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Gaussian Elimination as an Iterative Algorithm
By Alex Townsend 
and Lloyd N. Trefethen

Gaussian elimination for solving an 
n × n linear system of equations Ax = b is 
the archetypal direct method of numerical 
linear algebra. In this note we point out that 
GE has an iterative side too.

We can’t resist beginning with a curious 
piece of history. The second most famous 
algorithm of numerical linear algebra is 
the conjugate gradient iteration. CG was 
introduced in 1952, but for years was not 
viewed mainly as iterative. Most experts’ 
attention was on its property of exact con-
vergence after n steps. Only in the 1970s 
was it recognized how powerful CG can be 
when applied iteratively, converging often 
to many digits of accuracy in just a few 
dozen steps (especially with a good pre-
conditioner). It is now one of the mainstays 
of computational science—the archetypal 
iterative method.

We are not about to claim that the direct 
side of GE is going to wither away, as hap-
pened with CG. Nevertheless, researchers 
have begun to use GE as an iterative algo-
rithm, and, as we describe in this article, we 
apply a continuous analogue of GE as the 
basis of Chebfun2, an extension of Chebfun 
for computing with bivariate functions on 
rectangles.

Usually GE is described in terms of tri-
angularization of a matrix. For the purpose 
of this article, we offer a less familiar but 
equivalent description. Given A, GE selects 
a nonzero “pivot” entry ai1,j1 and constructs 
the rank 1 approximation A1 = u1v1

T/ai1,j1 
to 

A from the corresponding column u1 (col-
umn j1 of A) and row v1

T (row i1 of A). Then 
it improves this approximation by finding a 
nonzero entry ai2,j2 

of A – A1, constructing 
the rank 1 matrix u2v2

T/ai2,j2 
from the cor-

responding column u2 and row v2
T, and set-

ting A2 = A1 + u2v2
T/ai2,j2. Proceeding in this 

manner, GE approximates A by matrices Ak 
of successively higher ranks; the nonzero 
entry identified at each step is called the 
pivot.

The traditional view of GE is that after n 
steps, the process terminates. The iterative 
view is that Ak may be a good approxima-
tion to A long before the loop finishes, for 
k  n.

Looking around, we have found that a 
number of researchers are using GE as an 
iterative algorithm. In this era of “big data” 
computations, low-rank approximations 
are everywhere. All sorts of algorithms—
from randomized and matrix completion 
algorithms and the million-dollar Netflix 
prize-winning algorithm for predicting 
movie preferences—are employed to con-
struct the approximations; a number of 
the algorithms can be interpreted as GE 
with one or another pivoting strategy. Such 
methods have been developed furthest in 
the context of hierarchical compression of 
large matrices, where key figures include 
Bebendorf (“adaptive cross approximation” 
[1]), Hackbusch (“H-matrices” [4]), and 
Tyrtyshnikov (“skeletons” and “pseudo-
skeletons” [8]). Mahoney and Drineas have 
proposed GE-related non-hierarchical algo-
rithms for data analysis (“CUR decomposi-
tions” [5]). More classically, iterative GE is 
related to algorithms developed over many 
years for computing rank-revealing factor-
izations of matrices.

We came to this subject from a differ-
ent angle. For a decade, the Chebfun soft-
ware project has been implementing con-
tinuous analogues of discrete algorithms for 
“numerical computing with functions.” For 
example, the Matlab commands sum(f) 
and diff(f), which compute sums and 
differences of vectors, are overloaded in 
Chebfun to compute integrals and deriva-
tives of functions.

The challenge we have faced is, how 
could this kind of computing be extended 
to bivariate functions f (x,y)? After years of 
discussion, we have addressed this question 

with the release of Chebfun2 [6], the first 
extension of Chebfun. Chebfun2 approxi-
mates functions by a continuous analogue 
of iterative GE. Given a smooth function 
f (x,y) defined on a rectangle, it first finds a 
point (x1,y1) where | f | is maximal and con-
structs the rank 1 approximation f1(x,y) = 
u1(y)v1(x)/f (x1,y1) to f from the slices u1(y) 
= f (x1,y) and v1(x) = f (x,y1). Then it finds 
a point (x2,y2) where | f – f1| is maximal, 
constructs the rank 1 function u2(y)v2(x)/
f1(x2,y2), and adds this to f1 to get a new 
approximation f2. After k steps we have 
a rank k approximation fk that matches f 
exactly on at least k horizontal and vertical 
lines; the process stops when f is approxi-
mated to machine precision. The univariate 
functions uj(y) and vj(x) are represented 
as polynomial interpolants at Chebyshev 
points, enabling Chebfun2 to leverage the 
well-established algorithms and software 
of Chebfun.

Notice that this Chebfun2 approximation 
algorithm, because it finds maxima of func-
tions | f – fk|, corresponds to the variant of 
GE known as complete pivoting. (What we 
have described is the principle underlying 
our algorithm. In practice, the computation 

is accelerated by a more complex inter-
play between continuous and discrete, as 
detailed in [7].)

This method for approximating bivariate 
functions has been used before, by Maple 
co-inventor Keith Geddes and his students 
[3]. Their application was mainly quadra-
ture (or rather cubature), whereas we have 
taken the idea as the basis of a general sys-
tem for computing with functions.

A few pictures can tell more of the story.  
Figure 1 illustrates the approximation of 
a smooth function f (x,y). Mathematically, 
f is of infinite rank, but GE computes an 
approximation to machine precision of rank 
88. One could compute an optimal low-rank 
approximation by a continuous analogue of 
the singular value decomposition, but this 
would improve the rank only to about 80, at 
the price of much more computing. We find 
this degree of difference between GE and 
SVD to be typical when f is smooth.

For numerical computing with functions, 
the key challenge is not just to represent 
functions, but to compute with them. Every 
time an operation like fg or sin( f ) is carried 
out, Chebfun2 constructs an approximation 
of the result with rank truncated to achieve 

about 16 digits of accuracy, just as IEEE 
arithmetic truncates the result of an opera-
tion like xy or sin(x) to 64-bit precision.

In Chebfun2, rounding operations like 
the one illustrated in Figure 2 happen all 
the time, whenever a function is operated 
on or two functions are combined.  On this 
technology we build function evaluation, 
integration, differentiation, vector calculus, 
optimization, and other operations. The 
power is not yet as great as that of one-
dimensional Chebfun, which can deal with 
singularities and solve differential equa-
tions, but it is still remarkable. Chebfun2 
solves Problem 4 of the 2002 SIAM 100-
Digit Challenge [2], involving the global 
minimization of a complicated function, 
to 12-digit accuracy in less than a second! 
Challenges ahead include the extension 
of these ideas to differential equations, 
functions with singularities, more general 
domains, and higher dimensions, and the 
development of theory to quantify the con-
vergence of these low-rank approximations.

Gaussian elimination is an iterative algo-
rithm too.
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Figure 1. Iterative Gaussian elimination applied to f(x,y) = exp(–100(x2 – xy + 2y2 – 1/2)2 in the 
unit square, with contour levels at 0.1, 0.3, . . . , 0.9.  At rank 88, f is approximated to 16-digit 
accuracy. This is an analogue for functions of the rounding of real numbers to floating-point 
numbers.

Figure 2. Iterative GE approximates functions f and g over the unit square to 16-digit accuracy 
by approximants of ranks 19 and 85, respectively. The product h = fg is approximated to the 
same accuracy with rank 96, not rank 1615 as one would expect mathematically. This is an 
analogue for functions of the rounding of a product xy in floating-point arithmetic.


