Vandermonde with Arnoldi*

Pablo D. Brubeck ${ }^{\dagger}$
Yuji Nakatsukasa ${ }^{\dagger}$
Lloyd N. Trefethen ${ }^{\dagger}$

Abstract

Vandermonde matrices are exponentially ill-conditioned, rendering the familiar "polyval(polyfit)" algorithm for polynomial interpolation and least-squares fitting ineffective at higher degrees. We show that Arnoldi orthogonalization fixes the problem. This amounts to on-the-fly construction of discrete orthogonal polynomials by Stieltjes orthogonalization.

Key words. interpolation, least-squares, Vandermonde matrix, Arnoldi, polyval, polyfit, Fourier extension

AMS subject classifications. 41A05, 65D05, 65D10
DOI. 10.1137/19M130100X
I. Introduction. Fitting polynomials to data by means of Vandermonde matrices is a notoriously unstable algorithm. In this note we show how the problem can be fixed by coupling the Vandermonde construction with Arnoldi orthogonalization.

Let x be a column vector of m distinct numbers and f a column vector of m data values. Given $n \leq m-1$, we wish to compute the polynomial

$$
\begin{equation*}
p(x)=\sum_{k=0}^{n} c_{k} x^{k} \tag{1.1}
\end{equation*}
$$

with coefficients defined by a system of equations $A c \approx f$,

$$
\left(\begin{array}{cccc}
1 & x_{1} & \cdots & x_{1}^{n} \tag{1.2}\\
1 & x_{2} & \cdots & x_{2}^{n} \\
\vdots & \vdots & & \vdots \\
1 & x_{m} & \cdots & x_{m}^{n}
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
\vdots \\
c_{n}
\end{array}\right) \approx\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{m}
\end{array}\right)
$$

If $n=m-1, A$ is square and \approx is interpreted as equality: p interpolates the data. If $n<m-1, A$ has more rows than columns, and the system is interpreted in the leastsquares sense. Regardless of n, A is of full rank since the points x_{j} are distinct, so c is uniquely defined. At least this is true mathematically, though in cases of interest, c may be nonunique numerically.

[^0]Once (1.2) has been solved, the evaluation of p at a set of points s_{1}, \ldots, s_{M} amounts to the computation of the matrix-vector product

$$
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{M}
\end{array}\right)=\left(\begin{array}{cccc}
1 & s_{1} & \cdots & s_{1}^{n} \\
1 & s_{2} & \cdots & s_{2}^{n} \\
\vdots & \vdots & & \vdots \\
1 & s_{M} & \cdots & s_{M}^{n}
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
\vdots \\
c_{n}
\end{array}\right) .
$$

2. Example I: Interpolation in Chebyshev Points. Consider polynomial interpolation of $f(x)=1 /\left(1+25 x^{2}\right)$ in $n+1$ Chebyshev points $x_{j}=\cos (j \pi / n), 0 \leq j \leq n$. This is a well-conditioned problem, satisfying $\|p\| /\|f\|<1+(2 / \pi) \log (n+1)$ in the ∞-norm [26, Thm. 15.2], yet if we apply (1.2) and (1.3) as written, the result is a failure. Specifically, we execute in MATLAB the codes
```
function c = polyfit(x,f,n)
A = x.^(0:n);
c = A\f;
function y = polyval(c,s)
n = length(c)-1;
B = s.^(0:n);
y = B*C;
```

where s is a vector of 1000 points in $[-1,1]$. The left column of images in Figure 2.1 shows the results. For $n=80$, the interpolant is plainly inaccurate, and the plot of error against n shows that after $n=40$ or so, only 1-3 digits of accuracy are achieved. (The errors vary widely in the range of about 10^{-4} to 10^{-2}, and the reader will very likely see different details on his or her own machine. If one does the same experiment with the versions of polyfit and polyval provided in MATLAB, the results are much worse, a consequence of the order of the columns of the Vandermonde matrix being reversed.)

