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Lecture 1

Simplicial trees and R-trees

1.1 Overview

Housekeeping

If you are attending the course on MS Teams, I’d recommend keeping your
camera on outside of the break. Personally, I find it very easy to drift off
and lose concentration when I don’t have the camera on, and I hope it
will help you to feel more at home in the class and make it easier to ask
questions. I won’t, however, enforce this in any way (or judge if you just
want to attend with the camera off!).

Also in the spirit of making everyone at home/welcome in the class,
please feel free to ask questions. I think questions/answers are more im-
portant than necessary covering as much material as possible: I hope that
these notes will partly compensate for any material that is not covered in
the lectures.

After writing this I’ve noticed I keep using the rather Americanized word
‘class’ rather than lecture: this is mostly by accident, but I hope it does
emphasize that this should be two hours a week where we talk to each other
rather than I talk at you nonstop.

If you have any questions/comments about the course/notes please do
drop me an email or you can ask after the lecture too.
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4 LECTURE 1. SIMPLICIAL TREES AND R-TREES

What’s the goal?

I initially started with the very vague goal of looking at ‘Trees.’ In order
to give the course a bit more shape, I’ve added ‘with a view towards Outer
space,’ as a subtitle. My viewpoint comes the world of Geometric Group
Theory: the trees will typically be infinite and come equipped with an
action by an infinite group, and the group will usually be a finitely generated
discrete group. In this course, most of the trees will be simplicial, however
some results will be given in the more general context of R-trees, where the
set of branch points can be dense, or the trees can even branch everywhere!

As we will see in lecture 2, group actions on trees arise from graphs of
groups (which generalize amalgamated free products and HNN extensions).
However they also appear ‘naturally’ in geometry as dual objects to codi-
mension one subobjects. An example to think about is a simple close curve
on a surface. This lifts to a collection of lines in the universal cover (which
is the hyperbolic plane) and dual to this collection of lines is a tree which
the fundamental group acts on (via deck transformation on the universal
cover). Similar ideas work for surfaces in 3-manifolds, hyperplanes in cube
complexes, etc.

Groups can act on trees in many different ways, which is where spaces
of group actions on trees come into play. The most well-known of these
is Outer space. Getting a basic understanding of the ‘tree description’ of
Outer space, and proving it is contractible, is the main goal of the first few
lectures. After that, I have some ideas: we could look at JSJ decompo-
sitions, for instance, but I’m also happy to steer the lectures in whatever
direction the audience is most interested in.

1.2 Simplicial trees and R-trees
Group actions on trees can either be approached in the simplicial/combinatorial
setting, or in the more general setting of R-trees. As the combinatorial set-
ting is very often cleaner and easier to work in, we’ll cover both.

Graphs á la Serre

A graph is a tuple

Γ = (EΓ, V Γ, : EΓ → EΓ, ι : EΓ → V Γ),



1.2. SIMPLICIAL TREES AND R-TREES 5

where EΓ is the edge set and V Γ is the vertex set. There is an involution
on the edges such that ē ̸= e and ¯̄e = e, and ι(e) is the initial vertex of

every edge. Each edge also has a terminal vertex τ(e) = ι(e), which is useful
even if it is not technically needed in the definition. If you have not seen
this definition of a graph before, it has the surprising feature of having twice
as many edges as one might expect - associated to each geometric edge in
the picture we would draw of Γ is a pair {e, ē} in EΓ. An orientation of
a graph is therefore a subset O ⊂ EΓ containing exactly one element from
each pair {e, ē}. A subgraph ∆ ⊂ Γ is a pair E∆ ⊂ EΓ, and V∆ ⊂ V Γ
such that E∆ is preserved by edge inversion and ι(E∆) ⊂ V∆.

An edge path is a either a single vertex (in which case the path is de-
generate, or trivial), or a sequence

p = e1, e2, . . . , en

such that τ(ei) = ι(ei+1) for all i. Initial vertices, terminal vertices, and
inverses of paths are defined in the obvious way: i.e. ι(p) = ι(e1) and
p̄ = en, en−1, . . . , e1 (unless the path p is a single vertex v, in which case
ι(p) = τ(p) = p̄ = v). A path is reduced if ei+1 ̸= ei for all i, and is a loop
if ι(p) = τ(p). A graph is connected if there is an edge path between any
two vertices.

Definition 1.2.1 (Combinatorial forests and trees). A graph Γ is a forest
if every reduced edge loop is trivial. A tree is a connected forest.

There is a unique reduced edge path between any two points in a tree
(why?). In the lecture I defined a tree as a connected, simply connected,
graph. I think it is a bit cleaner to use the above definition as then you
don’t have to define what the fundamental group is.

R-trees
A geodesic metric space is a metric space (X, d) such that any points x
and y are connected by an isometrically embedded arc (a geodesic) n X.
One characterization/definition of R-trees is of geodesic metric spaces where
these arcs are unique and essentially the only way to get between x and y.

Definition 1.2.2 (Definition of R-tree by the unique path property). An R-
tree is a metric space (T, d) such that every pair of points x, y are connected
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by a unique geodesic [x, y] and every embedded path f from x to y has image
equal to [x, y].

I’m not sure if this is the best definition. Here are some alternatives

• (Cut point/0-bottleneck property) An R-tree is a geodesic metric
space T that if [x, y] is a geodesic in T and p is a point in the in-
terior of [x, y], then p separates x and y into distinct components of
T − p.

