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Abstract

A sloppy system is one which displays a logarithmic hierarchy of sensitiv-
ity to certain parameter combinations. To study the effect of sloppiness on
evolution in biological systems driven by random mutations in parameter
space, measures of evolvability and robustness are derived by seeking in-
spiration from analogous measures in discrete genotype-phenotype maps.
Under this set of definitions, sloppiness is found to decrease state evolv-
ability. However, it is not a sufficient condition for determining state
robustness, parameter evolvability and parameter robustness.
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Chapter 1

Introduction

Models in system biology describe the complex biochemical processes in living things.
Very often, these complex nonlinear models display a property known as ‘sloppiness’,
which may be a general property of a very wide class of systems described by many
parameters [5]. A sloppy system is one that displays a logarithmic hierarchy of sen-
sitivity to certain specific combinations of parameters [2] [8] [9]. The phenomenon
of sloppiness is best understood in the context of ‘information geometry’ which for-
malises the relationship between parameters and the observable states of the system.

1.1 Information Geometry

Models of dynamical systems describe how a collection of quantities changes over
time. In systems biology, the time evolution of a set of quantities y = (y1, . . . , ym) is
often modelled by a set of coupled nonlinear ordinary differential equations (ODEs)
involving a set of parameters θ = (θ1, . . . , θD). Given a set of parameters θ, the
model predicts the evolution of the system y(t) = F (t,θ) = (F1(t,θ), . . . , Fm(t,θ))
(see figure 1.1). This defines a trajectory parametrised by t in phase space Γ, the
m-dimensional space containing all possible values of y. In an abstract sense, a
model maps parameters from parameter space Θ ⊆ RD to trajectories in phase space:
Ω : Θ 7→ Γ. Yet in reality it is uncommon that the evolution of the system is observed
at all times. Experimentalists often sample a trajectory at discrete points in time
(t1, . . . , tn). Thus the behaviour observed by an experimentalist is the set of sampled
positions on the trajectory ϕ(F ) = (F (t1), . . . ,F (tn)). The act of observation, ϕ :
Γ 7→ Z, maps the trajectories to an N = n × m dimensional space of observables
Z ⊆ RN . This process defines a composite map f = ϕ ◦ Ω : Θ 7→ Z. The image of f
in Z, i.e. the collection of all possible observations that are described by the model, is
called the ‘model manifold’M [9]. Since Θ ⊆ RD and Z ⊆ RN are both differentiable
manifolds, assuming N > D and f is a smooth (infinitely differentiable) map, then f
is an immersion of Θ in Z; if f is also injective, f is an embedding of Θ in Z. Thus
M can be thought of as a manifold parametrised by coordinates θ ∈ Θ.

A natural object to consider on manifolds is its metric which encodes its geometry.
The metrics of Z and Θ are often assumed to be Euclidean [4]. SinceM is immersed
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Figure 1.1: Illustration of the relationship between parameter space Θ, a 3 dimen-
sional phase space and the space of observables Z. Ω maps parameters to trajectories
F (t,θ) in phase space. ϕ samples the trajectory at times (t1, t2, t3) and maps the
position of F at those times to a space of observables Z. This defines a composite
map f = ϕ ◦ Ω.

by f in a Euclidean space Z , the metric induced on M is

gµν = δab
∂fa

∂θµ
∂f b

∂θν
(1.1)

Thus the infinitesimal distance in M due to an infinitesimal difference in parameter
coordinates dθ is

ds2 = gµνdθ
µdθν = δab

∂fa

∂θµ
∂f b

∂θν
dθµdθν (1.2)
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Unlike Θ, the distance in M is not Euclidean. The geometry of the model manifold
is dependent on the Ω which maps parameters to trajectories in phase space; and ϕ,
the experimental design which samples the trajectory for observable behaviours.

Remark 1.1. The current study limits its scope to models that are at least locally
identifiable [2] [4]. A globally identifiable model f is one that is injective everywhere on
the domain Θ. An example of a globally non-identifiable model is y(t) = F (t, θ1, θ2) =
e−t/θ

1
+ e−t/θ

2
, since exchanging the values of (θ1, θ2) maps to the same trajectory in

phase space. Though F (t, θ1, θ2) is not globally identifiable, it is locally identifiable, in
the sense that for almost any point in θ = (θ1, θ2) ∈ Θ there exists a neighbourhood
U(θ) such that f = ϕ ◦ Ω is injective in the domain U(θ).

Remark 1.2. For many models described by ODEs (such as those in systems biology),
an exact solution for phase space trajectories cannot be obtained analytically. How-
ever, the ODEs can be solved numerically for each parameter; by sampling across
parameter space a ‘numerical model manifold’ can be constructed [9] [4].

1.2 Parameter Sensitivity

Given a variation in parameter θ → θ + δθ, what is the magnitude of the change in
behaviour? For any sufficiently small δθ, this can be well approximated by (1.2):

δs2 ≈ gµν(θ)δθµδθν (1.3)

Since gµν is a symmetric matrix, it has real eigenvalues {λa} and a basis of orthonor-
mal eigenvectors {n̂α}; moreover since ds2 ≥ 0 ∀dθ, gµν is positive (semi-)definite
and its eigenvalues are non-negative. Because {n̂α} is a basis of Θ, any δθ can be
written as

δθ = δθ′αn̂α i.e. δθ = Pδθ′ (1.4)

where the columns of P are n̂α. Recognising that (P TP )ij = n̂i · n̂j = δij, the co-
ordinate transformation (1.4) between δθ = (δθ1, . . . , δθD) and δθ′ = (δθ′1, . . . , δθ′D)
preserves the norm of δθ in Θ:

δθ′T δθ′ = δθTPP T δθ = δθT δθ (1.5)

By spectrally decomposing the metric into g = PΛP T (where Λ = diag(λ1, . . . , λD))

δs2 = δθTPΛP Tθ = δθ′TΛδθ′ = λ1(δθ′1)2 + · · ·+ λD(δθ′D)2 (1.6)

One can immediately read off the entries of the metric in the eigen-coordinates:

g′µν = λµδµν (1.7)

This admits a geometric interpretation of the eigenvalues:
√
λα it is the change

in behaviour (distance on M) per unit distance of parameter variation δθ′α in the
direction n̂α in Θ. The eigenvalue spectrum of the metric characterises the local
sensitivity of the model behaviour to variations in parameter space. If {λα} are
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all equal and constant everywhere, then M is flat; if {λα} changes from θ to θ,
M is ‘inhomogeneous’ with respect to Θ; if {λα} takes a hierarchy of values, M is
‘anisotropic’ with respect to Θ.

