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Abstract. An algorithm is presented to compute Zolotarev rational functions, that is, rational
functions r∗n of a given degree that are as small as possible on one set E ⊆ C∪ {∞} relative to their
size on another set F ⊆ C∪{∞} (the third Zolotarev problem). Along the way we also approximate
the sign function relative to E and F (the fourth Zolotarev problem).
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1. Introduction. Figures 1–3 show 14 examples of computed Zolotarev rational
functions. The aim of this paper is to present the mathematics of these functions, ex-
plain why they are of interest, and show how they can be computed numerically by an
algorithm combining AAA-Lawson rational approximation [23] with the equivalence
of the third and fourth Zolotarev problems of classical approximation theory [17].
Each of the images in the figures was computed in a fraction of a second on a laptop.
A reliable method for computing these functions has not been available before.

Let E and F be disjoint closed sets in the complex plane. For simplicity we
assume that E and F each consist of one or a finite number of continua, such as arcs
or domains bounded by arcs. They should be closed and disjoint in the extended
complex plane C ∪ {∞}, which implies that if ∞ belongs to one of the sets, it does
not belong to the other.

For an integer n ≥ 0, let Rn be the set of rational functions of degree n, which
means that any r ∈ Rn can be written as p/q for some polynomials p and q of degree
at most n. The problem we are concerned with is to find a function r∗n ∈ Rn that
minimizes the ratio

(1.1)
maxz∈E |r(z)|
minz∈F |r(z)| .

Since multiplying r by a constant does not change the ratio, we may normalize the
problem by fixing

(1.2) min
z∈F

|r(z)| = 1.

This gives us what is called the third Zolotarev problem, which might also be called
the Zolotarev ratio problem.

Problem Z3 = Zolotarev ratio problem. Find r∗n ∈ Rn with minz∈F |r∗n(z)| = 1
that attains the minimum

(1.3) σn = min
r

‖r‖E ,
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Fig. 1. Six examples of degree n = 12 Zolotarev rational functions r∗n defined by connected sets
E (on the left in each image) and F (on the right). The solutions plotted are near-optimal but not
exactly so. The Zolotarev function r∗n satisfies |r∗n(z)| ≈ mint∈F |r∗n(t)| = 1 for z on the boundary
of F , and contours show levels log10 |r

∗
n(z)| = −1,−2, . . . between the two domains. Blue dots mark

the zeros of r∗n and red dots mark the poles. Black circles and dots mark zeros and poles of the sign
function r̂n to be introduced in section 2. The minimum values σn = ‖r∗n‖E are listed in the titles.
Details of the geometries are given in the appendix.

where ‖ · ‖E denotes the supremum norm over E.

It is known that a solution r∗n to (1.3) exists, though it need not be unique, and that
σn satisfies 0 < σn ≤ 1.

Note that there is a certain asymmetry in the normalization (1.2), which results
in an asymmetry in the contour lines of Figs. 1–3. The symmetrical choice would
be to scale r so that the numerator and denominator of (1.1) are reciprocals of each
other. On the other hand (1.2) is standard, and algebraically simple.

We will say a few words about Figures 1–3 here, then turn in section 2 to the math-
ematical basis of this subject, the connection between the third and fourth Zolotarev
problems of rational approximation theory. Section 3 presents our algorithm, which
is based on AAA-Lawson approximation [22] enhanced by recent modifications for
dealing with functions of the flavor of f(z) = sign(z) and for ensuring convergence of
the Lawson phase. Sections 4 and 5 discuss applications. Section 6 finishes with a
few closing remarks.

Figures 1–3 differ in topology, but all show the same mathematics. In each case a



COMPUTATION OF ZOLOTAREV RATIONAL FUNCTIONS 3

(a)

-2 -1 0 1 2

-1

0

1

(b)

-2 -1 0 1 2

-1

0

1

(c)

-2 -1 0 1 2

-1

0

1

(d)

-2 -1 0 1 2

-1

0

1

Fig. 2. The same as in Figure 1, now for four problems where E and/or F are disconnected.

close approximation to the optimal function r∗n with n = 12 has been computed and
is depicted by means of its zeros (blue dots), poles (red dots), and level contours

(1.4) log10 |r∗n(z)| = −1,−2, . . . ,

or in the case of Figure 3,

(1.5) log10 |r∗n(z)| = −1/3,−2/3, . . . .

The domain F can be recognized as the one containing red poles and enclosed by
green contours. Because of the normalization (1.2), the zero contour log10 |r∗n(z)| = 0
would enclose F while just touching it; in practice this contour is very close to the
boundary of F (the “near-circularity phenomenon” [30]). The levels in the plots go
down as far as possible while remaining greater than log10 σn, implying that they all
enclose E, which can be recognized as the region containing blue zeros and enclosed by
blue contours. The colors correspond to the same levels in all the images of Figures 1
and 2, and likewise divided by 3 in the images of Figure 3.

