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Abstract

We recast somewhat informal axiom system of quantum mechan-
ics used by physicists (Dirac calculus) in the language of Continuous
Logic. For the basic version of the axiomatic system we prove that
along with the canonical continuous model the axioms have approx-
imate finite models of large sizes. We analyse the continuous logic
quantifier corresponding to Dirac integration and show that in finite
context it has two versions, local and global, which coinside on Gaus-
sian wave-functions.

1 Introduction

1.1 The axiomatic formulation of quantum mechanics was introduced by
Paul Dirac in 1930 [1] through a description of Hilbert space, and later de-
veloped with greater mathematical rigor in a monograph of 1932 by John
von Neumann. Since 1930, Dirac went through several rewritings and new
editions to refine his calculus to a level he considered satisfactory.1 Modern
books present Dirac’s axioms in a succinct form, often omitting much of the
technical detail.

In section 2 we survey the axioms of quantum mechanics following [2].
Readers with a background in logic will notice that what physicists refer to
as axioms is very far from what is a conventional set of axioms in a formal

1In fact, von Neumann himself expressed his dissatisfaction not long after publication
of his book, and spent considerable effort looking for alternatives [21].
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language even in its early form as presented e.g. by Hilbert’s axiomatisation
of geometry [3].

We argue in section 3 that the language that Dirac introduced is that
of continuous logic. In section 4 we go further and explain that Dirac’s
axiomatisation has chosen the formalism known to logician as algebraic logic
as exemplified e.g. by A.Tarski’s cylindric algebras representations, see [6].
In fact, Hilbert spaces can be seen as a continuous model theory version of
cylindric algebras.

1.2 Continuous logic and continuous model theory were introduced in the
monograph [4] in the 1960s and have since been developed and further gener-
alised for various applications, see e.g. [14]. For readers with no background
in logic the article of E.Hushovski [9] outlines a philosophy behind the math-
ematical formalism.

The link between physics formalism and continuous logic was proposed
and initially explored by the present author in [7]. Here this relationship is
studied at a deeper level.

2 Dirac’s calculus and axiomatisation of

quantum mechanics

Below we reproduce a slighly edited version of axioms from [2], 6.3.

2.1 Axiom 1. The “state” of a quantum system is described by a vector |ψ⟩
belonging to a complex Hilbert space H. This state is usually called “ket ψ”.
A complex Hilbert space H is a vector space, which can be finite dimensional
or infinite dimensional, equipped with the complex scalar product (also called
inner product) ⟨ψ|ψ′⟩ between any pair of states |ψ⟩, |ψ′⟩ in H. The norm,
or modulus, of a generic vector |ψ⟩ ∈ H is defined as

||ψ|| = |⟨ψ|ψ⟩|

and usually |ψ⟩ is normalized to one, i.e.||ψ|| = 1. The symbol ⟨ψ| which
appears in the definition of the norm is called “bra ψ” and it can be intepreted
as the fuction

⟨ψ| : H → C.
For any |ψ′⟩ ∈ H this function gives a complex number ⟨ψ|ψ′⟩ obtained as
scalar product of |ψ⟩ and |ψ′⟩. In a complex Hilbert space H it exists a set of
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basis vectors |ϕα⟩ which are orthonormal, i.e. ⟨ϕα|ϕβ⟩ = δ(α − β), and such
that

|ψ⟩ =
∑
α

cα|ϕα⟩ (1)

for any |ψ⟩, where the coefficients cα belong to C.

Axiom 2. Any observable (measurable quantity) of a quantum system is
described by a self-adjoint linear operator F : H → H acting on the Hilbert
space of state vectors.

For any classical observable F it exists a corresponding quantum observ-
able F .

Axioms 3.The possible measurable values of an observable F are its
eigenvalues f, such that

F |f⟩ = f |f⟩

with |f⟩ the corresponding eigenstate. The observable |f⟩ admits the spectral
resolution

F =
∑
f

f |f⟩⟨f | (2)

where {|f⟩} is the set of orthonormal eigenstates of F , and the mathematical
object ⟨f |, called “bra of f”, is a linear map that maps into the complex
number. This also satisfy the identity∑

f

|f⟩⟨f | = I.