• (0-slim) An R-tree is a geodesic metric space T such that every geodesic
traingle is 0-slim.

• (Relaxing the embedding condition in the first definition) An R-tree
is a geodesic metric space T such that geodesics are unqiue and any
path (not necessarily embedded) from x to y contains the geodesic
[x, y] in its image.

To catch up on a definition: a geodesic triangle is δ-slim if any one side
is contained in the δ-neighbourhood of the other two sides. In the context
of trees, this means that all geodesic triangles are tripods.

Lemma 1.2.3 (Tripod lemma). If a, b, c are three points in an R-tree there
exists a unique point m ∈ T such that

[a, b] = [a,m] ∪ [m, b]

[b, c] = [b,m] ∪ [m, c]

[c, a] = [c,m] ∪ [m, a]

In other words, the geodesic triangle given by the points a, b, c is a tripod
with midpoint m.

Another immediate consequence of the definitions is that geodesics in
trees have a strong local-to-global property: any arc that is locally a geodesic
is a geodesic. One way to phrase this is as follows:

Lemma 1.2.4 (Local-to-global property). If [x0, x1], [x1, x2], . . . , [xn−1, xn]
are nondegenerate geodesics and

[xi−1, xi] ∩ [xi, xi+1] = {xi}

for all i, then their concatenation is equal to the geodesic from x0 to xn.
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Lemma 1.2.5 (Closed subtree projection). It S is a closed subtree of T
then every point x ∈ T has a unique closest point πS(x) ∈ S satisfying
d(πS(x), x) ≤ d(s, x) for all s ∈ S.

Sketch proof. As S is closed, points of minimum distance from S to x exist.
Uniqueness is a consequence of the tripod lemma - if there are two points
a, b ∈ S that are closest to x, then by the tripod lemma, all points along
the geodesic [a, b] are closer to x than a and b, and belong to S as it is a
subtree. It follows that [a, b] must be degenerate and a = b.

Morphisms and attempts at analysis

Combinatorial morphisms

A combinatorial morphism between two trees T and T ′ is a map sending
each edge e ∈ T to an edge path f(e) in T ′, such that if ι(e) = ι(e′) then
ι(f(e)) = ι(f(e′)). Note that the path f(e) is allowed to be degenerate,
in which case we say the morphism is degenerate. If all paths f(e) are
nondegenerate then we say the morphism is nondegenerate.

Metric morphisms

Doing the analogous thing for R-trees is a little trickier. In this situation,
a morphism is a map f : T → T ′ such that every arc p ⊂ T there exists
a covering p1, p2, . . . , pn of p by subarcs and constants λ1, λ2, . . . , λn such
that for any two points x, y ∈ pi we have

dT ′(f(x), f(y)) = λidT (x, y).

In other words, each subarc is stretched uniformly by f . Note that with
this definition, morphisms need not be Lipschitz (are they even always
continuous?), however in practice the λi’s that appear will be uniformly
bounded from above.

A morphism is non-degenerate if no nondegenerate arc in T is mapped
to a point in T ′.

Every morphism factors as a composition T → T ′′ and T ′′ → T ′ where
the first map is a forest collapse and the second map is nondegenerate.

Note that non-degenerate maps are not always injective. Some of the
most important maps we will look at later on - folds will be nondegenerate
but not injective.
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Directions

The closest we have to a unit tangent bundle for a tree is the set/space of
directions (although there aren’t great topologies for the set of directions
you can have a think about how to topologise this!). A direction d is a
component of T −x for a point x ∈ T . In this case we say that d is based at
the point x. A point x is a branch point if there are at least three directions
based at x, and is a leaf or an end of T if there is exactly one component
of T based at x.

Any nondegenerate morphism from T to T ′ induces a map between the
directions of T and the directions of T ′.

Exercise 1.2.6. If the set of directions is the ‘unit tangent bundle’ of a
tree, what should be the definition of the tangent bundle of a tree? Is there
a reasonable way to topologise this?

Simplicial R-trees
A simplicial R-tree is one obtained from a simplicial tree by assigning a
length λe to each edge such that the lengths are uniformly bounded below
by some ϵ > 0. Alternatively, one can ask that T is complete and the set of
distances between branch points and/or leaves is bounded below by some
ϵ > 0. There is not really a gold standard definition of simplicial R-tree in
the literature but I hope this one is natural enough.

Three Tree Topologies

For any R-tree, there are two topologies that commonly appear in the lit-
erature. The first is the metric topology, which is the topology induced by
the metric on T . The second is the visual topology, which is defined to be
the coarsest topology such that every direction in T is an open set.

For a simplicial tree, there is also the simplicial topology, where a set
is defined to be open if an only if its intersection with every simplex of
the tree (e.i. edge/vertex) is open. For historical reasons, this topology on
simplicial/CW complexes is often called the weak topology. This naming
has not aged well - many topologists would argue that in fact, this a rather
strong topology:
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Exercise 1.2.7. If T is a locally finite simplicial tree, show that all three
tree topologies coincide on T . Furthermore, if T is not locally finite, show
that visual topology is strictly coarser than the metric topology and that
the metric topology is strictly coarser than the simplicial topology.





Lecture 2

Classification of isometries and
group actions

In this lecture we want to discuss how individual isometries and how groups
of isometries can act on a tree. We work in the more general setting of R-
trees for the duration. We mostly follow Culler–Morgan’s very readable
paper BLAH, although many of the ideas here appeared (in the simplicial
setting) in Serre.