Each image also shows a chain of black circles and dots, representing the zeros and
poles of the rational function r̂n of the fourth Zolotarev problem, as we will explain
in section 2. Note that about half of our sets E and F have interiors, shaded in grey
in the figures, but our calculations just sample them on the boundaries.

Looking qualitatively at the figures, we note that smaller values of σn correspond
to cases where E and F are well separated. Thus Figure 1b, with two well separated
intervals, gives σn ≈ 10−20, whereas Figure 1d, where the yin and yang are interleaved,
gives σn ≈ 10−6. In the examples of Figure 3, E is wholly enclosed by F , and the
values of σn are closer to 1.
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Fig. 3. The same as in Figures 1 and 2, now for domains where F encloses E. Since the values
of σn are not as small in these cases, the contour levels are now at log10 |r

∗
n(z)| = −1/3,−2/3, . . . .

Many of the 12 poles in each case lie outside these axes. Mathematically, these examples are not
essentially different from those of Figures 1 and 2, since a Möbius transformation could reduce one
type of topology to the other.

So far as we know, the optimal functions r∗n in all these 14 example problems
are unique (up to multiplication by a scalar of modulus 1). Note that the domains
of Figures 1d, 1e, 1f, 2a, 2c, 3a, and 3d each have a line of symmetry, and those
of Figures 1a, 1b, 2b, 3b, and 3c each have two lines of symmetry. The computed
contour lines, poles, and zeros respect these symmetries quite well, with occasional
deviations. Based on many experiments with various parameter choices, we believe
that in each image, the value of σn displayed in the title is accurate to about two
digits or more.

The images convey a vivid impression of electrostatic potential theory. It is known
that the contour lines can be interpreted as level curves of the potential generated by
positive logarithmic charges at each pole (i.e., of the form log |z − zk|) and negative
ones at each zero, and the poles and zeros are positioned in such a way that the
boundaries of E and F are approximate equipotential surfaces. For finite n, this
interpretation gives bounds on σn, and as n → ∞ it determines the exponential rate
of decrease with n. This theory originates with Walsh [34], and for introductions,
see [18, sec. 6] and [32, secs. 6–8].

The solutions plotted in Figures 1–3, while nearly optimal, need not be exactly
so to plotting accuracy. In particular, the locations of the poles and zeros may not
match those of the true optimal rational functions (which are only known analytically
in rare cases involving a pair of intervals, a pair of disks, or a circular annulus [35]). In
Figure 1a, for example, involving two disks of radius 1/2 centered at ±1, the optimal
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rational function is known to be a multiple of [(z −
√
3/2)/(z +

√
3/2)]12, and the

corresponding Zolotarev ratio is σn = [(2 −
√
3)/(2 +

√
3)]12 ≈ 1.8761× 10−14 [30].

This matches the computed value displayed in the figure, but the computed poles and
zeros lie along small circles rather than coalescing at a point. Similarly in Figure 3a,
where E is bounded by the circle of radius 0.5 about 0.2 and F by the unit circle,
the exact solution would have a zero of order 12 at 1/a ≈ 0.272 and a pole of order
12 at a ≈ 3.68 with a = (79/40) +

√

(79/40)2 − 1 and σn ≈ 0.00047755, again
matching the computed value. Computationally, we find that the zeros are close
to the predicted location but not quite confluent, and the poles, off these axes, lie
approximately on a circle of radius ≈1 about the expected location. To numerical
analysts these are instances of a familiar effect, that small changes in the values of
a polynomial or rational function may be associated with large changes in its poles
and zeros. To physicists or potential theorists, they are related to the phenomenon
known in potential theory as balayage, going back to Poincaré or indeed one might
say to Isaac Newton [15]. Outside the unit circle, for example, a uniform distribution
of logarithmic charge on the circle generates the same potential as a point charge at
the origin, and a finite collection of point charges uniformly spaced along the circle
will approximate the same potential function exponentially closely.

2. The third and fourth Zolotarev problems. Yegor Ivanovich Zolotarev
(1847–1878) was a student of Chebyshev who visited Berlin in 1872, where he learned
about elliptic functions from lectures of Weierstrass. Back in St. Petersburg, he
applied these methods to solve a collection of problems involving polynomial and
rational functions posed on two real intervals [36]. Zolotarev died at age 31 after being
hit by a train at the Tsarskoe Selo station, but his work lived on and was extended,
among others, by Achieser in Kharkiv, Ukraine, who presented Zolotarev’s problems
in his approximation theory and elliptic functions books [1, 2]. Later applications
and generalizations were considered, among others, by Wachspress at the University
of Tennessee [12], Gonchar and colleagues at the Steklov Institute in Moscow [14],
Starke at the University of Karlsruhe [30], and Istace and Thiran at the University of
Namur [17]. Our treatment here follows the presentation and notation of Istace and
Thiran.