Remark 1.3. When data analysts fit models to data, they often quantify the goodness
of fit with the ‘cost function’ or χ2, which is the Euclidean distance in Z between
the model prediction f(θ) and data z̃ . The best fit parameters θ∗ are those that
minimise χ2. Practitioners often characterise the parameter sensitivity of the model
at θ∗ using the Hessian of χ2, which is mathematically identical to gµν(θ∗) [9].

1.3 Sloppiness

In systems biology models, the dimension of parameter space is often quite large. For
example, a model for the growth-factor-signaling network in PC12 cells is dependent
on 48 parameters [1]. Due to the complexity of such systems, it is difficult a priori to
identify the relevant mechanisms that play a dominant role and distinguish them from
the irrelevant mechanisms. To identify the relevant mechanisms, a complex model
that incorporates a large variety of mechanisms into account are fitted to data [11].
If a mechanism is relevant, then the system should be sensitive to the parameters
which tune the mechanism. For example, if a relevant mechanism of a model is tuned
by parameters (θ1, θ2, θ3), δθ in the subspace of (θ1, θ2, θ3) should induce a larger δs2

inM, compared to variations of parameters which characterise mechanisms of lesser
relevance.

However, it is rather uncommon in systems biology models that mechanisms can
be distinctively classified as relevant or irrelevant. In their study of PC12 cells Brown
et al. found that the system shows great sensitivity to all 48 parameters, suggesting
that all mechanisms engage a concerted effort in influencing the gross dynamics of
the system [1]. In a study of 17 cell cycle models, Gutenkunst et al. found that very
few parameters induce a behavioural response of great significance or insignificance
[5] (see figure 1.2). Given the complex nonlinear coupling between mechanisms in
systems biology models, it should not be surprising that contributions from individual
mechanisms to the overall dynamics of the system cannot be separated from each
other.

Yet this is not to say parameter space Θ is isotropic. In all of the cell cycles
investigated by Gutenkunst et al., the eigenvalues of the Hessian of these models are
found to be approximately evenly spaced in their logarithms, the smallest eigenvalue
being several orders of magnitudes smaller than the leading eigenvalue [5] (see figure
1.2). This phenomenon is known as ‘sloppiness’ [2] [8] [9]. Such a ‘sloppy system’
exhibits a hierarchy of sensitivity to perturbations in the eigen-directions of the met-
ric {n̂α}. Note that sloppiness makes no statement about the absolute size of the
eigenvalues, only their relative magnitudes. Why sloppiness occurs is still a matter
of active research. While studies show that experimental design ϕ could play a role
in increasing the separation between eigenvalues [2] [8], the fact that sloppiness has
only emerged in some nonlinear models suggests that these models possess certain
intrinsic properties which provide the necessary conditions for sloppiness [5].
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Figure 1.2: Figure from ‘Universally sloppy parameter sensitivities in systems bi-
ology models’ by Gutenkunst et al. [5]. A shows a surface of constant χ2 (δs2)
projected onto parameter space Θ; such surfaces are ellipsoids whose semi-major axes
are characterised by (λi)

−1/2. B shows the eigenvalue spectra of various systems biol-
ogy models describing cell cycles, mitosis, circadian rhythm, growth-factor signaling,
regulatory networks, metabolism and etc. In C, Ii/Pi is the ratio between the inter-
section of the χ2 ellipsoid with the parameter axes of θi and the projection of the
ellipsoid onto the axes. The smaller the ratios, the smaller the alignment between the
bare parameter axes and the eigenvectors of the Hessian.

1.4 Evolvability and Robustness

The question of how easily organisms encounter new traits is of great importance
to understanding the process of adaptation in evolutionary biology. In a study of
L = 15 RNA sequences and their secondary structures, it was discovered that 50% of
all possibles sequences fold into only 6% of the structures that appear [6]. The folding
process - an instance of what is called a ‘genotype-phenotype’ (GP) map - shows a
huge bias towards a small number of ‘frequent’ secondary structures. Thus a ‘mutat-
ing agent’ randomly searching the space of sequences (genotypes) is far more likely to
encounter a very small subset of structures (phenotypes) that occur frequently. Such
a bias limits the variety of phenotypes that is available for natural selection.

The example of RNA folding illustrates how a map between a space of parameters
(genotypes) and a space of behaviours (phenotypes) affects the likelihood of encoun-
tering different behaviours under random mutation in parameter space. One would
similarly expect parameter space inhomogeneity and anisotropy in continuous models
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to influence the likelihood of finding new behaviour inM under random mutations in
Θ. Since the processes that systems biology models describe (e.g. metabolism) must
adapt their behaviour to changes in their circumstances, the question of how easily
these systems find new traits via parameter perturbations is just as pertinent.

This dissertation focuses two ideas that are relevant to this question. One is ro-
bustness, which describes the likelihood of a system to change its behaviour under
mutation; the other is evolvability, which describes the diversity of behaviour acces-
sible under mutation. Both are desirable characteristics of a biological system. A
system should be able to resist mutation and retain favourable phenotypes, yet also
have the flexibility to adapt to its circumstances. Notions of evolvability and robust-
ness are precisely quantified in discrete GP maps by a set of definitions developed by
Wagner [10] and an attempt has been made to generalise the discrete definitions to
continuous models by Sethna et al. [3]. Sethna et al. made the extraordinary claim
that sloppiness enables mutations in parameter space to explore a diverse range of
behaviour. This dissertation sets out to assess the validity of this claim and examine
their definitions of evolvability and robustness. In chapter 2, definitions of evolvabil-
ity and robustness in discrete GP maps proposed by Wagner are reviewed; using the
machinery of information geometry, chapters 3 and 4 put forward modified or new
measures of evolvability and robustness that are more consistent with Wagner’s defi-
nitions; working with a fresh set of definitions, the role of sloppiness on evolvability
and robustness is investigated in chapter 5.