2.1 Displacement functions

Given a metric space X and an isometry g : X → X, the displacement of g
is defined by

∥g∥X = inf{d(x, gx) : x ∈ X}

The characteristic set of g is then the set of points where the minimal
displacement is realized:

Cg = {x ∈ X : d(x, gx) = ∥g∥X}

In general, this set may be empty. If Cg = ∅ the isometry is called
parabolic, and isometries of metric spaces fall into four classes:

• An isometry g is elliptic if ∥g∥X = 0 and Cg = Fix(g) ̸= ∅;

• it is neutral parabolic if ∥g∥X = 0 and Cg = ∅;

11
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• it is hyperbolic/loxodromic if ∥g∥X > 0 and Cg ̸= ∅; and

• it is non-neutral parabolic if ∥g∥X > 0 and Cg = ∅

This language is not exactly standardized - in these notes as well as the
broader literature hyperbolic and loxodromic are often used interchange-
ably. Non-neutral parabolic isometries are sometimes called ballistic. I will
not focus at all on parabolic isometries, as the main goal of this section is
to show that such isometries do not exist for group actions on trees.

2.2 The classification theorem

The following theorem has three important pieces:

• Isometries of trees are elliptic or hyperbolic

• d(g, xg) depends only on ∥g∥T and the distance from x to Cg

• If g is loxodromic then Cg is a line, called the axis of g.

Here is the full statement:

Theorem 2.2.1 (Classification of isometries). If g is an isometry of a tree
T then Cg is a nonempty closed subtree. In particular, every isometry is
either elliptic or loxodromic. Furthermore

d(x, gx) = ∥g∥T + 2d(x,Cg)

for all x ∈ T . If g is loxodromic then Cg is a line on which g acts by
translation by ∥g∥T .

Proof. We first consider the case when g fixes a point. Note that Cg is
always closed for an isometry of any metric space as isometries are contin-
uous. If x and y are fixed by g then uniqueness of geodesics implies [x, y]
is fixed by g. Hence Cg is a subtree of T . As Cg is closed we can con-
sider the closest point projection π : T → Cg. The isometry sends [π(x), x]
to [π(x), gx]. If the union of these two lines was a nondegenerate tripod,
then g would fix the midpoint of this tripod (as g permutes the endpoints).
However, as π(x) is the closest fixed point to x, the tripod is degenerate
and these two arcs form a geodesic. Hence d(x, gx) = 2d(x,Cg).
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Now assume no point in T is fixed by g. Let x be arbitrary and consider
the arcs I = [x, gx] and J = I \ (gI ∪ g−1I). The arc g−1I is an initial
segment of I, and the arc gI is a terminal segment of I, and one can show
that if gI and g−1I overlap then g fixes the midpoint of I, which contradicts
are assumption that no point of T is fixed by g. Furthermore, J and gJ are
nondegenerate and intersect only at the terminal endpoint of J . It follows
that J ∪ gJ is a geodesic by the strong local-to-global property, and by
induction the union

· · · g−1J ∪ J ∪ gJ ∪ g2 · · ·

is a line L, and g acts on this line by translation of length |J |. Now let π
be the projection of T onto the line L. Note that [x, π(x)] only intersects L
in π(x), so as L is g-invariant, the line g[x, π(x)] intersects L only at gπ(x),
from which we see that gπ(x) = π(gx), and the lines [x, π(x)], [π(x), gπ(x)],
and [gπ(x), gx] only intersect at π(x) and gπ(x), so form a geodesic. As the
length of the middle segment is J , it follows that d(x, gx) = 2d(x, L) + |J |,
and therefore L = Cg.

We have show that an isometry that is not elliptic acts by translation
along a copy of R ⊂ T . Hence:

Corollary 2.2.2. Every finite order isometry of an R-tree is elliptic.

Directions and isometries

If d ⊂ d′ or d′ ⊂ d we say the directions d and d′ are coherent. Otherwise,
we say they are incoherent.

Lemma 2.2.3 (Coherence lemma). If d and gd are coherent directions
based at x and gx respectively, then [x, gx] is contained in Cg.

Proof. If x ̸∈ Cg, and d is a direction based at x, then either d is facing
away from Cg (i.e. Cg ∩ d = ∅), or d is facing towards Cg (i.e. d contains
Cg). In the former case, d and d′ are in different components of T − Cg

(as they are based at points in different components). In the latter case d
contains gx but gd does not, and similarly gd contains the point x but d
does not. This shows that if d is any direction based at a point not in Cg

then d and gd are incoherent.
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The bridge lemma

If A and B are disjoint closed subtrees of a tree T , then every point in
B has the same closest point πA(B) in A. Similarly, every point in A has
the same closest point πB(A) in B. The bridge from A to B is the arc
[πA(B), πB(A)].

Lemma 2.2.4 (Bridge lemma). Suppose g and h are isometries of an R-
tree T with disjoint characteristic sets. Then gh is a hyperbolic isometry of
translation length

∥gh∥T = ∥g∥T + ∥h∥T + 2d(Cg, Ch).

Furthermore, Cgh contains the bridge from Cg to Ch.