On the other hand, suppose we execute the following alternative codes, which will be explained in section 4. The "A" stands for Arnoldi.

```
function [d,H] = polyfitA(x,f,n)
m = length(x);
Q = ones(m,1);
H = zeros(n+1,n);
for k = 1:n
    q = x.*Q(:,k);
    for j = 1:k
        H(j,k) = Q(:,j)'*q/m;
        q=q-H(j,k)*Q(:,j);
    end
    H(k+1,k) = norm(q)/sqrt(m);
    Q = [Q q/H(k+1,k)];
end
d = Q\f;
```


Fig. 2.1 On the left, the degree n Chebyshev interpolant to $f(x)=1 /\left(1+25 x^{2}\right)$ computed unstably by direct application of (1.2) and (1.3) via the codes polyfit and polyval for $n=80$ (above) and its error for even values of n from 2 to 200 (below). (The results computed by the MATLAB versions of polyfit and polyval would be worse.) On the right, the same computations with the Arnoldi-based codes polyfitA and polyvala.

```
function y = polyvalA(d,H,s)
M = length(s);
W = ones(M,1);
n = size(H,2);
for k = 1:n
    w = s.*W(:,k);
    for j = 1:k
        w = w - H(j,k)*W(:,j);
    end
    W = [W W/H(k+1,k)];
end
y = W*d;
```

The right column of Figure 2.1 shows the results, now converging cleanly down to machine precision. For this problem, other stable algorithms are also known involving the barycentric interpolation formula or the computation of Chebyshev series coefficients of the polynomial interpolant $[6,18,24,26]$.
3. Example 2: Least-Squares Approximation on Two Intervals. Our second example moves from interpolation to least squares. This time, the problem is to approximate the function $\operatorname{sign}(x)$ on $[-1,-1 / 3] \cup[1 / 3,1]$ by a polynomial of de-

Fig. 3.I Images as in Figure 2.1, but now for a least-squares problem: polynomial fitting to sign(x) on 500 equispaced points in each of the two intervals $[-1,-1 / 3]$ and $[1 / 3,1]$. The unstable algorithm stagnates at 5 digits of accuracy, which is enough that, to the eye, the computation appears successful.
gree n. We discretize the domain by 500 equispaced points in each interval and call polyfit/polyval and polyfitA/polyvalA to compute least-squares fits. Here, as in most of our examples, we are working on discrete sets chosen to have enough points to approximate a continuum effectively. (If 500 is increased to 5000 , the results look the same.) There are interesting and important questions associated with how to optimize such discretizations, which generally involves clustering of sample points near endpoints and corners, but we do not discuss such matters in this paper.

The computed results are displayed in Figure 3.1 in the same pattern as in Figure 2.1, again revealing a great disparity between algorithms. A new feature, however, is that the error with polyfit/polyval now goes down to order $O\left(10^{-5}\right)$ before stagnating at that level. Ill-conditioned least-squares computations, at least as carried out by the MATLAB backslash command, are often sufficiently regularized that the results may look very good in the "eyeball norm." For some purposes, this may be all the accuracy one needs, but the figure shows that it falls far short of what is achievable.
4. Vandermonde with Arnoldi. We now explain the Vandermonde with Arnoldi algorithm.

First, a word about Vandermonde without Arnoldi, which solves the equation

$$
\begin{equation*}
A c \approx f \tag{4.1}
\end{equation*}
$$

When the code polyfit of section 2 is executed, exactly what happens depends on what lies behind the backslash operator-which in the world of MATLAB is a timedependent business. If A is rectangular, the algorithm will probably be some variant of

QR factorization, with regularizing effects as just mentioned (see [1] and also Remark 2.5 of [3]). If A is square, the algorithm will probably be Gaussian elimination with partial pivoting.

