
· Make our scientific results more reliable

· Facilitate comparisons of ideas and results

· Add focus to the classroom

· Add zest to our field

The challenge of designing these codes raises our standards and raises our expectations.  It’s good for the academics, and it opens the doors wider to non-academics.  And it’s fun!
The attached examples, 32 M-files from various areas I have been interested in, range from little demonstrators of routine ideas to advanced programs that can compete with any others in their particular domains.  They can be downloaded from my web page at Oxford.  I can’t imagine teaching students about Gauss quadrature any more, say, without sharing with them a code like cheb_vs_gauss.  At the more advanced level, I hope you will agree with me that some of the other programs in this collection solve some very serious computational problems.  If ten digit algorithms are this powerful today, what will they be capable of  tomorrow?
This paper was presented as the A. R. Mitchell Lecture at the 2005 Dundee Biennial Conference on Numerical Analysis, 27 June 2005





PAGE  