Axiom 4. The probability P of finding the state |ψ⟩ in the state |f⟩
(both of norm 1) is given by

P = |⟨f |ψ⟩|2

This probability P is also the probability of measuring the value f of the
observable F when the system is in the quantum state |ψ⟩.

Axiom 5. The time evolution of states and observables of a quantum
system with Hamiltonian H is determined by the unitary operator

Kt := exp(−iHt/ℏ)

, such that |ψ(t)⟩ = Kt|ψ⟩ is the time-evolved state |ψ⟩.
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2.2 The dynamical reformulation of quantum mechanics. This is
based on the Stone Theorem:

For each self-adjoint operator A on H there is a well-defined one param-
eter group of unitary operators on H

{eiAt : t ∈ R}

and A can be recovered uniquely from the group.
Thus, we may reduce the theory to the equivalent theory of Hilbert spaces

with unitary operators of the form above. One advantage of such a theory is
that the unitary operators, unlike unbounded self-adjoint operators, are de-
fined on the whole of H and their treatment is mathematically more straight-
forward. The framework is also called the Heisenberg picture of quantum
mechanics.

2.3 Now we make several comments on the axioms.
The term “Hilbert space” here should actually be read as the rigged

Hilbert space (see [10]) because it differs from the standard definition by
accommodating both a Hilbert space Φ and the dual space Φ∗ with

Φ ⊆ H ⊆ Φ∗.

The summation formulas like (1) and (2) are presented in a form of an
integral if the family |ψα⟩ is continuous but seems natural in the summation
form when α runs in the discrete spectrum of an operator.

2.4 Remark. Rigged Hilbert spaces provide a powerful mathematical
framework to extend quantum mechanics, allowing distributions and general-
ized eigenfunctions to be rigorously handled. However, as is almost generally
accepted, not every element corresponds to a physically realisable state –
some are purely mathematical artifacts, see e.g. [11].

In the more general context of quantum field theories Wightman axioms
explicitly postulate that physically meaningful part of the rigged Hilbert
space H is a dense subset D ⊂ H.

3 The axioms in the setting of Continuous

Logic

3.1 We discuss in this section the possible interpretation of the above ax-
ioms in terms of (the most general versions of) Continuous Logic (CL) and
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Continuous Model Theory.
Recall that in a most general terms the language of CL consists of predi-

cate symbols (we will ignore function symbols for now), a collection of connec-
tives, that is continuous functions Cn → C, and quantifiers, that is continuous
transformations of predicates.

A basic CL-formula is made of predicate symbols using connectives and
quantifiers.

An interpretation of symbols and formulas begins with a choice of a uni-
verse M, which may be a metric space or, in more recent application, a
measure space.

Symbols of n-ary predicates P are interpreted as maps P :Mn → C. If f :
Cn → C is a connective and ψ1, . . . , ψn are formulas, equivalently, definable
predicates, than the formula f(ψ1, . . . , ψn) is interpeted as the composition of
the maps defined by ψ1, . . . , ψn with f(x1, . . . , xn). Quantifiers are interpreted
in a special way as transformations of formulas in n+1 variables into formulas
in n variables.

The uniformity of interpretation of language symbols across different M
is ensured by certain uniform continuity moduli for the symbols P.

A universeM together with interpretation of predicates P of the language
constitutes a structure in continuous model theory. Importantly, the definable
sets in a structure are obtained not just by CL-formulas but also as limits in
the families of formulae-definable sets.

See [4], [13] and [14] for further details.

3.2 Recall that the historical prototype of a vector |ψ⟩ of the Hilbert space
has been a wave-function, that is a function

ψ : M → C

from a configuration spaceM into a bounded domain of the complex numbers
C.

These can be seen as predicates on a domain which, as the matter of facr
is identified in Dirac calculus of quantum mechanics with Rn, where R is the
real line seen as a measure space. Definable predicates of norm 1 will be
referred to as states.