We have already stated the third Zolotarev problem Z3, whose general complex
form is due to Gonchar [14]. For the fourth Zolotarev problem, whose complex gen-
eralization was introduced by Istace and Thiran, we first define the sign function

relative to E and F :

(2.1) signE/F (z) =

{

−1 z ∈ E,

+1 z ∈ F.

(For z ∈ C\{E∪F}, signE/F (z) is undefined.) Problem Z4, which might be called the
Zolotarev sign problem, is the problem of rational minimax approximation of signE/F

over E and F :

Problem Z4 = Zolotarev sign problem. Find r̂n ∈ Rn that attains the

minimum

(2.2) τn = min
r

‖r − signE/F ‖E∪F ,

where ‖ · ‖E∪F denotes the supremum norm over E ∪ F .

As usual with rational approximation, it is known that a solution exists, which satisfies
0 < τn ≤ 1, but it need not be unique.
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Fig. 4. Zeros (black circles) and poles (black dots) of the functions r̂n of Problem Z4 for the
examples of Figures 1c and 2c, together with contour lines showing distances to +1 (red) and −1
(green). Specifically, on the left, the red contours show log10 |rn(z) − 1| = −1,−2, . . . ,−6 and the
green contours show log10 |rn(z) + 1| = −1,−2, . . . ,−6; the pattern on the right is the same except
with levels −1/2,−1,−3/2, . . . ,−3. Images like this show that although Problem Z4 is posed just on
the domains E and F , r̂n(z) defines an approximation to a sign function throughout the complex
plane, with its poles and zeros delineating an approximate branch cut. Computation of r̂n to solve
Problem Z4 is the first step in our solution of Problem Z3.

In [2, p. 143], Achieser showed that problems Z3 and Z4 are equivalent in the
case where E and F are real intervals. In [17], Istace and Thiran showed that the
equivalence generalizes to the complex case. Here is their theorem, stated essentially in
their words. The theorem is proved by a direct calculation, which we do not reproduce.
In particular, it does not rely on characterizations of solutions to Problems Z3 or Z4.

Theorem 2.1. Every solution r∗n of Problem Z3 is related to a solution r̂n of

Problem Z4 by

(2.3) r̂n(z) =
1− σn

1 + σn

r∗n(z)−
√
σn

r∗n(z) +
√
σn

, r∗n(z) =
√
σn

(1− σn)/(1 + σn) + r̂n(z)

(1− σn)/(1 + σn)− r̂n(z)
.

The minimal values of the two problems satisfy

(2.4) τn =
2
√
σn

1 + σn
, σn =

(

τn

1 +
√

1− τ2n

)2

,

and the set of extremal points

(2.5) M = {z ∈ E ∪ F, |r̂n(z)− signE/F (z)| = τn}

is the union of M1 = {z ∈ E, |r∗n(z)| = σn} and M2 = {z ∈ F, |r∗n(z)| = 1}.
Note that in the usual situation τn, σn ≪ 1, (2.3) and (2.4) reduce to

(2.6) r̂n(z) ≈
r∗n(z)−

√
σn

r∗n(z) +
√
σn

, r∗n(z) ≈
τn
2

1 + r̂n(z)

1− r̂n(z)

and

(2.7) τn ≈ 2
√
σn, σn ≈ τ2n

4
.



COMPUTATION OF ZOLOTAREV RATIONAL FUNCTIONS 7

The factor τn/2 in (2.6) is just the scaling (1.2), so the essential point is that rational
functions with small ratios (1.1) come from approximations r̂n(z) ≈ signE/F (z) via
(1 + r̂n)/(1− r̂n).

As we will discuss in the next section, our algorithm for solving Problem Z3
consists of solving Problem Z4 and then transforming from r̂n and τn to r∗n and σn.
To give an idea of the mathematics of the equivalence, Figure 4 shows the poles and
zeros of the functions r̂n for the examples of Figures 1c and 2c, which line up along
curves approximating branch cuts for signE/F . The contour lines show distances to 1
(red) and −1 (green).

3. Numerical method. AAA approximation produces a rational function rep-
resented in barycentric form. In the notation of [23, eq. (3.2)], we have

(3.1) r(z) =
n
∑

k=0

αk

z − tk

/

n
∑

k=0

βk

z − tk
,

where t0, . . . , tn are support points and α0, . . . , αn and β0, . . . , βn are barycentric

weights. Note that {tk} are not poles of r (assuming the weights are nonzero), but
points where the quotient takes the limiting values {αk/βk}. The zeros and poles
of r are the zeros of the numerator and denominator of (3.1), respectively, which can
be calculated accurately by means of a matrix generalized eigenvalue problem [22,
eq. (3.11)].