The introduction of Arnoldi orthogonalization follows a standard idea in the area of Krylov matrix iterations [13]. The columns $1, x, x^{2}, \ldots$ of (1.2) can be regarded as vectors $q_{0}, X q_{0}, X^{2} q_{0}, \ldots$, where $q_{0}=(1, \ldots, 1)^{T}$ and $X=\operatorname{diag}\left(x_{1}, \ldots, x_{m}\right)$. In the Arnoldi process, rather than computing these vectors as written and then orthogonalizing the result in a QR factorization, one orthogonalizes at each step to obtain a sequence of orthogonal vectors $q_{0}, q_{1}, q_{2}, \ldots$ spanning the same spaces. The code polyfitA does this in a standard fashion, its only unusual feature being that q_{k} is normalized to have 2 -norm $m^{1 / 2}$ rather than 1 , so that the entries individually are of scale 1 (a matter of convenience). After n steps, orthogonal vectors q_{0}, \ldots, q_{n} and an $(n+1) \times n$ upper-Hessenberg matrix H have been computed such that

$$
\begin{equation*}
X Q_{-}=Q H \tag{4.2}
\end{equation*}
$$

where Q is the $m \times(n+1)$ matrix with columns q_{0}, \ldots, q_{n} and Q_{-}is the same matrix without the final column. Equation (4.1) is now solved in its equivalent form

$$
\begin{equation*}
Q d \approx f \tag{4.3}
\end{equation*}
$$

and the resulting $Q d$ is the m-vector of values $p\left(x_{j}\right)$ for the same polynomial p of degree n. The coefficient vectors in the two different representations are related mathematically by

$$
\begin{equation*}
d=R c \tag{4.4}
\end{equation*}
$$

where $R=Q^{T} A / m$ is the upper-triangular matrix such that $A=Q R$.
In the usual Arnoldi application, further operations would now be carried out on Q and H for purposes such as estimating eigenvalues or solving systems of equations. For us, however, all that matters is the matrix H. The entries of column $k+1$ of H are the coefficients employed by polyfitA to orthogonalize $X q_{k}$ against q_{0}, \ldots, q_{k}. In polyvalA, the same operations are applied with a new operator $S=\operatorname{diag}\left(s_{1}, \ldots, s_{M}\right)$ in place of the original $X=\operatorname{diag}\left(x_{1}, \ldots, x_{m}\right)$. We call the resulting matrices W_{-}and W, satisfying

$$
\begin{equation*}
S W_{-}=W H \tag{4.5}
\end{equation*}
$$

Note that the columns of W_{-}and W are not orthogonal, merely (in many cases) approximately so. If $W d$ is now computed, the result is the M-vector of values $p\left(s_{j}\right)$.

All this is closely related to orthogonal polynomials, where the Arnoldi process is known as Stieltjes orthogonalization $[9,11,12,17,24]$. The entries of H are the recurrence coefficients for a sequence of polynomials orthogonal with respect to the uniform discrete measure on $\left\{x_{1}, \ldots, x_{m}\right\}$. If x is a discretization of a real or complex set Γ, they can be expected to approximate the recurrence coefficients for orthogonal polynomials defined by a continuous inner product on Γ. This is what makes the Vandermonde with Arnoldi algorithm so effective: it is constructing an approximation to orthogonal polynomials, hence a well-conditioned basis. The ill-conditioning of the Vandermonde basis, by contrast, has an elementary explanation in cases where the points x_{j} are unequal in size. If $\left|x_{j}\right|$ varies with j, then the powers $\left|x_{j}^{k}\right|$ vary exponentially. This means that function information associated with smaller values
of x_{j} will only be resolvable through exponentially large expansion coefficients, and accuracy will quickly be lost in floating point arithmetic. The wiggles for $|x| \approx 1$ in the first image of Figure 2.1, for example, are the result of exponentially large coefficients of terms x^{k} being required in an attempt to resolve the function for values $|x|<1$.

Like polyfit, polyfita requires $O\left(m n^{2}\right)$ operations, though with a larger constant. Subsequent evaluations, however, cost just $O(M n)$ operations with polyval but $O\left(M n^{2}\right)$ with polyvalA.

Note that since the columns of Q are orthogonal with norm $m^{1 / 2}$, the last line of polyfitA could be replaced by $\mathrm{d}=\mathrm{Q}^{\prime} * \mathrm{f} / \mathrm{m}$, a mathematically equivalent operation involving just $O(m n)$ instead of $O\left(m n^{2}\right)$ operations. We have not done this since experiments indicate that accuracy is impaired. (On the other hand, this becomes an extremely stable alternative if each column of Q is computed with not just one but two rounds of orthogonalization against previous columns.)