1.5 The Null Model

It will be useful for subsequent discussions to introduce an object called ‘the null
model’ at this juncture. The null modelM∗ is an artificial object constructed for the
analysis of a model M. It is nothing more than a flat manifold (homogeneous and
isotropic with respect to Θ) that takes up the same volume as M in Z. Given that
it is flat, the metric on M∗ takes the form

ηµν = Λδµν (1.8)

where Λ is a constant scale. The volume of the model manifold over Θ is

V =

∫
dθ
√

det(g) (1.9)

The volume of the null manifold is

V ∗ =

∫
dθ
√

det(η) = ΛD/2

∫
dθ (1.10)

The volume of parameter space is simply Vp =
∫
dθ, so forcing V = V ∗ fixes Λ to be

Λ =

(
V

Vp

) 2
D

(1.11)
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Chapter 2

Evolvability and Robustness in
Discrete Genotype-Phenotype
Maps

Following on from the discussion in section 1.4, it would seem that robustness and
evolvability are competing characteristics of a system. Consider figure 2.1 which rep-
resents a space of discrete genotypes. Each site on the lattice is a genotype, and
the genotypes that can mutate into each other through one mutation are connected
by an edge. Comparing genotypes A and B, one can observe how genotypes with
more neighbours of the same phenotype (neutral neighbours) are connected to fewer
alternative phenotypes that are different from each other, since there are fewer non-
neutral neighbouring genotypes left over to support a diverse collection of alternative
phenotypes. Hence genotypes that are more robust (more neutral neighbours and
less likely to change phenotype after mutation) are less evolvable (fewer alternative
phenotypes to mutate into), a correlation that Wagner has discovered in RNA sec-
ondary structure GP maps [10]. Wagner argued that evolvability and robustness
can also be assessed from the perspective of phenotypes [10]. Consider figure 2.1 as
an example again. A more frequent phenotype occupies a larger extent of genotype
space and increases the number of alternative phenotypes within the reach of the set
of genotypes that map to the phenotype - as such the phenotype is more evolvable.
Yet Wagner also empirically observed in RNA secondary structure GP maps that
genotypes belonging to the same phenotype are connected to each other more often
than what one would expect by chance. Hence the robustness and evolvability of
secondary structures (phenotypes) are positively correlated with each other. If this
correlation holds generally for other GP systems, it would have great implications on
how evolutionary biology considers the emergence of evolutionary novelty. The rest
of this chapter provides more precise definitions and distinctions between genotype
evolvability, genotype robustness, phenotype evolvability and phenotype robustness,
and makes initial contact with sloppiness.
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Phenotypes:

A

B

Genotype space (network)

Figure 2.1: Representation of a genotype-phenotype map in genotype space. Geno-
type A has very few neighbours of the same kind, yet its neighbourhood contains a
diverse set of alternative phenotypes. Most of the neighbours of genotype B have
the same phenotype, leaving little room for a diverse set of alternative phenotypes in
its neighbourhood. Observe how the mapping from genotype to phenotype is many-
to-one. The most frequent phenotype, the circle, forms a large neutral network that
extends across parameter space, allowing it to mutate into triangles and squares. The
triangle and square which are less frequent can only mutate into the circle, but not
into each other.

2.1 Evolvability and Robustness of Genotypes

In a discrete GP system, genotypes can mutate into one another by one-step muta-
tions; this mutational relationship between genotypes can be described by a network,
in which genotypes are the nodes and edges between nodes represent allowed mu-
tations. An example of a genotype space is the space of RNA sequences of length
n. The genotype - an RNA sequence - can be thought of abstractly as a string of n
letters where each letter in the sequence can be either A, G, C or U. Changing one
letter in the string mutates one sequence into another. It is useful to define the notion
of a 1-neighbourhood of a genotype:

Definition 2.1 (1-neighbourhood of a genotype). The 1-neighbourhood of a genotype
g are the genotypes that can be accessed by g in one mutation.

Stepping through the network of genotypes, a mutating individual can potentially
encounter new phenotypes at each node. It has been observed that the map between
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genotypes and phenotypes are very often many-to-one [6]. In other words, there
tends to be a redundancy of genotypes for each phenotype. Moreover, as Wagner has
observed, the genotypes that map to the same phenotype are often connected to each
other by one-step mutations in the genotype network [10]. Given this structure in
GP systems, it is convenient to introduce three related concepts:

Definition 2.2 (Neutral neighbour of a genotype). A neutral neighbour of a genotype
g is a genotype in the 1-neighbourhood of g which maps to the same phenotype as g.

Definition 2.3 (Neutral set). The neutral set of phenotype p is the maximal subset
of genotypes which map to p.

Definition 2.4 (Neutral network). In a genotype network, connected components of
genotypes that map to the same phenotype p are the neutral networks of p.

The existence of neutral networks has significant implications on the mutational
robustness of genotypes. If the majority of a genotype’s 1-neighbourhood are neutral
neighbours, it is more likely to mutate into a genotype that maps to the same pheno-
type. In otherwords, the phenotype is likely to persist after mutation. A definition
of ‘genotype robustness’ can be used to quantify the likelihood of persistence [10]:

Definition 2.5 (Genotype robustness). The robustness of a genotype is the fraction
of neutral neighbours of a genotype g.

The evolvability of a genotype can be defined in a similar way. A more evolvable
genotype should be able to explore a more diverse set of phenotypes after mutation.
Wagner quantifies this by enumerating the number of different phenotypes in the
1-neighbourhood of a genotype:

Definition 2.6 (Genotype evolvability). The evolvability of a genotype is the number
of different phenotypes that are accessible in the 1-neighbourhood of g.

Remark 2.1. It is important to point out a flaw in Wagner’s definition in quantifying
genotype evolvability. Suppose the 1-neighbourhood of a genotype g contains nine
neighbours mapping to three different phenotypes A, B and C. Consider two cases:
(i) A, B and C splits the nine neighbours evenly amongst themselves, i.e. A, B and
C each corresponds to three neighbours; (ii) 7 neighbours map to A while B and C
only correspond to 1 each. Wagner’s definition does not distinguish between cases (i)
and (ii) where (i) obviously creates a greater diversity of outcomes for the genotype.
In (ii) it is far more likely that the genotype mutates into neighbours which map to
A.

2.2 Evolvability and Robustness of Phenotypes

The story could also be told from the perspective of phenotypes. Given the redun-
dancy in GP maps, the likelihood of a phenotype p to persist after mutation should
take into account all the genotypes that map to p. Consider a scenario in which a
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phenotype p yields the optimum adaptation to selection pressure. Averaging over an
ensemble of the system’s possible evolutionary histories, the population of individuals
with phenotype p should be evenly distributed in the neutral set of p, as evolutionary
pressure does not distinguish between the genotypes that map to p. The robustness
of the phenotype can be quantified by the fraction of individuals that retain the same
phenotype p after mutation. This can be computed by adding up the probabilities
of each individual retaining the same phenotype after mutation. The likelihood of
an individual with genotype g retaining the same phenotype is simply the robust-
ness of g. Since the population is evenly distributed in the neutral set, the fraction
of the population that retains the same phenotype is computed by summing up the
genotype robustness of the neutral set. This argument justifies Wagner’s definition
of phenotype robustness [10]:

Definition 2.7 (Phenotype robustness). The robustness of a phenotype p is the
average genotype robustness of its neutral set.