Mathematically, any choice of support points {tk} in (3.1) would do, but the power
of the barycentric representation lies in its exceptional numerical stability when the
support points are selected in a manner fitted to the function being represented, as is
accomplished by the AAA algorithm.

Following Theorem 2.1, we solve Problem Z3 in two steps:

(1) Solve Problem Z4 by AAA-Lawson approximation with Chebfun aaa.m;

(2) Convert to a solution of Problem Z3 by (2.3) and (2.4).

Step (2) is straightforward, so we just make one comment on this before turning to
discuss the more challenging step (1). By (2.3), the zeros and poles of r∗n are the
points z where r̂n = −p and +p, respectively, where p = (1 − σn)/(1 + σn). To
compute these numbers, we take the barycentric data {tk}, {αk}, {βk} defining r̂n
and simply subtract or add pβk to each αk. Thus r̂n is decreased or increased by p at
each support point, hence by the same constant at all z ∈ C since the values at these
points determine a degree n rational interpolant. To find the zeros and poles of r∗n,
it remains only to perform zerofinding on the barycentric representations of r̂n ± p in
the usual way via generalized eigenvalue problems.

This brings us to the main challenge of our algorithm, step (1) above, the com-
putation of the degree n rational best approximation r̂n to the sign function signE/F

defined by the sets E and F . The high-level summary is that we find r̂n by AAA
approximation, which is a fast and robust algorithm for computing near-best rational
approximations [8, 22]. However, this has proved not as straightforward as one would
expect. Two difficulties arise, and it is because of these that we were unable to write a
paper like the present one a few years ago, when AAA first became available. The first
difficulty is that AAA encounters particular challenges when applied to sign functions,
which has not been noticed before. The second is that for clean Zolotarev results, it
is important to have not just good rational approximations but nearly optimal ones,
requiring the use of the AAA-Lawson algorithm [23], which had a known problem of
non-convergence in certain cases that we have also had to address.
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Fig. 5. AAA convergence for degree n = 13 approximation r̂n ≈ signE/F with E = [−1.5,−0.5]

and F = [0.5, 1.5], with each interval approximated by 200 Chebyshev points. On the left, the original
AAA iteration reveals difficulties typical of many signE/F examples. The “blending of singular

values” adjustment described in the text produces the better results on the right. (This would then
further improve to an equioscillatory error curve with the AAA-Lawson iteration with damping, as
illustrated for a more difficult problem in Figure 6.) The sawtoothed convergence curve reflects poles
falling between sample points at every other iteration, a common phenomenon in approximation of
even or odd functions on real domains.

We will discuss these difficulties, and what we have done about them, in two
subsections.

3.1. Modification of AAA for sign functions. The AAA algorithm has not
changed fundamentally since its appearance in 2018 [22]. Although it has no guarantee
of convergence, we tend to think of it as “99% reliable,” at least when used with dense
enough sample grids and error tolerances well above the level of noise. For a wide
range of problems, it reliably produces near-best rational approximations, typically
with errors about a factor of ten above the true minima.

Experiments in approximation of functions of the form signE/F , however, give
unsatisfactory results. The left column of Figure 5 illustrates what tends to happen.
The initial iterations achieve nothing, and at the end, the error curve is very irregular
and far from optimal. After much experimentation we have discovered the part of
the algorithm that causes the trouble. As described around eq. (3.5) of [22], AAA
computes a singular value decomposition (SVD) at each step to determine a minimal
singular vector defining barycentric weights to solve a least-squares problem. The
trouble is that in certain cases, the minimal singular value with standard AAA is
degenerate or nearly so, and this is associated with a singular vector containing zeros
or near-zeros in certain entries. To fix this, we have introduced a new option essentially
to replace the MATLAB lines

[~,S,V] = svd(A(J,:),0);

wj = V(:,end);

by the alternative

[~,S,V] = svd(A(J,:),0);

s = diag(S); wj = V*(1./s.^2); wj = wj/norm(wj);

This has the effect that a certain barycentric weight vector wj, rather than being
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formed from a single minimal singular vector, is computed as a blend of all the singular
vectors with strong bias towards the minimum. The effect on most AAA computations
appears to be negligible, but for certain problems such as approximation of sign
functions, there is a real improvement, as suggested in the right column of Figure 5.
Note the vertical scales.

In the Chebfun AAA code aaa.m, this modification was introduced as an option
in July 2024 specified by an optional flag 'sign', which we have invoked for all the
computations of this paper.