If the numbers x_{j} are real, then X is real symmetric and the recurrence reduces to three terms at each step: H is tridiagonal and Arnoldi is equivalent to Lanczos [13]. In principle, this could reduce the operation counts to $O(m n)$ for polyfitA (less than for polyfit!) and $O(M n)$ for polyvalA. There are probably applications for which it would be worthwhile to exploit this structure, but there is a risk of reduced accuracy since the columns of V computed numerically may lose orthogonality.
5. Example 3: Fourier Extension. Our third example comes from [1]. Suppose we wish to approximate $f(x)=1 /(10-9 x)$ over the interval $[-1,1]$ using Fourier series scaled to the larger interval $[-2,2]$:

$$
f(x) \approx \sum_{k=-n}^{n} c_{k} e^{i k \pi x / 2}
$$

Since f is real, the coefficients will satisfy $c_{-k}=\bar{c}_{k}$, and we can write (with a revised definition of c_{k})

$$
f(x) \approx \operatorname{Re}\left(\sum_{k=0}^{n} c_{k} e^{i k \pi x / 2}\right)
$$

This one-dimensional problem is a model of Fourier extensions in higher dimensions, which can be used to approximate functions on irregular domains by embedding them in boxes. The difficulty is that the bases are exponentially ill-conditioned.

The Vandermonde structure is revealed if we define $z=e^{i \pi x / 2}$, giving

$$
\begin{equation*}
f(x) \approx \operatorname{Re}\left(\sum_{k=0}^{n} c_{k} z^{k}\right) \tag{5.1}
\end{equation*}
$$

or with $c_{k}=a_{k}+i b_{k}$,

$$
\begin{equation*}
f(z) \approx \sum_{k=0}^{n}\left(a_{k} \operatorname{Re} z^{k}-b_{k} \operatorname{Im} z^{k}\right) . \tag{5.2}
\end{equation*}
$$

Our aim is to find coefficients $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}$ such that (5.2) is satisfied in the leastsquares sense in a set of m points on Γ, the right half of the unit circle, with $m \gg$ $2 n+1$. We use 1000 points on Γ clustered at the endpoints in a Chebyshev distribution.

Fig. 5.I A Fourier extension example from [1], with $f(x)=1 /(10-9 x)$ approximated over $[-1,1]$ by Fourier series scaled to the larger interval $[-2,2]$. This is equivalent to approximation by powers z^{k} over just half of the unit circle, leading to exponential ill-conditioning of the Vandermonde matrix.

The calculation is done by modifying (1.2) to the form

$$
\operatorname{Re}\left(\begin{array}{ccc}
1 & \cdots & z_{1}^{n} \tag{5.3}\\
1 & \cdots & z_{2}^{n} \\
\vdots & & \vdots \\
1 & \cdots & z_{m}^{n}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
\vdots \\
a_{n}
\end{array}\right)-\operatorname{Im}\left(\begin{array}{ccc}
z_{1} & \cdots & z_{1}^{n} \\
z_{2} & \cdots & z_{2}^{n} \\
\vdots & & \vdots \\
z_{m} & \cdots & z_{m}^{n}
\end{array}\right)\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right) \approx\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{m}
\end{array}\right)
$$

In polyfit, the final line is changed to

```
c = [real(A) imag(A(:,2:n+1))]\f;
c = c(1:n+1) - 1i*[0; c(n+2:2*n+1)];
```

and similarly in polyfitA with d and Q in place of c and A. We also now take the real parts of the results computed by polyval and polyvalA.