The evolvability of a phenotype can also be motivated by the same argument used
for genotype evolvability. A phenotype is able to ‘mutate’ into another phenotype if
and only if there exists at least one genotype in their respective neutral sets that are
connected to one another in the genotype network. Wagner quantifies the evolvability
of a phenotype by the number of different phenotypes accessible by a population of
individuals dispersed in its neutral set [10]; in other words,

Definition 2.8 (Phenotype evolvability). The evolvability of a phenotype p is the
number of unique phenotypes that are accessible by genotypes in the neutral set of p.

Remark 2.2. Wagner’s definition of phenotype evolvability suffers from the same is-
sue plaguing genotype evolvability which was discussed in remark 2.1: it does not
distinguish between the relative likelihood of outcomes after mutations and so fails
to give a full measure of the diversity of mutational outcomes.

2.3 Sloppiness and Neutral Spaces

Most of the idioms of GP maps are not immediately suitable for describing continu-
ous models [3]. While there are only a finite number of genotypes and phenotypes in
the domain and image of discrete GP maps, parameters and behavioural states live
in spaces of real numbers which are uncountable sets; hence the counting schemes
employed in the definitions above need to be carefully modified for those ideas to
make sense in continuous models. However, an important theme is carried through:
the distinction between the evolution of a single individual and that of a population
of individuals remains relevant. Parameter evolvability/robustness, the continuous
analogue of genotype evolvability/robustness, characterises the mutational outcome
of an individual occupying a single point in parameter space; state (behaviour) evolv-
ability/robustness, the continuous analogue of phenotype evolvability/robustness, de-
scribes an ensemble of individuals that belong to the same state on the model mani-
fold. This idea is a very useful starting point for formulating definitions of evolvability
and robustness in continuous models.
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Sethna et al. makes an analogy between sloppiness in continuous models and
neutral sets in GP maps [3]. Since sloppiness reduces a system’s sensitivity to pertur-
bations in some directions of parameter space, Sethna et al. argued that sloppiness
would create ‘neutral subspaces’ - parameter insensitive subspaces of Θ - analogous
to neutral networks in GP maps. Wagner proposed that large neutral networks in
discrete GP systems enable individuals on the neutral network to explore a diverse set
of phenotypes [10]. In response to this, Sethna et al. claims that large neutral sub-
spaces, similar to large neutral networks in discrete GP maps, allow mutating agents
with similar behaviour to explore a larger extent of parameter space and increase
their likelihood of encountering new behaviour in M [3]. This claim is examined in
chapter 5.

11



Chapter 3

Robustness and Evolvability of
Parameters

3.1 Parameter Robustness

Inspired by Wagner’s definition of genotype robustness, Sethna et al. defined the
robustnesss of a parameter Rp(θ), or what they refer to as the ‘chemotype’, as the
fraction of mutations δθ in Θ satisfying |δθ|2 < ∆ that do not change the distance in
M beyond a tolerance δs2 < ε2, where ∆, ε → 0 with finite ∆/ε [3]. This definition
is best interpreted geometrically (see figure 3.1). Consider an agent at θ0 under the
influence of a random isotropic perturbation of size less than ∆. The agent’s possible
positions in Θ after the perturbation is the volume enclosed by a D-dimensional
hypersphere of radius ∆. Expressing this in the norm-preserving coordinates δθi that
(locally) diagonalise the metric of the model manifold gµν(θ0) (equation 1.4)

∆2 = (δθ1)2 + · · ·+ (δθD)2 (3.1)

This is the equation of a sphere in Θ.
Now change perspective toM and consider the distance inM in δθi coordinates:

δs2 = λµδµνδθ
µδθν (3.2)

Define a new set of local ‘normal’ coordinates

δθ̂i = δθi
√
λi (3.3)

such that in these coordinates the metric is flat:

δs2 = gµν(θ̂)δθ̂
µδθ̂ν = δµνδθ̂

µδθ̂ν (3.4)

For a perturbation satisfying the tolerance δs2 < ε2, it must lie within aD-dimensional
hypersphere of radius ε on M; in δθ̂i coordinates,

ε2 = (δθ̂1)2 + . . .+ (δθ̂D)2 (3.5)

12



δs = ε
δs = ε

f (θ)

λ1√ Δλ2√ Δ

A

B

λ2√ε /

λ1√ε /θ

θ

f (θ)
|δθ| = Δ

|δθ| = Δ |δθ| = Δ

⟹

⟹

M

M

Θ

Θ

(a) Parameter robustness by volume subtraction

(b) Parameter Evolvability

A

B

Figure 3.1: (a) Projection of ε-tolerance sphere fromM onto Θ. Parameter robustness
(by volume subtraction) can be understood as the fraction of perturbations |δθ| < ∆
that satisfy δs < ε, indicated by the volume shaded dark grey. (b) Projection of
∆-perturbation sphere from Θ ontoM. Evolvability is the average distance between
two points A and B on the surface |δθ| = ∆ in M.

This ellipse can be mapped onto Θ by recasting the equation in δθ coordinates,

ε2 = λ1(δθ1)2 + · · ·+ λD(δθD)2 (3.6)

The semi-major axes of the ellipse in the θi direction is ε/
√
λi. Returning to the

definition of Rp(θ), finding the fraction of perturbations satisfying |δθ|2 < ∆ and
δs2 < ε2 is equivalent to calculating the intersecting volume between the sphere and
ellipse defined by equations (3.1) and (3.6) respectively as a fraction of the volume
of the sphere. In other words, robustness is the fraction of the perturbation sphere

13



remaining once the points that lie outside the tolerance ellipse is subtracted. However,
as Sethna et al. points out, this is a difficult calculation [3]!