Skech proof. Let [x, y] be the bridge from Ch to Cg, and let d be the direction
at h−1x containing Cg. The direction h(d) is based at x and does not contain
Cg (why?), so gh(d) does not contain Cg by g-invariance. As d contains Cg

it contains every component of T −Cg not containing h−1(x), so it contains
gh(d). Hence these directions are coherent and [h−1(x), g(x)] belongs to
Cgh. One can check that

[h−1(x), g(x)] = [h−1(x), x] ∪ [x, y] ∪ [y, g(y)] ∪ [g(y), g(x)],

which as x ∈ Ch and y ∈ Cg implies that d(h−1(x), g(x)) = ∥g∥T+∥h∥T+
2d(Cg, Ch) (some of the full arguments above might require breaking up into
cases where g, h are elliptic/hyperbolic, but everything stated above is true
regardless).

The bridge lemma is useful for constructing hyperbolic isometries with
particular axes.

2.3 The boundary at infinity

The boundary of an R-tree, which in terms of hyperbolic spaces is the
Gromov boundary of the tree, can be defined in terms of equivalence classes
of rays, where a ray is an isometrically embedded copy r : [0,∞) → T of a
half line. We say that two rays r and r′ are equivalent if their intersection
r ∩ r′ is also a ray. This is an equivalence relation.
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Definition 2.3.1 (The boundary of a tree). The boundary ∂T of a tree is
defined to be the set of equivalence classes of rays in T . We equip ∂T with
the topology induced by directions, where we insist that the set of rays lying
in a direction d is open in ∂T .

Exercise 2.3.2 (For those interested in δ-hyperbolic geometry). Show that
the boundary ∂T as above is homeomorphic to the Gromov boundary of
the tree.

Defined in this way, the visual topology extends to a topology on T ∪∂T ,
and if we take T to be the metric completion of T , extends to a topology
on T ∪ ∂T .

Exercise 2.3.3. Show that if x ∈ T then any open set in the visual topology
containing x contains all but a finite number of directions at x. Assuming
X = T ∪ ∂T is separable, use this to show that X is compact with the
visual topology (separability lets you assume that the open cover you take
to prove compactness is countable).

Exercise 2.3.4. (If you like set theory/point set topology) Show that X =
T ∪ ∂T is compact with the visual topology for any R-tree T .

Exercise 2.3.5. Suppose that T is a locally finite simplicial tree. Show
that T ∪ ∂T is metrizable with the visual topology.

2.4 Classification of group actions

Minimal subtrees

In general, when studying group actions we would like the space to be as
small as possible while still carrying all the necessary information about
said action. This is covered by the notion of minimality.

Definition 2.4.1. An action of a group G on a tree T is minimal if there
exists no proper, G-invariant subtree of T .

Proposition 2.4.2 (The minimal subtree for an action with a hyperbolic
element). Suppose that the action of G on T contains a hyperbolic isometry.
Then there is a unique nonempty G-invariant subtree S ⊂ T , which is the
union of the axes of all hyperbolic elements.
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Proof. The proof of classification of isometries shows that if x ∈ T and g is a
hyperbolic element, then the convex hull of the orbit of x under ⟨g⟩ contains
Cg. This implies that Cg is contained in every g-invariant subtree of T .
Hence if S ⊂ T is G-invariant, it contains Cg for every hyperbolic element
G. It remains to show that the union of axes of hyperbolic elements is a
G-invariant subtree of T . The G-invariance follows from the fact that if g is
hyperbolic and h ∈ G is any other element then hgh−1 is hyperbolic (with
the same translation length as g) and h(Cg) = Chgh−1 (I would recommend
proving this if you haven’t seen this before - it applies to all characteristic
sets for arbitrary group actions on metric spaces). We are left to prove that
this union S of hyperbolic axes is a subtree (i.e. it is connected). Assume
for a contradiction that g and h are hyperbolic elements such that Cg and
Ch are in different components of S. In particular, the axes of g and h
are disjoint. By the Bridge Lemma, the element gh is hyperbolic and Cgh

contains the bridge from Cg to Ch in T . As Cgh ⊂ S, this contradicts Cg

and Ch being in different components of S

It is crucial that a hyperbolic isometry exists in order for unique minimal
subtrees to exist: for instance, if G is acting trivially on a tree T , then every
point in T is a proper, nonempty, G-invariant subtree, so that minimal
subtrees are far from unique. However, at least when G is finitely generated,
this is the only thing that can happen:

Proposition 2.4.3. If G is a finitely generated group and G acts on a tree
T by elliptic isometries, then G has a global fixed point in T .

Proof. Let X be a finite generating set of G. If X = {g1, . . . , gn} then by
induction we can assume that the subgroup Gn−1 = ⟨g1, . . . , gn−1⟩ has a
global fixed point in T . Let Tn−1 be the subtree fixed by Gn−1. If Cgn ∩
Tn−1 = ∅, then there exists h ∈ G that does not fix any point in Cgn , so that
Ch∩Cgn−1 = ∅. However in this case hgn would be hyperbolic by the Bridge
Lemma, which is a contradiction. As Tn−1 ∩ Cgn is nonempty, there exists
a point fixed by all generators of G, hence fixed by the whole of G.

More generally, we have the following result:

Exercise 2.4.4. If G acts on a tree T by elliptic isometries, then G fixes a
point in X = T ∪ ∂T . HINT: Show that the set {Xg}g∈G of fixed point sets
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in X satisfies the finite intersection property, and apply compactness of X
(proved in Exercise 2.3.4).

When T is simplicial the above exercise requires less topological acro-
batics: see exercise 2 on page 66 of Serre.