Figure 5.1 shows results in the same format as the previous two examples. The function being approximated, $f(x)=1 /(10-9 x)$, has a pole in $[-2,2]$, a situation representative of applications of Fourier extension in cases where one cannot assume analyticity beyond the boundary of the approximation domain. The Fourier extension appears to converge root-exponentially when implemented with polyfit and polyval; compare Figure 5 of [1]. With polyfitA and polyvalA, it converges exponentially. We note that the success of this computation, and its close relationship with the previous example after the change of variables $z=e^{i \pi x / 2}$, suggest that in the end there may not be much practical difference between Fourier extensions and approximations by ordinary algebraic polynomials.
6. Example 4: Laplace Equation and Conformal Mapping. Our final example concerns the solution of the 2D Laplace equation by approximation of the solution by the real part of a complex polynomial [27]. To illustrate, let Ω be the region bounded by a Jordan curve Γ in the complex plane enclosing the point 0 , and let g be the unique analytic function that maps Ω conformally onto the unit disk with $g(0)=0$ and $g^{\prime}(0)>0$. We can write

$$
\begin{equation*}
g(z)=z e^{h(z)}=z e^{u(z)+i v(z)} \tag{6.1}
\end{equation*}
$$

where $h(z)=u(z)+i v(z)$ is an analytic function with $\operatorname{Im} h(0)=0$. Since $|g(z)|=1$ for $z \in \Gamma$, we have $|h(z)|=-\log (|z|)$ for $z \in \Gamma$, that is,

$$
\begin{equation*}
u(z)=-\log (|z|), \quad z \in \Gamma \tag{6.2}
\end{equation*}
$$

Thus the conformal mapping problem reduces to a Laplace problem: find a harmonic function u in Ω satisfying the boundary condition (6.2), let v be its harmonic conjugate with $v(0)=0$, and then g is given by (6.1). Following [28, sect. 2], we compute h by approximating it by a polynomial,

$$
\begin{equation*}
h(z) \approx \sum_{k=0}^{n} c_{k} z^{k} \tag{6.3}
\end{equation*}
$$

or, if $c_{k}=a_{k}+i b_{k}$,

$$
\begin{equation*}
u(z) \approx \sum_{k=0}^{n}\left(a_{k} \operatorname{Re} z^{k}-b_{k} \operatorname{Im} z^{k}\right), \quad v(z) \approx \sum_{k=1}^{n}\left(b_{k} \operatorname{Re} z^{k}+a_{k} \operatorname{Im} z^{k}\right) \tag{6.4}
\end{equation*}
$$

We find coefficients $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}$ such that (6.2) is satisfied in the least-squares sense in a set of m points on Γ with $m \gg 2 n+1$. This is done by again solving (5.3).

Figure 6.1 shows the result of such a computation involving a blob-shaped region Ω. The Vandermonde solution quickly stagnates, whereas Vandermonde with Arnoldi

Fig. 6.I Conformal mapping of a blob onto the unit disk by the polynomial expansion method of (6.1)-(6.4). The two upper-right images correspond to $n=200$.
is successful. In this example, as in the others, we have been careful to choose variables x and z with maximum absolute value equal to 1 so that the columns of the matrices (1.2) and (5.3) are uniformly scaled. Without such scaling, the Vandermonde approach without Arnoldi orthogonalization fails more dramatically, but that would perhaps be an unfair comparison.
7. Discussion. As we have mentioned, the combination of Vandermonde with Arnoldi is not new: this is the Stieltjes procedure in the theory of orthogonal polynomials, and its numerical advantages have been advocated at least as far back as Forsythe in 1957 [10]. The work of Stylianopoulos has focused particularly compellingly on the Arnoldi idea, which he backs up by stability estimates related to leading coefficients of orthogonal polynomials [16, 22, 23]. Among undoubtedly many other related publications we note $[2,7,8,15,19,21,25,29]$. Themes of these works include discrete and continuous orthogonal polynomials on the real line and in the complex plane, quadrature formulas, and the exploitation of three-term recurrence relations where possible. (Bergman polynomials are defined by orthogonality with respect to area measure and Szegő polynomials by orthogonality over subsets of the unit circle.) However, the emphasis in the literature is often on the construction of orthogonal polynomials on a continuous domain as an end in itself. In this note we have aimed to show that, instead, discrete orthogonal polynomials can be calculated on the fly as a means to enable further computations. They are only approximately orthogonal on a continuum, but in a numerical application, this is all one needs.