3.2. Modification of Lawson iteration to enhance robustness. To improve
rational approximations from near-best to best, the standard method is AAA-Lawson
iteration. As described in section 3 of [23], this is a nonlinear variant of iteratively
reweighted least-squares which often converges to minimax approximations, recogniz-
able by their equioscillatory error curves in real cases and nearly-circular error curves
in complex problems. The centerpiece of the Lawson iteration is an adjustment of the
weights in a least-squares problem (linear) according to the errors at the same points
in the current rational approximation (nonlinear). This is given as eq. (3.7) of [23],

(3.2) w
(new)
j = wj |ej |,

where wj denotes the current least-squares weight at sample point zj and ej is the
current rational approximation error ej = r(zj) − fj . (Note that these least-squares
weights, which belong to the hundreds or thousands of sample points of the grid, have
nothing to do with the barycentric weights discussed earlier, which belong just to
the subset of n + 1 barycentric support points.) In successful cases, iterating (3.2)
leads to linear convergence to a weighted least-squares solution that is equal to the
minimax approximation being sought. Such convergence has long been known to
be guaranteed for the Lawson iteration applied to linear problems, but with AAA-
Lawson, the iteration is nonlinear and there is no guarantee.

Unfortunately, unlike ordinary AAA iteration, AAA-Lawson has always been
“just 90% reliable.” It fails rather often, and when it fails, as illustrated in Fig-
ure 6.1 of [23], the failure often takes the form of a period-2 oscillation, showing high
errors on the left of a domain at one Lawson step and then high errors on the right
of the domain at the next step. We have found that these troubles show up quite
often with approximation of signE/F functions. Zolotarev problems appear to lie in
an exceptionally problematic regime of AAA approximation.

We have investigated this problem and developed a modified algorithm that often
improves matters. The idea is to replace (3.2) by a modified weight update formula

(3.3) w
(new)
j =

(

(1− δ) +
δ |ej |

maxj |ej |

)

wj ,

where δ ∈ (0, 1] is a damping factor. If δ = 1 we have standard AAA-Lawson,
whereas for smaller values we have a more robust iteration that is more likely to
converge. In August 2024 this modification was introduced as an option in Chebfun
aaa.m specified by a flag 'damping' followed by the number δ. Figure 6 gives two
illustrations of the improved convergence of certain iterations with damping. For the
Zolotarev computations of this paper we have taken δ = 0.95; details for each example
problem are given in the appendix.

In two subsections, we have presented two modifications of the AAA algorithm
that make it more effective in approximating the signE/F functions arising in Zolotarev
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Fig. 6. First row: AAA convergence for degree 15 approximation of signE/F with E =

[−1.8,−0.2] and F = [0.5, 1.5], with each interval approximated by 100 Chebyshev points. On the
left, the result of AAA followed by 150 steps of AAA-Lawson iteration. On the right, the same
but with AAA-Lawson applied with damping factor δ = 0.8. Second row: a similar comparison for
degree n = 4 rational approximation of ReLU(x) = max(x, 0), sampled in 200 Chebyshev points,
with damping factor δ = 0.5.

problems. We do not regard either of these adjustments as a definitive solution. AAA
and AAA-Lawson still give suboptimal results on certain problems, and we hope
that further investigation will lead to further improvements. Ideally one would like
algorithms requiring no human intervention such as the specification of a damping
factor δ, and one would like to have a proof that they always converge. AAA and
AAA-Lawson continue to advance, but we are a long way from this state.

Using Chebfun aaa and prz syntax as of August 2024, the functions r̂n and r∗n
for the example of Figure 1a can be computed by this code segment in about 0.3 s on
our laptop. The code writes q for r̂n and r for r∗n.

np = 400; cc = exp(2i*pi*(1:np)'/np);

E = -1 + .5*cc; F = 1 + .5*cc;

fEF = [-ones(size(E)); ones(size(F))];

[q,qpoles,~,qzeros,zj,fj,wj] = aaa(fEF,[E;F], ...

'degree',12,'sign',1,'lawson',200,'damping',0.9);

tau = norm(fEF-q([E;F]),inf)

sigma = (tau/(1+sqrt(1-tau^2)))^2

p = (1-sigma)/(1+sigma);

r = @(z) sqrt(sigma)*(p+q(z))./(p-q(z));

[~,~,rpoles] = prz(zj,fj+p,wj);

[~,~,rzeros] = prz(zj,fj-p,wj);

To give a further indication of the behavior of our methods, Figure 7 shows
computed σn as a function of n = 0, 1, . . . , 70 for a difficult problem involving a pair
of rectangles, as shown in the inset of the figure. The outer corners lie at±1±i, and the
inner corners at±1/4±i, and we took 200 AAA-Lawson steps with damping parameter
0.95. This kind of configuration has been studied in the past, though without a
numerical method available to calculate Zolotarev rational functions directly [26, 35].
Because of the higher degrees involved, this computation took about a minute on our
laptop. The numerical values come close to the lower bound for the Zolotarev ratio
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Fig. 7. Decrease of numerically computed σn as a function of n for a problem where E and F
are a pair of rectangles. The inset shows the geometry together with the poles (red) and zeros (blue)
of r∗n and the poles (black dots) and zeros (black circles) of r̂n for the case n = 12. The dashed line
shows the lower bound (3.4) from potential theory. The data points for n = 1, 2, 3, 4 are obviously
inaccurate, and we suspect all the values for 1 ≤ n ≤ 11 should lie closer to the lower bound.