The classification theorem for actions

Definition 2.4.5 (Irreducible action). An action of a group G on a tree T
is irreducible if there exist hyperbolic elements g, h ∈ G with disjoint axes.

Theorem 2.4.6. Let G be a group acting on a tree T with at least one
loxodromic element. Then either

• G has a fixed point in ∂T

• There exists a line R ⊂ T that is invariant under the action.

• The action is irreducible.

Sketch proof. If all the hyperbolic isometries share either two common ends
or one common end then we get put in cases two and one respectively.
Therefore we may assume there exist hyperbolic isometries g, h whose axes
have distinct ends. If they are disjoint, we are happy. Otherwise, Cg ∩ Ch

is a compact arc. Note that gkhg−k is hyperbolic, and has axis gk(Ch).
Choose a large enough power of g so that the arcs Cg ∩Ch and Cg ∩Cgkhg−k

are disjoint. Then Cgkhg−k∩Ch is empty (as otherwise this would contradict
Helly’s theorem).

Exercise 2.4.7 (Ping-pong lemma). Suppose G acts on a space X and
g, h ∈ G. Suppose there exist disjoint, nonempty subsets U, V ⊂ X such
that gk(U) ⊂ V and hk(V ) ⊂ U for all k ̸= 0. Show that ⟩g, h⟨ is a free
group of rank 2.

Exercise 2.4.8 (Irreducible actions have free subgroups). Show that if G
acts irreducibly on a tree T then G contains a free nonabelian subgroup.
HINT: Take X = T , take a point p on the bridge between Cg and Ch.
Let U be the direction at p containing Ch and let V be the direction at p
containing Cg.





Lecture 3

A whistle-stop introduction to
Bass–Serre theory

Figure 3.1: Two actions of the free group F4 = F (a, b, c, d) on trees, written
as graphs of a groups.

The goal of this section is to give an overview of Bass–Serre theory, fo-
cusing on notation, definitions, and examples, rather than proofs. There are
two excellent references for proofs: Serre [6] is a complete classic, and Scott–
Wall [5] gives the topological point of view. The notation here is mostly
taken from a paper of Cohen–Lustig [1]. In an attempt to compensate for
the complete lack of proofs,

In short, Bass–Serre theory tells us how to translate between objects
called graphs of groups on the one hand, and group actions on simplicial
trees on the other. While I much prefer working with the geometry that
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is afforded to us by working with group actions, graphs of groups have the
advantage of having very compact notation, and allow us to describe these
infinite objects and group actions with a small picture (see Figure 3.1).

These methods only work for simplicial actions - there is not a clean
general theory for R-trees in general, but there are some results we shall
look into a bit later on.

3.1 A first example (Figures 3.2 and 3.3)

Figure 3.2: A first example, with some of the vertices labelled. Thank you
to those in the lecture for helping me get them the right way round.

Let T be the Cayley graph of a free group of rank 2 with respect to a
generating set given by two elements called a and b. Every vertex is labelled
by a group element, and each edge is labelled by a basis element. Recall
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Figure 3.3: The tree after collapsing the blue edges. The red edges still
have the same trivial stabilizers as before, however the vertices now have
stabilizers conjugate to ⟨b⟩ (the group stabilizing the line).

that if s is a basis element then the elements g and gs are linked by an edge
labelled s. In this simple example we have a tree with blue and red edges,
and F2 acts freely on this tree.

What happens if you collapse the blue edges? (Figure 3.3)

This example is really worth playing with if you haven’t thought about
it before (or in fact, even if you have). The blue lines give an F2-equivariant
forest in the Cayley graph. The stabilizer of each of these lines is a conjugate
of ⟨b⟩, so collapsing then gives a new action of F2 on a tree. Now the vertices
have infinite valence and infinite stabilizers. For instance, if 1 is the image
of the identity element under the collapse map, there is an infinite set of red
edges going out to vertices of the form bka, and infinitely many red edges
coming in from vertices labeled by bla−1. The stablizer of 1 is ⟨b⟩, and this
stabilizer acts locally by permuting the outgoing/incoming edges at 1.

We shall see that this tree with this very interesting action has a simple
description as a graph of groups with a single loop with a trivial edge group
and the vertex group labeled by Z.
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3.2 Graphs of groups

A graph of groups G is a tuple

G = (Γ, (Gv)v∈V (Γ), (Ge)e∈E(Γ), (fe)e∈E(Γ))

such that:

• Γ is a connected graph in the sense of Serre (cf. I §2.1 in [6]) with
vertex set V (Γ) and edge set E(Γ).

• Each Ge, Gv is a group.

• If τ(e) is the terminal vertex of an edge e, we have an injective edge
homomorphism fe : Ge → Gτ(e).

• For any edge e, we have Ge = Gē, where ē denotes the edge e with
reversed orientation.

We let ι(e) = τ(ē) denote the initial vertex of an edge e.

The path group

The path group of G, denoted Π(G), is defined by taking the free group
F generated by the letters (te)e∈E(Γ) and quotienting out the free product
(∗v∈V (Γ)Gv) ∗ F by the relations:

• te = t−1
ē for all e ∈ E(Γ),

• tefe(a)t
−1
e = fē(a) for all e ∈ E(Γ) and a ∈ Ge.