Of special significance are the momentum and position states. Mo-
mentum states where defined by Dirac as the definable family of predicates
of the form

|p⟩ := 1√
2π

e−ipx, p ∈ R. (3)
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One can consider a C-linear space generated by the momentum states and
define Hermitian inner product, first between the momentum states

⟨p1|p2⟩ := δ(p1 − p2) (4)

where δ is the Dirac delta. However, in the context of rigged Hilbert spaces
one can identify the inner product above with the Kronecker delta.

The position states |x⟩, x ∈ R, by their physical meaning are character-
istic functions of one-point subsets {x}

|x⟩ := δ(x− z) (5)

(as a function of z) which for convenience of continuous mathematical ma-
nipulations have been replaced here and in (4) by Dirac’s delta-functions,
that is by distributions. In this sense

|x⟩ = 1√
2π

∫
R
eixp|p⟩dp (6)

Equivalently, position states can be represented by linear functionals (bra-
vectors)

⟨x| : |ψ⟩ 7→ ψ(x)

or equivalently, for ψ running in {|p⟩ : p ∈ R},

⟨x| : |p⟩ 7→ 1√
2π

e−ipx (7)

In model theory terms, the linear functionals ⟨x| are imaginary elements
in the structure, the interpretation of which is given by (7).

The basic unitary operators (Weyl operators) can be defined by their
action on the basis:

eiP : |p⟩ 7→ eip|p⟩

eiQ : |x⟩ 7→ eix|x⟩.

In particular, the former can be equivalently, using (6), written as

eiP : |x⟩ 7→ 1√
2π

∫
R
eip(x+1)|p⟩dp
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The time-evolution operator Kt
Free for a free particle is e−itP

2

2 , t ∈ R, that
is

Kt : |p⟩ 7→ e−it p
2

2 |p⟩ (8)

which yields by (6)

Kt : |x0⟩ 7→
1√
2π

∫
R
ei(px0−t p

2

2
)|p⟩dp

and

⟨x|Kt|x0⟩ =
1√
2π

∫
R
ei(px0−t p

2

2
)⟨x|p⟩dp

Substituting (3) one gets

1√
2π

∫
R
ei(px0−t p

2

2
)⟨x|p⟩dp = 1

2π

∫
R
ei(p(x0−x)−t p

2

2
)dp =

1

2π

∫
R
e−it

(p− (x−x0
t )2

2
+

i(x−x0)
2

2t dp =
1

2π
ei

(x−x0)
2

2t ·
(∫

R
e−it p

2

2 dp

)
=

1

2π
ei

(x−x0)
2

2t ·
√

2π

it
=

1√
2πit

e
i(x−x20)

2t

and one obains the well-known formula

⟨x|Kt|x0⟩ =
1√
2πit

e
i(x−x20)

2t (9)

3.3 In more abstract axiomatic setting the theory of Dirac integration in
the context of Gaussian states can be formulated as a rule:

for a ̸= 0, ∫
R
eπi(ax

2+2bx)dx =

√
1

ia
e−πi b

2

a = e−
πi
4

√
1

a
e−πi b

2

a (10)

and, for a = 0, ∫
R
e−2πibxdx = δ(b) (11)

More advanced calculus, going beyond Gaussian states, requires meth-
ods of perturbation theory. This can be illustrated by the following typical
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calculation related to anharmonic oscillator in quantum mechanics and also
setting a pattern for crucial calculations in QFT∫

R
ei

x2+λx4

h dx = e
πi
4

√
2πh(1 + iλh+ o(λh)) (12)

for h > 0 small, see [18], section 2.

3.4 In terms of structures, let Hm be the set of all m-ary predicates on R.
This by definition has structure of C-vector spaces

C = H0 ⊂ . . . ⊂ Hm ⊂ . . . ⊂ Hm+1 . . .H.

Also, one uses quantifiers, linear maps written as integrals

ϕ(z1, . . . , zn) 7→
∫
R
ϕ(z1, . . . , zn)dzn.