To get around this difficulty, Sethna et al. softened the hard boundaries of the
spheres and ellipses and represented them with probability distributions that decay
to infinity [3]. Suppose the agent mutating away from θ0 travels a distance |δθ| that
is normally distributed with a width scale ∆

P (|δθ|,∆) =
1

(
√

2π∆)D
exp

(
−|δθ|

2

2∆2

)
(3.7)

=
1

(
√

2π∆)D
exp

(
− 1

2∆2

D∑
i=1

(δθi)2

)
(3.8)

To take away the perturbations that lie outside the ellipse, imagine a scenario
where the agent is removed with some probability that increases with distance δs.
Sethna et al. chose the probability of survival Q to be a Gaussian with a typical
length scale δs ∼ ε:

Q(δs, ε) = exp

(
−δs

2

2ε2

)
(3.9)

= exp

(
− 1

2ε2

D∑
i=1

λi(δθ
i)2

)
(3.10)

where the normalisation ofQ(δs, ε) ensures the probability of survival for not mutating
is Q(δs = 0, ε) = 1. If an ensemble of mutating agents start off at θ0 and diffuse away
from θ0 with a scale |δθ| ∼ ∆ a la equation (3.7), the fraction of agents that survive
removal can be used as a measure of the robustness of θ0. In terms of P (|δθ|,∆) and
Q(δs, ε),

Rp(θ,∆, ε) =

∫
dδθP (|δθ|,∆)Q(δs, ε) (3.11)

=
1

(
√

2π∆)D

∫
dδθ exp

(
− 1

2∆2

D∑
i=1

(δθi)2

(
1 + λi

∆2

ε2

))

=
D∏
i=1

1√
1 + λi

λc

(3.12)

where λc = ε2

∆2 .
This definition of parameter robustness has a few undesirable properties. First of

all, it is dependent on an arbitrary scale λc whose value is left to whoever’s applying
the definition to decide. In their analysis of a model of an EGF/NGF signaling
pathway, Sethna et al. chose λc to be the fourth-largest eigenvalue of the local Hessian,
which changes from θ to θ [3]. This is a problematic choice when the robustness of
different parameters are being compared.
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Fortunately, the model manifold M has a natural scale in relation to parameter
space Θ, Λ. Insight into why this is an appropriate scale for λc can be gained by going
back to the geometric interpretation of hard ∆ perturbation spheres and ε tolerance
ellipses. In the null model, a perturbation |δθ| = ∆ in Θ corresponds to δs =

√
Λ∆.

For the ∆ perturbation sphere to be fully enclosed by the ε tolerance ellipse (a sphere
in the null model), ε must be chosen such that ε ≥

√
Λ∆. If ε <

√
Λ∆, the ε tolerance

ellipse is smaller than the ∆ perturbation sphere for any parameter in the null model.
Hence any parameter will be designated as not robust under this scheme, which is
not desriable for the null model. A choice of ε =

√
Λ∆, i.e. λc = Λ would ensure that

all parameters in the null model have a neutral robustness. Given this choice,

Rp(θ) =
D∏
i=1

1√
1 + λi

Λ

(3.13)

However if this definition of robustness is computed for the null model M∗ with
λi = Λ,

R∗p =
1

2D/2
(3.14)

One would expect the measure of robustness for the null model to evaluate to unity,
since the choice of λc = Λ ensures neutral robustness in the null model, i.e. the ∆-
sphere and ε-ellipse overlap exactly. The D-dependence is also somewhat troubling.
The incongruity of R∗p is due to the infinite extents of the Gaussian distributions and
the agent removal process. Any agent that is perturbed ever so slightly has a finite
probability of being removed, and there are always agents perturbed sufficiently far
away that are definitely removed. Since there is always a loss of agents, Rp must be
smaller than 1, even in the null model. A more appropriate measure of robustness
would be to compare the survival rate of agents in a particular model to that of the
null model. Hence one can define a new robustness measure ρp(θ):

ρp(θ) =
Rp(θ)

R∗p
=

D∏
i=1

√
2

1 + λi
Λ

(3.15)

3.2 Parameter evolvability

The evolvability of a genotype g is the number of different phenotypes found in the
one-neighbourhood of g (definition 2.6). While differences between phenotypes are
discontinuous and easy to enumerate in discrete GP systems, the difference between
behaviour in a continuous model is measured by the distance on the model manifold
M. How do we ‘enumerate’ the number of ‘different’ behaviours that are accessible
in the mutational neighbourhood of θ0?

The response of Sethna et al. to this challenge is to bypass this argument com-
pletely. They defined the evolvability of a ‘chemotype’ (parameter) to be the maxi-
mum change in ‘fitness’ averaged over a spherically distributed ‘force’ F in Z, where
fitness is defined to be the inner product between the change in behaviour δf and F
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onM [3]. This is a rather unsatisfactory definition since it introduces the unnecessary
complication of selection pressure (F ) and fitness which is intrinsically independent
of a system’s innate ability to discover new behaviour via parameter space fluctua-
tions. Moreover, it is unclear how this relates to the diversity of behaviour in the
neighbourhood of a parameter.

While the alternative definition proposed here does not follow Wagners definition
to the letter, it respects the idea behind Wagner’s definition. The evolvability of a
parameter θ0 should be a measure of the potential of a mutating agent at θ0 to explore
a ‘diverse’ set of outcomes. Since the difference between behaviours is measured by
their distance onM, the diversity of the mutational neighbourhood can be quantified
by picking two random points on the ∆ sphere and computing their mean squared
distance 〈δs2〉 on M (see figure 3.1). If 〈δs2〉 is ‘large’, the behavioural outcomes in
the mutational neighbourhood are well separated inM; conversely if 〈δs2〉 is ‘small’,
there is little diversity to be found in behaviour.

The first step in computing 〈δs2〉 is to project the ∆ perturbation sphere in Θ onto
M. Adopting spherical coordinates in θ, the ∆ perturbation sphere is parametised
by angular coordinates (φ1, . . . , φD−1):

δθ1 = ∆ cos(φ1)

δθ2 = ∆ sin(φ1) cos(φ2)

δθ3 = ∆ sin(φ1) sin(φ2) cos(φ3) (3.16)

...

δθD−1 = ∆ sin(φ1) . . . sin(φD−2) cos(φD−1)

δθD = ∆ sin(φ1) . . . sin(φD−2) sin(φD−1)

Using the normal coordinates defined in equation (3.3), the ∆ sphere in θ̂ is

δθ̂1 =
√
λ1∆ cos(φ1)

δθ̂2 =
√
λ2∆ sin(φ1) cos(φ2) (3.17)

... etc.