There is an interesting literature on Vandermonde matrices, which are always exponentially ill-conditioned unless the nodes are uniformly distributed on the unit circle as in the well-known case of the fast Fourier transform matrix [4, 5, 20]. The method presented here bypasses this discussion, since it bypasses the use of Vandermonde matrices.

For the specific application of polynomial interpolation, we have not found the Vandermonde with Arnoldi technique in the literature. Here the use of the barycentric formula is the established stable technique [6, 18] , as mentioned at the end of section 2.

Perhaps most important is the rectangular case, the problem of least-squares fitting with an ill-conditioned basis. As emphasized by Adcock and Huybrechs [1], problems of this nature are widespread. Our own awareness of the importance of Arnoldi orthogonalization came through the development of "lightning solvers" for the Laplace equation. Here a polynomial term plays just a supporting role in the computation, and in writing [14] we did not recognize that our computations were sometimes stagnating because this term was being treated by Vandermonde without Arnoldi. The laplace code subsequently made available at people.maths.ox.ac.uk/trefethen/ remedies the problem by including Arnoldi orthogonalization, as does the newly introduced Chebfun code conformal (..., 'poly').

Arnoldi stabilization of Vandermonde computations has many applications beyond those we have illustrated of interpolation, least-squares fitting, Fourier extension, and solution of the Laplace equation. In work not yet published, we have applied these ideas to the biharmonic equation for problems of Stokes flow, where Hermite (confluent) interpolation conditions arise in connection with Neumann boundary conditions; to multivariate polynomial and Fourier approximation on arbitrary domains; and to computation of minimal polynomials on complex sets defined by the minimax rather than least-squares criterion via Lawson iteration (iteratively reweighted least squares), a problem related to the computation of capacities. Other extensions under consideration involve the Laplace eigenvalue problem and the Helmholtz equation,
cases where the successive powers of a variable give way to a sequence of Hankel functions. In any application where a matrix of Vandermonde or closely related form may appear, it seems likely that introducing Arnoldi orthogonalization may be a good idea.

Acknowledgments. We thank Bernd Beckermann, Jean-Paul Berrut, Timo Betcke, Amit Hochman, Lyle Ramshaw, Lothar Reichel, and Olivier Sète for helpful comments.