In fact, this is a collection of linear maps∫
: Hm+1 → Hm,

the rules of calculation of which defined by Dirac’s improper integration.
For a discrete basis the sum in (1) can be represented in CL-setting as a

definable countable sum, see e.g. [13], Example 5.2.
A special binary operation in the spaces, inner product,

Hm ×Hm → C; ⟨ϕ(z1, . . . , zn), ψ(z1, . . . , zn)⟩ =
∫
Rm

ϕ∗ · ψ dz1 . . . dzm

where ϕ∗ is the complex comjugate of ϕ and
∫
Rm is m-multiple integral. ⟨ϕ|ψ⟩

can be seen as a continuous predicate of equality ϕ = ψ.
One restricts the notion of state to predicates ϕ such that ⟨ϕ|ϕ⟩ = 1.

An important role in the theory is played by a collection of linear maps
(operators)

L : Hm → Hm

with physical meanings. These can be of the integral form

ϕ(z̄1, z̄2) 7→
∫
Rk

α(ȳ, z̄1) · ϕ(ȳ, z̄2) dȳ
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where |ȳ| = |z̄1| = k, α ∈ H2k, or as classical linear operators

P : ϕ(x, z̄) 7→ iℏ
∂ϕ(x, z̄)

∂x
or Q : ϕ(x, z̄) 7→ x · ϕ(x, z̄)

The time evolution operator exp(−iHt/ℏ) acts on states as a uni-
tary operator determining the evolution of a state in time t with a given
Hamiltonian H. A state ϕt0 determining a system at time t0 evolves into
a state ϕt := exp(−iH(t − t0)/ℏ) with the probability amplitude equal to
⟨ϕt0 |ϕt⟩, which is a complex number of modulus 1. The calculation of the
CL-formulae ϕt and ⟨ϕt0 |ϕt⟩ (which involve mainly calculations of the appli-
cation of quantifier

∫
) is the central problem of quantum theory, equivalent

to solving the associated Schrödinger equation.
All of the above together makes the Hm a collection of Hilbert spaces

with linear operators and H an ambient Hilbert space.

Note that unitary operators of the form eiL, where L is self-adjoint can
mostly be represented in the integral form with respective kernels α. In par-
ticular, it is true when L is a polynomial of the basic operators P and Q, see
[20].

It should be mentioned that the Hilbert state formalism of quantum me-
chanics can be fully reduced to the unitary setting, that is the setting with a
Hilbert space equipped with unitary operators only. This is our preferred for-
malism and by the remark above, with enough functions α in the formalism,
one can reduce all the operators to the integration operator.

Below we explain how the Hilbert space axiomatisation of QM can be
represented as a formal theory in the language of Continuous Logic.

3.5 Remarks on Dirac integration and measure. Let
∫
R
f(x)δx stand

for the Dirac integral and
∫
R
f(x)dx for the proper Riemann integral.∫

R

f(x)δx =

∫
R

f(x)dx (13)

if the latter is well-defined.
In particular, for f(x) continuous on R,∫

R

f(x)δx = lim
m→∞

∫ m

−m

f(x)dx (14)

if the right-hand-side is well-defined.
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Suppose ∫
R
g(x)δx = δDir(p)

while the Riemann integration is not applicable to g(x). However, in the
setting of rigged Hilbert spaces it is consistent to renormalise to the Kronecker
delta-symbol: ∫

R
g(x)δx := δKr

0,p. (15)

3.6 The Rigged Hilbert Space Picture.
In the Gelfand triple:

Φ ⊂ H ⊂ Φ∗

Φ is a space of test functions (e.g., Schwartz space),H is the Hilbert space,
Φ∗ is the space of continuous linear functionals on Φ, i.e., distributions.