Consider θA = (φ1
A, . . . , φ

D−1
A ) and θB = (φ1

B, . . . , φ
D−1
B ) on the ∆ sphere. The

distance between θA and θB in M is simply

δs2
AB = (δθ̂1

A − δθ̂1
B)2 + . . .+ (δθ̂DA − δθ̂DB )2 (3.18)

Averaging the expression over the solid angles dΩA and dΩB of θA and θB respectively,

〈δs2〉 =

∫
dΩA

Ω

dΩB

Ω
δs2

AB (3.19)

= λ1∆2

∫
dΩA

Ω

dΩB

Ω
(cos(φ1

A)− cos(φ1
B))2 (3.20)

+ λ2∆2

∫
dΩA

Ω

dΩB

Ω
(sin(φ1

A) cos(φ2
A)− sin(φ1

B) cos(φ2
B))2

+ etc.
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While the integrals multiplying λi in the expression appear different, they in fact
evaluate to the same value. 〈δs2〉 should be invariant to permutations of (δθ1, . . . , δθD)
on the left hand side of equations (3.16), since the permutation of (δθ1, . . . , δθD)
chosen in equations (3.16) was arbitrary in the first place (ignoring the handedness
of the coordinate system). Such permutations would replace the integral multiplying
λi with another one, yet the contribution of λi to the sum cannot change, so the two
integrals that have exchanged places must evaluate to the same value. Thus after
going through all such permutations for all λi, one is forced to conclude that all the
integrals in this sum evaluate to the same value. Hence

〈δs2〉 = N∆2

D∑
i=1

λi (3.21)

where N is the value of the integrals. For the null model,

〈δs2〉∗ = N∆2DΛ (3.22)

〈δs2〉 is a measure of behavioural diversity in the mutational neighbourhood and
hence provides a measure of evolvability. Taking the null model as the baseline
reference, the evolvability of a parameter is thus defined as

ηp =
〈δs2〉
〈δs2〉∗

=
1

D

D∑
i=1

λi
Λ

(3.23)

If ηp > 1, it is more evolvable than the null model. Coincidentally, the definition pro-
posed by Sethna et al. is actually proportional to

√
ηp; yet not only is this derivation

closer to Wagner’s intentions, it also does away with the need of appealing to selection
pressure. It is noteworthy that the mean squared distance of a mutating agent subject
to a random isotropic perturbation in Θ is also proportional to ηp. Hence ηp can not
only be interpreted as a measure of diversity in a parameter’s mutational neighbour-
hood, it can also be understood as a measure of the average change in behaviour in
response to perturbations in Θ.
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Chapter 4

Robustness and Evolvability of
States

4.1 States

A straightforward phenotype analogue in continuous models is the behaviour v =
f(θ). While a behaviour is strictly a point on M, it is more useful to consider
an infinitesimally small volume of behaviours in the neighbourhood of v. The set of
behaviours enclosed by this volume is referred to as the state Ψ(v) (a.k.a ‘dynatype’ in
[3]). By relaxing a point into an infinitesimally small volume, definitions of robustness
and evolvability could be more readily conceived for the phenotype analogue.

While Sethna et al. pictures the state (dynatype) as a D-dimensional hypersphere
inM, it is far more convenient to consider an infinitesimally small D-dimensonal hy-
percube with sides of length ε as measured in M (see figure 4.1). Thus, in this
construction, Ψ(v) is the set of points enclosed in the hypercube with v at the cube’s
centre. Each hypercube touches 2D other neighbouring hypercubes. The hypercube
can be chosen to be oriented along the normal coordinates δθ̂i as defined in equa-
tion (3.3). Using equation (3.3), Ψ(v) can be transformed into δθi coordinates and
projected back to Θ. The projection Ψ̃(θ) is a hypercuboid with sides |δθi| = ε√

λi
.

Remark 4.1. The process of relating Ψ(v) to Ψ̃(θ) has implicitly assumed that the
model f is injective on some subset of Θ i.e. f is locally identifiable (see remark 1.1).
If f is locally identifiable but not globally identifiable, this one-to-one correspondence
between parameters and states can only make sense by restricting Θ to a subset on
which f is injective.

Remark 4.2. The volume of Ψ̃(θ) is

V = εD
D∏
i=1

1√
λi

(4.1)

and the surface area is

A = 2εD−1

D∏
i=1

1√
λi

D∑
i=1

√
λi = 2

V

ε

D∑
i=1

√
λi (4.2)
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δθ1 = ε
∧

δθ
2
=
ε

∧ Ψ

λ1√ε /δθ1 =
λ 2√

ε/
δθ

2
=

~Ψ

Model with parameter
space anisotropy

Null Model

⟹

M

Model ManifoldParameter Space

Parameter Space with a homogeneous
density of mutating agents

Θ

(a)

(b)

Figure 4.1: (a): State Ψ in M and its corresponding projection Ψ̃ in Θ. Θ and M
is tiled by Ψ and Ψ̃ respectively. (b) Left: diffusion of mutating agents out of Ψ̃ in a
model with parameter space anisotropy; Right: diffusion out of Ψ̃∗ in the null model.
Observe how mutating agents leave each side of Ψ̃∗ with equal probability, yet they
are biased towards leaving the longer sides of Ψ̃.
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Remark 4.3. Since the null model is isotropic, Ψ∗ with sides |δθ̂i| = ε in M corre-
sponds to a hypercube Ψ̃∗ in Θ with sides |δθi| = ε/

√
Λ. The volume of a null state

is
V ∗ = εD/

√
Λ
D

(4.3)

The surface area of a null state is

A∗ = 2DεD−1/
√

Λ
D−1

(4.4)

4.2 State Robustness

Sethna et al. did not attempt to define the robustness of a ‘dynatype’ [3]. Since the
robustness and evolvability of a phenotype p describe the evolvability and robustness
of a population of individuals with phenotype p, it is meaningful to consider the
evolvability and robustness of a state Ψ in terms of the outcome of an ensemble of
agents that are enclosed in Ψ̃ at a particular time. Consider a thought experiment in
which Θ is filled with a homogeneous density of agents in brownian motion. These
agents walk around Θ randomly and explore different states Ψ̃ as they do so. At a
particular time t0, the permeable boundary of Ψ̃ is suddenly made impermeable to
agents exterior to Ψ̃. However, agents in Ψ̃ are allowed to cross the boundary and
leave Ψ̃.