REFERENCES

[1] B. Adcock and D. Huybrechs, Frames and numerical approximation, SIAM Rev., 61 (2019), pp. 443-473, https://doi.org/10.1137/17M1114697. (Cited on pp. 409, 410, 411, 413)
[2] A. P. Austin, M. Krishnamoorthy, S. Leyffer, S. Mrenna, J. Müller, and H. Schulz, Practical algorithms for multivariate rational approximation, Comput. Phys. Commun., 261 (2021), art. 107663. (Cited on p. 413)
[3] A. H. Barnett, G. R. Marple, S. Veerapeneni, and L. Zhao, A unified integral equation scheme for doubly periodic Laplace and Stokes boundary value problems in two dimensions, Comm. Pure Appl. Math., 71 (2018), pp. 2334-2380. (Cited on p. 409)
[4] B. Beckermann, The condition number of real Vandermonde, Krylov and positive definite Hankel matrices, Numer. Math., 85 (2000), pp. 553-577. (Cited on p. 413)
[5] B. Beckermann, G. H. Golub, and G. Labahn, On the numerical condition of a generalized Hankel eigenvalue problem, Numer. Math., 106 (2007), pp. 41-68. (Cited on p. 413)
[6] J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev., 46 (2004), pp. 501-517, https://doi.org/10.1137/S0036144502417715. (Cited on pp. 407, 413)
[7] T. Betcke, The generalized singular value decomposition and the method of particular solutions, SIAM J. Sci. Comput., 30 (2008), pp. 1278-1295, https://doi.org/10.1137/ 060651057. (Cited on p. 413)
[8] Å. Björck and V. Pereyra, Solution of Vandermonde systems of equations, Math. Comp., 24 (1970), pp. 893-903. (Cited on p. 413)
[9] P. J. Davis, Interpolation and Approximation, Dover, 1975. (Cited on p. 409)
[10] G. E. Forsythe, Generation and use of orthogonal polynomials for data-fitting with a digital computer, J. Soc. Indust. Appl. Math., 5 (1957), pp. 74-88, https://doi.org/10.1137/ 0105007. (Cited on p. 413)
[11] D. Gaier, Lectures on Complex Approximation, Birkhäuser, 1987. (Cited on p. 409)
[12] W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Oxford University Press, 2004. (Cited on p. 409)
[13] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins University Press, 2013. (Cited on pp. 409, 410)
[14] A. Gopal and L. N. Trefethen, Solving Laplace problems with corner singularities via rational functions, SIAM J. Numer. Anal., 57 (2019), pp. 2074-2094, https://doi.org/10.1137/ 19M125947X. (Cited on p. 413)
[15] W. B. Gragg and L. Reichel, On the application of orthogonal polynomials to the iterative solution of linear systems of equations with indefinite or non-Hermitian matrices, Linear Algebra Appl., 88/89 (1987), pp. 349-371. (Cited on p. 413)
[16] B. Gustafsson, M. Putinar, E. B. Saff, and N. Stylianopoulos, Bergman polynomials on an archipelago: Estimates, zeros and shape reconstruction, Adv. Math., 222 (2009), pp. 1405-1460. (Cited on p. 413)
[17] P. Henrici, Applied and Computational Complex Analysis, Vol. 3, Wiley, 1986. (Cited on p. 409)
[18] N. J. Higham, The numerical stability of barycentric Lagrange interpolation, IMA J. Numer. Anal., 24 (2004), pp. 547-556. (Cited on pp. 407, 413)
[19] R. Pachón, P. Gonnet, and J. Van Deun, Fast and stable rational interpolation in roots of unity and Chebyshev points, SIAM J. Numer. Anal., 50 (2012), pp. 1713-1734, https: //doi.org/10.1137/100797291. (Cited on p. 413)
[20] V. Y. Pan, How bad are Vandermonde matrices?, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 676-694, https://doi.org/10.1137/15M1030170. (Cited on p. 413)
[21] O. Sète and J. Liesen, Properties and examples of Faber-Walsh polynomials, Comput. Methods Funct. Theory, 17 (2017), pp. 151-177. (Cited on p. 413)
[22] N. Stylianopoulos, An Arnoldi Gram-Schmidt Process and Hessenberg Matrices for Orthonormal Polynomials, slides from talk at Banff International Research Station, 2010,
http://www.mas.ucy.ac.cy/~nikos/Banff2010.pdf. (Cited on p. 413)
[23] N. Stylianopoulos, Strong asymptotics for Bergman polynomials over domains with corners and applications, Constr. Approx., 38 (2013), pp. 59-100. (Cited on p. 413)
[24] G. SzeGŐ, Orthogonal Polynomials, Amer. Math. Soc., 1975. (Cited on pp. 407, 409)
[25] J. M. Taylor, The condition of gram matrices and related problems, Proc. Roy. Soc. Edinburgh Sect. A, 80 (1978), pp. 45-56. (Cited on p. 413)
[26] L. N. Trefethen, Approximation Theory and Approximation Practice, Extended Edition, SIAM, 2019, https://doi.org/10.1137/1.9781611975949. (Cited on pp. 406, 407)
[27] L. N. Trefethen, Series solution of Laplace problems, ANZIAM J., 60 (2018), pp. 1-26. (Cited on p. 412)
[28] L. N. Trefethen, Numerical conformal mapping with rational functions, Comput. Methods Funct. Theory, 20 (2020), pp. 369-387. (Cited on p. 412)
[29] X. Ye, Y. Xi, and Y. SaAd, Preconditioning via GMRES in Polynomial Space, Preprint ys-2019-03, University of Minnesota, Minneapolis, MN, 2019. (Cited on p. 413)

[^0]: *Received by the editors November 20, 2019; accepted for publication (in revised form) July 14, 2020; published electronically May 6, 2021.
 https://doi.org/10.1137/19M130100X
 ${ }^{\dagger}$ Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK (brubeckmarti@maths. ox.ac.uk, nakatsukasa@maths.ox.ac.uk, trefethen@maths.ox.ac.uk).