In our simple example of a loop with trivial edge group and vertex group
Gv = Z, the path group is isomorphic to F2. However this is a feature of
the associated graph being a single loop. More general, we either have to
pass to a subgroup or a quotient group of this path group.
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The fundamental group of the graph of groups

As a subgroup of the path group

We say that an element g ∈ Π(G) is connected if there exists a (possibly triv-
ial) path e1, . . . , ek in Γ starting from a vertex v0 and elements g0, g1, . . . , gk
such that g0 ∈ Gv0 , gi ∈ Gτ(ei) for each i ≥ 1 and:

g = g0te1g1te2 · · · gk−1tekgk.

We define π1(G, v, w) to be the set of elements of Π(G) represented by
connected words whose underlying paths start at v and end at w. If v = w,
the set forms a subgroup of Π(G) – the fundamental group of the graph of
groups – and is denoted π1(G, v).

Given any element x of a group G, let adx be the inner automorphism
given by the map g 7→ xgx−1. If W ∈ π1(G, v, w) then the restriction of
adW : Π(G) → Π(G) to π1(G, w) induces an isomorphism between π1(G, w)
and π1(G, v).

As a quotient of the path group

Alternatively, given a maximal tree S of the graph Γ, the fundamental group
of the graph of groups can be defined as a quotient of the path group by

π1(G, S) = Π(G)/⟨⟨te : e ∈ S⟩⟩.
For any tree T and any v ∈ Γ, the composition

π1(G, v) ↪→ Π(G) ↠ π1(G, S)
is an isomorphism.

Useful results

• The vertex groups Gv embed into π(G, S) (this implies Gw is a sub-
group of π(G, v) but we have to think a bit more carefully about what
this embedding looks like). The edge groups also embed via the maps
fe.

• This is a special case of the fact that connected words in the path
group have a normal form theorem (see ??). I won’t write this out
in full, but in particular it says that if two connected words are equal
in Π(G) they have the same underlying edge paths. This gives a
surjective homomorphism π1(G, v) ↠ π1(Γ, v).
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3.3 Building the Bass–Serre tree

We have defined the fundamental group of a graph of groups. We now
need to give this group a tree TG to act on. This will have the following
properties:

• Edge stabilizers in TG are conjugates of the edge groups Ge in π1(G, S).

• Vertex stabilizers in TG are conjugates of the vertex groups Gv in
π1(G, S).

• The adjacent edges at a vertex are in a one-to-one correspondence
with the cosets of the edge groups in the vertex group (really this is
just a restatement of the orbit-stabilizer theorem, but it’s a useful fact
to know).

The definition

We need to define vertices, edges, and how the edges are glued. As above,
we let G be the graph of groups and Γ the underlying graph. Let O be an
orientation of Γ, and let S ⊂ Γ be a maximal tree in Γ.

• V (TG) is the set of cosets gGv of the vertex groups Gv ⊂ π1(G, S).

• E(TG) is the set of cosets gGe of the edge groups Ge ⊂ π1(G, S).

• Edge inversion is given by gGe = gGe

To define the ends of edges, if e ∈ O we set:

ι(gGe) = gGι(e)

τ(gGe) = gteGτ(e)

otherwise if e ̸∈ O we set

ι(gGe) = gt−1
e Gι(e)

τ(gGe) = gGτ(e)

3.4 Example: Baumslag–Solitar groups

3.5 The topological picture



Lecture 4

How Bass–Serre theory fails
for general R–trees

4.1 Rips’ theorem
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Lecture 5

Deformation spaces I: Outer
space and the main definition

5.1 Outer space served three ways

As a space of graphs

As a space of sphere systems

As a space of Fn-trees
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Lecture 6

Deformation spaces II

We continue to work through Guirardel and Levitt’s paper on deformation
spaces [3].

6.1 WTFn is going on????

It’s 6 weeks in. We’ve had 10 hours of stuff and a busy term. Let’s take a
time-out for a recap.

• Groups (sometimes) act on trees.

• Two actions are the same if they are equivalent up to G equivariant
isomorphism.

• If G acts on a tree T , then Aut(G) acts on the space T of G-actions
on simplicial trees on the right (at least this most common in the
literature) by precomposition. In other words, an action is given by
a homomorphism f : G → Isom(T ), and if ϕ : G → G is an automor-
phism we get a new action f ◦ ϕ.

• Understanding the topology, combinatorics, and geometry of T (or
nice subspaces) and this action gives loads of information about the
automorphism groups (this has been downplayed so far as we’ve been
more focused on individual actions).

• If adg is the inner automorphism by g ∈ G then f ◦ adg is the same
action as f (like really, I know I’m not pushy about exercises, but this
is a good short one to do). Hence we get an action of Out(G) on T

29



30 LECTURE 6. DEFORMATION SPACES II

• Elements of a group are either elliptic or hyperbolic for an action
G ↷ T .

• If G is finitely generated and all elements are elliptic then G has a
global fixed point (the action is trivial).

• If there is some hyperbolic isometry then action G ↷ T has a unique
minimal subtree, denoted T |G, which is the union of the hyperbolic
axes.

• This (despite there being quite a few nontrivial things here) is often
the starting point in the literature - a G-tree is often defined as a
minimal action of G on an R-tree.

• Actions are either trivial, abelian, dihedral, or irreducible.

• We mostly care about the irreducible actions (that have disjoint hy-
perbolic axes, contain free groups of hyperbolic elements, etc). These
are particularly nice as, due to a theorem of Culler–Morgan [2], they
are completely determined by their length functions.