An element ϕ ∈ Φ∗ acts on test functions via: ⟨ϕ|f⟩
The ket |x⟩ ∈ Φ∗ is not a vector in H, but a generalized eigenvector.
The pairing ⟨x|ϕ⟩ can be interpreted as the evaluation ϕ(x) of ϕ at the

point x, if such evaluation makes sense. If ϕ ∈ H, this is a well-defined
function ϕ : R → C

4 Hilbert space formalism and H-structures

4.1 The axiomatic description of quantum mechanical theory in the form of
rigged Hilbert space may be quite confusing from the logician point of view –
there are no logical sentences which can be called axioms. What Axioms 1 –
5 render instead is the topological-algebraic structure of a Hilbert space with
operators. This brings us to the algebraisation of logic approach introduced
by A.Lindenbaum, A.Tarski, P.Halmos for the first order setting. It is quite
natural to see the Hilbert space formalism as the form of algebraic logic in
the context of the continuous logic of physics.

As explained in our less formal note [5] the Hilbert space H of quantum
mechanics, or rather the tower of Hilbert spaces H⊗n, plays the role of the
cylindric algebra of Tarski, see [6].

4.2 Let H be a rigged Hilbert space, Hn = H⊗n and O a collection of
linear operators on the Hn. Let HDef

n is a dense subspace of Hn closed under
operators from O.
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We will often write H for the union of the tower H1 ⊂ H2 ⊂ . . . and
similarly with HDef .

Definition. An H-structure (U,HDef ,O) is given by
- a universe U, a complete metric space with a measure µ and metric

dist(u1, u2).
In case U = U(n) is finite of size n,

U(n) = [−n

2
,
n

2
) ∩ Z

with additive structure isomorphic to Z/nZ and dist(u1, u2) =
√

1
n
· |u1−u2|,

the measure of a point is 1√
n
.

In case U = U(∞) is infinite, U(∞) = R, dist(u1, u2) = |u1 − u2| and the
measure is the Dirac’s delta-measure as determined in 3.5.

- collections Hn, n ∈ N, of predicates

ψ : Un → C

each with a name ψ from HDef
n , continuous maps; Hn has a structure of a

C-linear space;
- an Hermitian inner product ⟨ψ1|ψ2⟩; Hn × Hn → C is defined for

all n;
- quantifier

E : Hn+1 → Hn,

for all n ∈ N, which is given as an integral operator

E : ψ 7→
∫
U
ψ dµ

on the rigged Hilbert space Hn+1.
- a collection of linear operators

L : Hn → Hm

named by symbols L ∈ O:
- Weyl assumption: O contains a pair of (Weyl) operators U and V,

acting on H1 and satisfying the commutation relation

UV = qVU
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where

q =

{
e

2πi
N if U is finite |U| = N

e2πih some h ∈ R>0

There is a canonical set of eigenvectors for U

EigU = {u[r] ∈ H1 : Uu[r] = qr · u[r], r ∈ U} ⟨u[r]|u[s]⟩ = δr,s

which form an orthonormal basis of H1. The action of V on the basis is
defined as

Vu[r] = u[r + 1], where u[r] = u[s], if |U| = n and r ≡ s mod N .

There is a dual canonical set of eigenvectors for V with eigenvalues in
S(U) ⊂ S

EigV = {v[p] ∈ H1 : Vv[p] = qp · v[p], p ∈ U} ⟨v[p]|u[q]⟩ = δp,q

We call an infinite H-structure a continuous H-structure. Recall that
U = U(∞) = R in this case.

4.3 There is a Fourier duality between the bases Eig U and Eig V, in finite
cases:

v[p] =
1√
n

∑
r∈U

qrpu[r]; u[r] =
1√
n

∑
p∈U

q−rpv[p] (16)

or, in continuous/rigged Hilbert spaces form, in agreement with (5),

v[p] =
1√
2π

e−irp; u[r] = δ(r) =
1√
2π

∫
R
v[p]eiprdp

In the setting of continuous model theory we represent the one-point char-
acteritic functions u[r] as the limit of continuous bump-functions.