that can be derived from potential theory via numerical conformal mapping,

(3.4) σn ≥ h−n = e−n/cap(E,F )

where cap(E,F ) is what is known as the condenser capacity of the pair E,F [18].
We computed the capacity cap(E,F ) ≈ 2.78805 by methods of rational approxima-
tion [31], reflecting the curious situation that in the end, approximate estimates for
Zolotarev numbers are not always simpler to calculate than the Zolotarev numbers
themselves.

4. Applications of the Zolotarev ratio problem Z3. The most famous ap-
plication of the Zolotarev ratio problem Z3 is to ADI-related matrix iterations in
numerical linear algebra. To explain, we begin with the more basic case of polyno-
mial iterations.

Suppose we want to solve

(4.1) Cx = y,

where C is a square matrix, y is a vector, and x is an unknown vector. Existence of
a unique solution is guaranteed if C is nonsingular. Many matrix iterations generate
sequences x0, x1, . . . with error vectors ek = C−1y − xk satisfying

(4.2) ek = pk(C)e0,

where pk is a polynomial of degree k with p(0) = 1 [9]. In particular this is true of the
Chebyshev, Richardson, conjugate gradient, MINRES, and GMRES iterations [13,
27]. Equation (4.2) then implies

(4.3)
‖ek‖
‖e0‖

≤ ‖pk(C)‖,
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where ‖ · ‖ is any norm. If ‖ · ‖ is the 2-norm and Λ(C) is the spectrum of C, i.e. its
set of eigenvalues, then (4.3) implies

(4.4)
‖ek‖
‖e0‖

≤ ‖pk‖Λ,

where ‖pk‖Λ = maxz∈Λ |pk(z)|, assuming C is normal (e.g. real symmetric or complex
hermitian). If C is nonnormal, then among various possible generalization of (4.4) we
have

(4.5)
‖ek‖
‖e0‖

≤ κ(V )‖pk‖Λ,

where κ(V ) is the 2-norm condition number of any matrix V of eigenvectors of C,
assuming one exists.

Equations (4.1)–(4.5) tell us that rapid convergence of an iteration is guaranteed
if it corresponds to a sequence of polynomials p0, p1, . . . normalized by pk(0) = 1 that
converge quickly to 0 on Λ. This connection between polynomial approximation and
matrix iterations has been known and exploited since the 1950s.

Rational approximations enter the picture when we generalize (4.1) to the Sylves-
ter equation,

(4.6) AX −XB = Y,

where A is an m × m matrix, B is an n × n matrix, Y is an m × n matrix, and
X is an unknown m × n matrix. (The special case with A = −B∗ and Y = Y ∗

is called the Lyapunov equation.) These equations arise in many applications, from
reduced order modeling and signal processing to the solution of PDEs. See [28] and
references therein. Existence of a unique solution is guaranteed if the spectra of A
and B are disjoint. At first glance (4.6) may look like a very different problem from
(4.1), and rather niche, but in fact, (4.1) takes the form (4.6) in important cases
where the matrix C has special structure. This observation became famous with
the introduction of Alternating Direction Implicit or ADI iteration by Peaceman and
Rachford in 1955 [25]. In their original model problem, X corresponds to the unknown
values of a discretized finite difference solution to a two-dimensional linear PDE on an
m× n grid, and the matrices A and B are finite difference operators with respect to
the two different directions. Peaceman and Rachford discovered that (4.6) could be
solved very efficiently by an iteration in which one applied (A−βjIn)

−1 on the left and
(B − αjIm)−1 on the right at alternate steps, both involving easy tridiagonal linear
solves, for appropriate constants αj and βj , known as shift parameters. Omitting
details, which can be found for example in [28] and [35], this leads to an iterative
sequence X0, X1, . . . with error matrices Ek = X −Xk satisfying

(4.7) Ek = rk(A)E0rk(B)−1,

where rk is the degree k rational function

(4.8) rk(z) =

k
∏

j=1

z − αj

z − βj
.

In analogy to (4.4), this implies

(4.9)
‖Ek‖
‖E0‖

≤ maxz∈ΛA
|r(z)|

minz∈ΛB
|r(z)|
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if A and B are normal, with appropriate extensions in the nonnormal case. And here
we recognize the Zolotarev ratio problem of (1.1). Thus we see that the numerical
method proposed in this paper offers a new tool for design and analysis of ADI
iterations.