• The deformation space D(T ) determined by a tree T is the set of trees
T ′ with the same elliptic subgroups as T . Alternatively two G-trees
determine the same deformation space if there exist G-equivariant
morphisms f : T → T ′ and f ′ : T ′ :→ T (again, v v good exercise).

• All trees in the same deformation space are of the same type.

6.2 Making the space smaller and some

simple examples

For this section, our main example will be the deformation space given by
the tree T coming from the free product A ∗ B of two groups. We will see
that this tree is not unique in PD, but is unique (up to homothety) in a
sub-object called the reduced deformation space Dr. The need for this is
highlighted as follows: if we take any chain A = A0 ⊃ A1 ⊃ A2 · · · ⊃ Ak we
can build a new tree with k + 1 edge-orbits coming from the line:

The set of elliptic subgroups of this new splitting is the same as the set
of elliptic subgroups in T , so they belong to the same deformation space.
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Reduced trees

Definition 6.2.1 (Reduced trees). A tree T is reduced if every tree T ′

obtained by collapsing an orbit of edges in T is in a different deformation
space. Equivalently, for every edge e ∈ T , either e is a loop in the quotient
graph T/G or the edge stabilizer Ge is a proper subgroup of both of its
adjacent vertex groups.

Example 6.2.2. The example T = A ∗ B is reduced, but the tree T ′ we
obtained by stretching out the A vertex is not.

In Outer space, a tree T is reduced if and only if T/Fn is a rose.

Proposition 6.2.3 (Arc stabilizers in reduced trees ([3], Proposition 4.6)).
Let T be reduced. A subgroup H ⊂ G fixes a nondegenerate arc in T if and
only if it is contained in a subgroup K of the form

• K = A ∩B where A,B ∈ E(T ) but ⟨A,B⟩ ̸∈ E(T )

• K ∈ E(T ) and there exists g hyperbolic such that K ⊂ gKg−1

As these conditions are phrased in terms of elliptic subgroups, the set of
subgroups that fix nondegenerate arcs is the same for every reduced tree in
a deformation space.

Proof. First note that any such K (and hence its subgroups) fixes an arc in
T . In the first case, the conditions imply that A and B fix subtrees SA and
SB, however, as ⟨A,B⟩ ̸∈ E(T ), these subtrees are disjoint. It follows that
A ∩ B fixes the bridge from SA to SB. In the second case, if v is a fixed
point of K, then so is gv, so K fixes the arc from v to gv.

Now suppose T is reduced and H fixes a nondegenerate arc in T . Then
H is contained in some edge stabilizer Ge := K. Let v, w be the endpoints
of e. If Ge is a proper subgroup of both Gv and Gw. Then we can take
A = Gv, and B = Gw. Otherwise, without loss of generality we can assume
that Ge = Gv and, as T is reduced, e maps to a loop in T/G. Then there
exists hyperbolic g ∈ G such that gv = w (e.g. given by a stable letter
for the loop in the graph of groups), and gGeg

−1 = gGvg
−1 = Gw contains

Ge.

The general mantra is that although vertex and edge stabilizers are not
always the same throughout a deformation space (even for reduced trees),
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the set of subgroups of edge stabilizers does not depend on a given reduced
tree.

Definition 6.2.4 (Restricted deformation spaces, reduced deformation spaces).
If A is a family of subgroups of G then DA is the set of G-trees T ∈ D such
that each edge stabilizer in T belongs to A. For a deformation space D,
we let Amin be the set of subgroups of edge groups in a reduced tree in D.
This is well-defined by Proposition 6.2.3. The reduced deformation space is
defined to be Dr := DAmin

.

Remark 6.2.5 (This notation sucks). • Reduced Outer space in the sense
of Culler–Vogtmann is a completely different notion to reduced defor-
mation spaces.

• Not all trees in reduced deformation space are reduced (again look at
the Outer space example).

• An irreducible action (in the sense of having independent loxodromics)
need not be reduced, and conversely reduced trees need not be irre-
ducible (e.g. the HNN tree for BS(1, 2)).

Proposition 6.2.6. Let T be the one-edge splitting given by a free product
decomposition G = A∗B. Then every tree in the reduced deformation space
Dr(T ) is equal to T , up to G-equivariant homothety.

Proof. As all edge stabilizers in T are trivial, the reduced deformation space
is the set of trees T ′ with the same elliptic subgroups as T and trivial edge
stabilizers. Let v and w be the vertices of T fixed by A and B respectively,
and let e be the edge between them. There exist (unique) vertices v′ and w′

in T ′ fixed by A and B respectively. Define f(v) = v′, f(w) = w′ and extend
to a G-equivariant map f : T → T ′ (why can you do this?), mapping e to
the unique reduced edge path from v′ to w′. The map f is surjective, as the
image is a G-invariant subtree of T ′, which must be T ′ itself by minimality.
The map is also locally injective: suppose that d and d′ are two directions
at a vertex in T that are mapped to the same direction in T ′. Without
loss of generality, let us assume that this vertex is the one fixed by A (we
called this v above). Note that A acts transitively on the set of directions
at v, so that ad = d′ for some a ∈ A. This implies that a fixes some initial
segment of the image of d in T ′, which is a contradiction as T ′ has trivial
edge stabilizers. Therefore f is locally injective, but locally injective maps
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of trees are injective by the local-to-global property of geodesics. Hence f
is a simplicial isomorphism (or a homothety in the metric setting).

What happens with A ∗B ∗ C?