Conjecture: the robustness of the state is quantified by the length of time taken
for the ensemble of agents to escape Ψ̃(θ). Such a time scale τ is

τ =
N

Φ
(4.5)

where N is the number of agents in Ψ̃(θ) and Φ is the flux of agents out of Ψ̃(θ)
averaged over time. Since Θ is filled initially with a constant density of agents, the
number of agents trapped in Ψ̃(θ) is proportional to the volume V of Ψ̃(θ). If the
total flux Φ across the surface of Ψ̃(θ) is assumed to be proportional to the surface
area A,

τ(θ) = χ
V

A
= χ

ε

2
∑D

i=1

√
λi

(4.6)

where the factor χ accounts for the conditions such as the mobility and density of
agents which is unrelated to the model’s geometry. The time scale for a state in the
null model is

τ ∗ = χ
V ∗

A∗
= χ

ε

2D
√

Λ
(4.7)

The robustness of a state Ψ is defined as the time scale of escape relative to that
of the null model, therefore

ρΨ(θ) =
τ(θ)

τ ∗
=

(
1

D

D∑
i=1

√
λi
Λ

)−1

(4.8)

In loose terms, a state is in its most robust form if its surface area to volume ratio
is minimised.
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4.3 State Evolvability

Sethna et al. defined the evolvability of a ‘dynatype’ (state) as the optimum response
within a population of agents at θ to a force F in Z [3]. Just like their definition of
‘chemotype’ (parameter) evolvability, selection forces are involved for no good reason
and it is not clear how it relates to Wagner’s definition. Wagner quantifies the evolv-
ability of a phenotype p by the number of unique phenotypes that are accessible by
genotypes in the neutral set of p (definition 2.8) [10]. For states in continuous models,
a D-dimensional box always has 2D number of faces, so the number of neighbouring
boxes of Ψ̃ is always 2D. If Wagner’s definition for phenotypes is naively applied
to states, all states would have the same evolvability, regardless of thir geometries.
However this way of counting is clearly problematic. Consider an ensemble of agents
diffusing out of a rectangle in figure 4.1 (b). Such agents are more likely to cross the
longer sides of the rectangles. Hence most of the agents end up in the two states that
share the longer side with Ψ̃. The ensemble of agents access an ‘effective’ number of
neighbours that is closer to two than four.

The thought experiment in subsection 4.2 can be employed to formalise this argu-
ment. If the flux through the kth face of the box, Φk, is proportional the face’s area,
Ak, the probability that any agent escapes through the kth face of the box pk is given
by

pk =
Φk∑
k Φk

=
Ak∑
k Ak

(4.9)

The expected value of the surface area of a face crossed by any randomly chosen agent
escaping Ψ(θ) is

〈A〉 =
∑
k

pkAk =

∑
k A

2
k∑

k Ak
(4.10)

We define the effective number of faces, or effective number of neighbours, 〈N〉 to
be the total area divided by 〈A〉

〈N〉 =

∑
k A

〈A〉
=

(
∑

k Ak)
2∑

k A
2
k

(4.11)

In a null model, the state is a simple cube in Θ. With all faces equal in area the
effective number of neighbours is simply 〈N〉∗ = 2D. Defining the evolvability of a
state ηΨ as the effective number of neighbours relative to that of a null state,

ηΨ =
〈N〉
〈N〉∗

=
1

2D

(
∑

k Ak)
2∑2D

k=1A
2
k

(4.12)

This could be rewritten as

ηΨ =
(
∑2D

k=1Ak/2D)2∑2D
k=1A

2
k/2D

=
A

2

A2
(4.13)
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The explicit expression of ηΨ(θ) in terms of the eigenvalues of the metric tensor
at θ can be computed. Consider the face of the cube in the plane perpendicular to
the eigenvector with eigenvalue

√
λi. The area of that face is

Aj = εD−1

(
D∏
i=1

1√
λi

)
/

(
1√
λi

)
=
√
λjV/ε (4.14)

Each cube has two such faces for each axes. Substituting (4.14) into equations (4.11)
and (4.12),

ηΨ(θ) =
(
∑D

i=1

√
λi/D)2∑D

i=1 λi/D
(4.15)

Remarkably, ρΨ, ηΨ and ηp can be summarised into a rather concise relation

ρ2
Ψ =

1

ηΨηp
(4.16)

Remark 4.4. Loosely speaking, the two evolvabilities capture different aspects of the
local geometry at θ: ηp is a measure of the local length scale and ηΨ is a function of
the angular distribution around θ. ρΨ depends on both aspects of the geometry that
are encapsulated in the two evolvabilities respectively.

4.4 Globally Non-identifiable but Locally Identifi-

able Models

It was noted in remark 4.1 that the geometric construction above relies on a one-
to-one correspondence between Ψ̃(θ) and Ψ(v) on a subset of Θ, i.e. the model f
being locally identifiable. If the model f globally non-identifiable (see remark 1.1), a
state Ψ onM corresponds to more than one point in Θ. Fortunately, restricting f to
be locally identifiable, one can find disjoint neighbourhoods for each of these points.
Consider the maximal set of points S = {θ1, . . . ,θm} ∈ Θ that map to the same point
v inM by a locally identifiable model f : v = f(θ1) = f(θ2) = · · · = f(θm). For each
θk ∈ S, one can compute the eigenvalues of the metric gµν(θk). The state Ψ(v) can be
projected onto the individual disjoint neighbourhoods Uk of θk. Let the projections
be {Ψ̃k}. Casting this in the context of the thought experiment in subsection 4.2, the
state Ψ now encloses populations of mutating agents in disjoint regions Ψ̃k ⊂ Uk of Θ.
Recall that ρΨ is simply a normalised escape time-scale of agents out of Ψ; averaging
over all agents escaping out of every Ψ̃k, the mean escape time τ out of Ψ(v) can be
computed by

1

τ
=

∑
k Φk∑
kNk

=
∑
k

(
Nk∑
kNk

)
Φk

Nk

=
∑
k

νk
τk

(4.17)

where νk = Nk/
∑

kNk = Vk/
∑

k Vk and τk = Nk/Φk is the escape time-scale out of
Ψ̃k. Normalising the lifetime with τ ∗ (4.7), the robustness of the state Ψ(v), ρΨ(v) is

1

ρΨ(v)
=
τ ∗

τ
=
∑
θ∈S

ν(θ)

ρΨ(θ)
(4.18)
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All the quantities on the right hand side can be computed explicitly in terms of the
eigenvalues at θk using equations (4.1) and (4.8).