Beyond the basics just outlined, there have been a number of further applications
of the Zolotarev ratio problem in numerical linear algebra. One area of application
is to rational Krylov and related methods [5, 10]. Another, investigated recently by
Beckermann and Townsend [6], concerns the case where the solution matrix X of (4.6)
is of large dimension but of low numerical rank, meaning that its singular values decay
rapidly. Theorem 2.1 of [6] shows show that if A and B are normal and Y is of rank
ν ≥ 1 in (4.6), then for each k, the singular value of X of index 1 + νk of X can
be bounded in terms of the Zolotarev ratio σk of (1.3), where E and F are any sets
containing the spectra of A and B. Thus when Y is of low rank, X is guaranteed
to be of small numerical rank, with singular values decaying at an exponential rate
determined by the Zolotarev problem. The tools introduced in the present paper
should make it possible to explore this phenomenon in much more general cases than
have been accessible before.

5. Applications of the Zolotarev sign problem Z4. As well as being a step
toward the solution of Z3, problem Z4 is also of interest in its own right. Problems
of this kind arise in many contexts where one wants to separate one part of a system
computationally from another. For example, the 1970s introduced the major technol-
ogy of digital signal processing. A “recursive” or “infinite impulse response” low-pass,
high-pass, or band-pass filter starts from a rational function that is nearly constant
on one part of the real axis and nearly zero on another, and finding such a function
is essentially a Zolotarev sign problem [24].

Generalizations, as usual, come from numerical linear algebra and its applications
in computational science. For computing eigenvalues of large matrices, one of the
classes of available methods is divide and conquer algorithms, where one part of the
spectrum is suppressed relative to another in a possibly recursive fashion [3, 4]. This
leads quickly to Zolotarev sign problems, typically starting from the case where E and
F are approximations to the left and right complex half-planes [21]. In the real case,
which goes back to Zolotarev himself, they may be intervals such as [−a,−ε] and [ε, a].
“Spectral slicing” ideas of this kind have found wide generalization through algorithms
such as FEAST, with applications for example in electronic structure calculation
in physics [16, 19]. Here an approximate sign function is used to isolate a region
of the complex plane containing eigenvalues of mathematical or physical interest.
Mathematically, the issue is the numerical projection of a large space of functions
onto an interesting smaller-dimensional subspace.

Wherever approximate sign functions are in play, so are rational approximations
to branch cuts, which in turn are close to numerical quadrature formulas. Our nu-
merical method for Problem Z4 can be applied to the derivation of new (and old)
quadrature formulas, a topic to be investigated in a later paper.

6. Discussion. Before the current contribution, methods for computing Zolotar-
ev functions were not available, but various types of approximations have been dis-
cussed in the literature. We mentioned the lower bound (3.4) in connection with
Figure 7, and to derive upper bounds together with approximate Zolotarev functions,
one can use Faber rational funtions [26] or Walsh–Fejer, Leja, or generalized Leja
points on the boundary [11, 29]. All these estimates require some work to apply,
however, to solve associated conformal mapping or optimization problems.
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The algorithm we have proposed is not yet bulletproof. Further improvements in
Zolotarev computations will probably be associated with further improvements in the
AAA and AAA-Lawson algorithms, which we hope will be stimulated by the discussion
here especially in section 3. For the moment, we have relied on the Chebfun imple-
mentation of AAA in MATLAB/Octave, which includes the 'sign' and 'damping'

improvements we have discussed [8]. Implementations of AAA are available in other
languages, including Julia [7, 20] and Python via the SciPy package (release 1.15.0,
January 2025, code written by Jake Bowhay) [33]. At present these lack 'sign' and
'damping', so they may give less accurate results for Zolotarev problems than what
we have shown here. Of course, software changes rapidly, and the details of available
options will surely be different in a few years. What will remain is that approximation
algorithms have now advanced to the point where Zolotarev rational functions can be
computed numerically.

Acknowledgments. We have benefited from helpful comments from Bernard
Beckermann, Nick Hale, and Yuji Nakatsukasa. Nakatsukasa in particular contributed
to the algorithmic improvements in AAA described in section 3.

Appendix. Details of computed examples. For all the examples of Fig-
ures 1–3, we ran AAA with 'sign' on followed by AAA-Lawson iteration with damp-
ing factor 0.95; the number of iterations was 200 in Fig. 1 and 400 in Figs. 2 and 3.
In the following descriptions of the approximation sets E and F , S denotes the set of
200 roots of unity, i.e., 200 equispaced points on the unit circle.