6.3 Topologies on spaces of trees

Let G be a finitely generated group. Let T be the set of all simplicial
G-trees. We previously defined three different topologies on a simplicial R–
tree. We will now define three different topologies on the space of simplicial
R–trees. The number three appearing twice here is mostly a coincidence,
although both times there is a CW, or ‘weak’ topology, that happens in
fact to be quite strong.

The ‘weak’, or open simplicial topology

Calling this the weak topology is quite misleading, but people do it. This
is a ‘simplicial’ style topology on a deformation space, and as we’ve seen
with trees earlier, when the spaces in question are not locally finite, the
simplicial topology ends up being finer than other natural topologies.

Definition 6.3.1 (Open simplicial topology). Given T ∈ D, let C(T ) be
the open cone in T determined by T . This is the set of simplical R-trees
obtained by varying the edge lengths in T in (0,∞). We topologise this as a
subspace of RE(T )/G. The closed cone C(T ) is the set of nontrivial simplicial
R-trees obtained by collapses of elements of C(T ) (i.e., the space where we
allow all-but-one edge lengths to go to zero). A set V ⊂ T is defined to be
closed if the intersection of V with every closed cone is closed.

An unfortunate part of this definition is that open cones are not necessar-
ily open in T , although maximal open cones (i.e., coming from unrefinable
trees) are open in this topology.

The equivariant Gromov-Hausdorff topology

In the equivariant Gromov-Hausdorff topology, or simply Gromov topology,
we define neighbourhoods by approximating how finite subsets of G act on
finite subtrees of T .
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Definition 6.3.2 (Equivariant G–H topology). Given T ∈ T , a neighbour-
hood VT (X,A, ϵ) of T in the Gromov–Hausdorff topology is determined by
finite subsets X ⊂ T and A ⊂ G and a real number ϵ > 0. A tree T ′ belongs
to VT (X,A, ϵ) if and only if there exists a map f : X → T ′ such that

|dT (x, gx′)− dT ′(f(x), gf(x′))| < ϵ

for all x, x′ ∈ X and g ∈ A.

The length function topology

Let F : T → RG be the map defined by

T 7→ (∥g∥T )g∈G.

The length function topology, or axes topology is the coarsest topology on
T that makes F continuous with respect to the product topology on RG.
Equivalently, it is the coarsest topology on T such that every individual
length function T 7→ ∥g∥T is continuous.

For an in-depth discussion of the relationship between these topologies,
see Section 5 of [3]. However, with respect to irreducible actions, the picture
is a much clearer:

Theorem 6.3.3 ([2]). Let Tirr be the space of irreducible G–trees. The map

F : Tirr → RG

given by T 7→ (∥g∥T )g∈G is injective.

Theorem 6.3.4 ([4]). Let Tirr be the space of irreducible G–trees. The
Gromov–Hausdorff and length function topologies agree on Tirr.

For our purposes, we will only make use of the following:

Proposition 6.3.5. Let D be a deformation space. The Gromov topology
and the weak topology induce the same topology on any finite union of cones
in D (resp. of simplices of PD)



Misc. Exercises

These have been transported from some previous notes. As a result, we may
not have seen all the definitions required for these, and I plan to re-home
them as appropriate.

Exercise 6.3.6. Let T be a tree and T be the metric completion of T .
Show that for every point x ∈ T − T there is only one direction in T at x.

Exercise 6.3.7. Suppose G acts on a tree T . Show that if N is a normal
subgroup of G containing a hyperbolic element then the action of G on T
is minimal if and only if the action of N on T is minimal.

Exercise 6.3.8. Suppose that T has trivial arc stabilizers, let H be a
subgroup of G with trivial arc stabilizers and suppose that g ∈ G − H.
Show that the set of nondegenerate trees of the form Yh = {x : gx = hx}
forms a transverse family in T .

Exercise 6.3.9. Show that if Y is a transverse family in a tree T with
dense orbits and finitely many orbits of branch directions, then Stab(Y )
acts on Y with dense orbits.

Exercise 6.3.10. Show that if the action of G on T is minimal and irre-
ducible with dense orbits then the branch points are dense in every arc of
T .

Exercise 6.3.11. Show that if g and h fix a point in T and g and h
commute, then the product gh also fixes a point.

Exercise 6.3.12. Suppose that G is a finitely generated group with a non-
trivial action on a tree T with dense branch points. Show that the minimal
subtree Tmin of G is nowhere dense in the metric completion T . Hint: Show
any arc is nowhere dense in Tmin and apply the Baire Category Theorem.
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Exercise 6.3.13. Suppose that G ↷ T and g, h are (not necessarily hy-
perbolic) elements with Cg ∩ Ch = ∅ and Chn = Ch and Cgn = Cg for all
non-identity powers of g and h, then ⟨g, h⟩ ∼= ⟨g⟩ ∗ ⟨h⟩

Exercise 6.3.14. Show that for any action G ↷ T , if g ∈ G and x ∈ T
then

∥g∥T = max{d(x, g2x)− d(x, gx), 0}.

Use this to show that every open subset of Xne with the axis topology is
also open with respect to the Gromov-Hausdorff topology.

Exercise 6.3.15. Show that if G ↷ T is irreducible and B(T, F, S, ϵ) is a
basic neightbourhood of T in the Gromov–Hausdorff topology then there
exists a set F ′ of branch points in T and ϵ′ > 0 such that B(T, F ′, S, ϵ′) ⊂
B(T, F, S, ϵ).
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