Since the evolvability of a state is simply the normalised effective number of neigh-
bours, one can simply sum over all the individual evolvabilities ηΨ(θk) of Ψ̃k to obtain
the normalised total number of effective neighbours for Ψ(v):

ηΨ(v) =
∑
θ∈S

ηΨ(θ) (4.19)

23



Chapter 5

Sloppiness, Robustness and
Evolvability

In their paper ‘Sloppiness, Evolvability and Robustness in Systems Biology’, Sethna
et al. argued that sloppiness - parameter indeterminacy in certain dimensions of
parameter space - induces ‘neutral subspaces’ in Θ. Such neutral subspaces allow
mutating agents of similar behaviour to explore larger extents of parameter space
and increase their likelihood of encountering new behaviour (section 2.3) [3]. This ar-
gument is rooted in Wagner’s demonstration that larger neutral networks in genotype
space (analogous to neutral subspaces in Θ) increases the evolvability of phenotypes
[10]. If the argument proposed by Sethna et al. holds water, it should be reflected
in the evolvability ηΨ of states, the analogue of phenotypes in continuous models.
If the eigenvalue spectrum of gµν(θ) is sloppy, Ψ(f(θ)) should be an evolvable state
(assuming global identifiability), i.e. ηΨ > 1.

As it turns out, parameter space anisotropy is a necessary and sufficient condition
for ηΨ < 1. Consider

ηΨ =
〈N〉
〈N〉∗

=
A

2

A2
(4.13 revisited)

where A is the area of faces of Ψ̃. Recognising

A2 − A2
=
∑
k

(Ak − A)2 ≥ 0 (5.1)

It is apparent that

ηΨ =
〈N〉
〈N〉∗

≤ 1 (5.2)

In other words, the effective number of neighbours of any state cannot be greater
than that of the null model, where there is no parameter space anisotropy at all.
More insight can be gained by applying ηΨ to a phenomenological toy ‘meta-model’
of a sloppy eigenvalue spectrum. A sloppy system is characterised by a roughly even
spread of eigenvalues over a logarithmic scale. It would be natural to consider the
spectrum

λn = λ0e
−2nµ (5.3)
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where n = 0, . . . , D − 1 and 2µ = log(λn) − log(λn+1) is the constant log-separation
between eigenvalues. This model reduces a sloppy spectrum to two ‘meta-parameters’:
the scaled leading order eigenvalue β = λ0/Λ and the log-separation µ. Substituting
this into equation (4.15),

ηΨ =
1

D

tanh (Dµ/2)

tanh (µ/2)
(5.4)

ηΨ is always smaller than ηΨ(µ = 0) = 1 and is a monotonically decreasing function
of µ for µ > 0. As the separation between the eigenvalues, µ, increases, the local
parameter space becomes more anisotropic. This shows that, to first approximation,
sloppiness decreases the evolability of a state. It seems that under a strict adherence to
Wagner’s original definitions, Sethna’s claim that neutral subspaces allow individuals
in it to reach a broader range of behavioural changes [3] [9] is thoroughly debunked.

This dissertation makes two conjectures as to why the neutral subspace argument
fails. Firstly, the diversity of behaviour is limited by the hypercube geometry of Ψ in
M: it has a fixed number of neighbours, a fact that is independent of parametrisation.
No amount of deformation in parameter space can increase that. In contrast, this
limit is not imposed on phenotypes in discrete GP maps as the mutational relation-
ships between phenotypes are established by the topology of the genotype network
rather than any a priori measures of similarity between phenotypes. Hypothetically,
a neutral set can grow in size to increase the number of accessible phenotypes up to
the number of phenotypes allowed in the system. Secondly, sloppiness discourages
individual agents within the neutral subspace to explore certain directions in Θ. As
a result, mutating agents can only explore a low dimensional subspace of Θ and is
unable to access a maximally diverse set of behaviours.

It is manifest from 4.15 that ηΨ is invariant under rescaling of the eigenvalues:

ηΨ =
(
∑D

i=1

√
λi/D)2∑D

i=1 λi/D
(4.15 revisited)

Hence ηΨ is only dependent on the sizes of the eigenvalues relative to each other. The
invariance under rescaling is not true of ηp, ρp and ρΨ; in their case the absolute value
of λ (in units of Λ) matters. Hence one is cautioned against developing reasonings
about ηp, ρp and ρΨ on the basis of sloppiness only - sloppiness is merely a description
of the relative sizes of eigenvalues, not their absolute magnitude. Sethna et al. noted
a negative correlation between parameter evolvability and robustness in a sloppy
model of an EGF/NGF in PC12 cells [3]1, which mirrors the negative correlation
between genotype evolvability and robustness in RNA second structures in Wagner’s
findings [10]. Though Sethna et al. did not make an explicit connection between this
phenomenon and sloppiness, it is worth emphasising that there is insufficient evidence
to determine the significance of sloppiness in correlating these two quantities. If this
correlation appears in other sloppy systems biology models, it is prudent to examine
other possible reasons for its occurence rather than hastily attributing it to sloppiness.

1This correlation should hold under the definitions of parameter evolvability and robustness in
this dissertation as they are only slightly different to Sethna’s definitions.
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Chapter 6

Summary and Outlook

Evolvability and robustness are desirable qualities in biological systems: favourable
traits need to persist and resist random mutation, and a diverse set of behaviour
accessible by mutation helps the system adapt to changes in circumstances. What is
the role of sloppiness in influencing the evolvability and robustness of a system? This
dissertation has demonstrated that parameter space anisotropy is the only factor in
determining the evolvability of a state. In particular, increasing sloppiness decreases
a state’s evolvability. Yet sloppiness is not a sufficient condition to determine state
robustness, parameter evolvability and paramter robustness. While sloppiness is a
relevant to the discussion on adaptation, it cannot provide an elegant and unified
account of evolvability and robustness in system biology models.

This dissertation has developed a set of measures of evolvability and robustness
which can be applied to any continuous model which is locally identifiable. Local
metric eigenvalues of models can be numerically computed efficiently using tools such
as Sloppy Cells [7]. Since the measures developed are purely functions of metric
eigenvalues (in fact, apart from ρp, all of them can be computed from the trace of the
metric or metric square rooted), ηp vs ρp and ηΨ vs ρΨ correlations can be evaluated
for continuous models. This provides an apparatus for further research to investigate
whether systems biology models can be simultaneously evolvable and robust.
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