Specifications for Figure 1. (a) Circles ±1 + 0.5S. (b) Intervals [−1.5,−0.5] and
[0.5, 1.5], each discretized by 200 Chebyshev points. (c) On the left, 200 Cheby-
shev points in the interval [−1 − 0.75i,−1 + 0.75i], and on the right, the ellipse
1+ (0.2Re(S)+ iIm(S))/

√
i . (d) Let T be the semicircle consisting of the 101 points

of S in the right half-plane. The yin figure is composed of three copies of T , two of
them reduced to half-size, and all shifted left by 0.5, and the yang is the negative of
the yin. (e) On the right, the semicircle 1 − 0.74T , and on the left, three sides of
a square of side length 0.75 centered at −1, each side discretized by 100 Chebyshev
points. (f) 200 Chebyshev points in [1, 2] together with (−∞, 0] discretized by 200
exponentially graded points: Matlab 1-logspace(0,5,200).

Specifications for Figure 2. (a) Circles −1 + 0.5S and 0.8 + 0.3S ± 0.6i. (b) The
intervals [−2,−1] [−0.5, 0.5], and [1, 2], each discretized by 100 Chebyshev points. (c)
If X is the cross composed of 100 Chebyshev points in [−0.5, 0.5] and 100 Chebyshev
points in [−0.5i, 0.5i], the sets are composed from X ± 1 ± i, with the lower-right
cross rotated by π/4. (d) Six equilateral triangles scaled to circles of radius 0.5. On
the right, the triangles are centered at 1 and 1 ± i, and on the left, they are rotated
by π/6 and positioned with centers at correspondingly transformed positions −1 and
−1± i∓ 1/

√
3.

Specifications for Figure 3. (a) Circles S and 0.2 + 0.5S. (b) Outside, the ellipse
obtained by stretching S by a factor 1.5 along the x axis, and inside, the square of
side length 1, each side discretized by 100 Chebyshev points, rotated by angle π/8.
(c) Circle S and the ellipse exp(0.2i)(0.4Re(S) + 0.7iIm(S)). (d) Circle S and the
two smaller circles 0.1± 0.5i+ 0.3S.

Specifications for Figure 7. The rectangles are discretized by 50 Chebyshev points
on the ends and 100 points on the sides.



COMPUTATION OF ZOLOTAREV RATIONAL FUNCTIONS 15

REFERENCES

[1] N. I. Achieser, Theory of Approximation, Ungar, New York, 1956.
[2] N. I. Akhiezer, Elements of the Theory of Elliptic Functions, Amer. Math. Soc., Providence,

RI, 1990.
[3] Z. Bai, J. Demmel, and M. Gu, An inverse free parallel spectral divide and conquer algorithm

for nonhermitian eigenproblems, Numer. Math., 76 (1997), pp. 279–308.
[4] J. Banks, J. Garza-Vargas, A. Kulkarni, and N. Srivastava, Pseudospectral shattering,

the sign function, and diagonalization in nearly matrix multiplication time, Found. Comp.
Math., 23 (2023), pp. 1959–2047.

[5] B. Beckermann, An error analysis for rational Galerkin projection applied to the Sylvester
equation, SIAM J. Numer. Anal., 49 (2011), pp. 2430–2450.

[6] B. Beckermann and A. Townsend, Bounds on the singular values of matrices with displace-
ment structure, SIAM Rev., 61 (2019), pp. 319–344.

[7] T. A. Driscoll, RationalFunctionApproximation.jl: Julia software for approximation by ra-
tional functions, https://github.com/complexvariables/RationalFunctionApproximation
.jl, 2023. DOI: zenodo.org/records/8355791.

[8] T. A. Driscoll, N. Hale, and L. N. Trefethen, eds., Chebfun User’s Guide, Pafnuty Publi-
cations, Oxford, UK, 2014. See also http://www.chebfun.org.

[9] T. A. Driscoll, K.-C. Toh, and L. N. Trefethen, From potential theory to matrix iterations
in six steps, SIAM Rev., 40 (1998), pp. 547–578.

[10] V. Druskin, L. Knizhnerman, and V. Simoncini, Analysis of the rational Krylov subspace
and ADI methods for solving the Lyapunov equation, SIAM J. Numer. Anal., 49 (2011),
pp. 1875–1898.

[11] V. Druskin and V. Simoncini, Adaptive rational Krylov subspaces for large-scale dynamical
systems, Systems & Control Letters, 60 (2011), pp. 546–560.

[12] N. S. Ellner and E. L. Wachspress, Alternating direction implicit iteration for systems with
complex spectra, SIAM J. Numer. Anal., 28 (1991), pp. 859–870.

[13] G. H. Golub and C. F. Van Loan, Matrix Computations, JHU Press, 2013.
[14] A. A. Gonchar, Zolotarev problems connected with rational functions, Math. USSR-Sb., 7

(1969), pp. 623–635.
[15] B. Gustafsson, Lectures on Balayage, U. of Joensuu, Dept. Rep. Ser., 2001.
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