4.4 We also consider asymptotic classes of H-structures with given signature
HDef ,O, which are classes of H-structures with finite universe U(n), n running
in a subset P ⊆ N. (Similar to the class considered by Hrushovski in [15]).
Then, given an ultrafilter D on N and the first-order ultraproduct

U(n) =
∏
n∈D

U(n)

we obtain a pseudo-finite version of H-structure. We study these below along
with CL-ultraproducts.
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We say that (U,HDef ,O) represents the (possibly uncomplete) Hilbert
space (HDef ,O) if

(H,O) ∼= (HDef ,O)

via the naming correspondence.

4.5 Proposition. Given a rigged Hilbert space H with an inner product
subspace HDef which is dense in H and closed under the quantifier and a
family of unitary operators O satisfying the Weyl assumtion, there is a unique
H-structure (U,HDef ,O) representing (HDef ,O) .

.
Proof. Set U := Eig U and define, for each ψ ∈ HDef

n , an n-ary predicate
ψ to be the unique map ψ : Un → C such that

ψ(r̄) = ⟨u[r̄] |ψ⟩

This is well-defined according to 3.6 (note that u[r̄] = |r̄⟩, a position state in
Hn). □

4.6 CL-ultraproduct. We will work in a specific asymptotic class of H-
structures of signature (HDef ,E) where the predicates of HDef on U(n) are of
the form

ψ(k, . . . , km) = f(
k1√
n
, . . . ,

km√
n
),

where f(x1, . . . , xm) is a smooth function Rm → C.
The predicate with the same name ψ on continuous U is

ψ(x1, . . . , xm) := f(x1, . . . , xm).

The quantifier2 E := {E(m) : m ∈ N}, a family of quantifiers on finite
intervals of diameter 2m <

√
n, is defined as follows:

E
(m)
k ψ(k, p̄) = st

 1√
n

k≤m
√
n∑

k≥−m
√
n

ψ(k, p̄)

 , for U(n) (17)

E(m)
x ψ(x, ȳ) =

∫ m

−m

ψ(x, ȳ)dx, for U(∞). (18)

2Move to after 4.2
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We also consider:

Eloc
k ψ(k, p̄) := lim

m→∞
E
(m)
k ψ(k, p̄) (19)

Here, in case n is finite, the limit should be understood as the value for
the maximal m satisfying 2m ≤

√
n. For a pseudo-finite n it is assumed that

m runs in N, the standard positive integers. In the context of continuous
model theory Eloc

k is definable in terms of E
(m)
k .

While E
(m)
k ψ is well-defined for all ψ, Eloc

k ψ might be not, for some ψ for
infinite n.

However, we use notation Eloc for the family {E(m) : m ∈ N} when it does
not lead to confusion.

4.7 Theorem. (H,O) be a rigged Hilbert space with a family O of integral
operators, and HDef its dense subspace closed under inner product and O.

For any non-principal ultrafilter D on N the continuous model theory ul-
traproduct (U∗,HDef ,O) of finite H-structures (U(n),HDef ,O) is a continuous
H-structure.

For every sentence σ and every positive ϵ there is a subset Dσ,ϵ ∈ D such
that for all n ∈ Dσ,ϵ the value of σ on (U,HDef ,O) differs from the value of
σ on (U(n),HDef ,O) by no more than ϵ.

Proof. The metric universe U∗ of the ultraproduct is defined as the union
of sorts of finite diameter 2m, which are limits along the ultafilter D of sorts
of the same diameter of U(n). This means that for a limit non-standard
number n and numbers k ∈ U(n) we set the limit point x = k/D so that

dist(0, x) = dist(0, k)/D

This brings us to

x := st(
k√
n
),

(the standard part map). In particular, the interval [−m
√
n,m

√
n] in U(n)

corresponds to the interval [−m,m] in R.
This also agrees with the definition of predicates ψ on the ultraproduct

and
Next we prove the correspondence for quantifiers. It is enough to consider

unary ψ : R → C. By definition ψ(k) = f( k√
n
), f(x) smooth on R.

Claim. Given any positive ϵ ∈ R,
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| 1√
n

∑
−m

√
n≤k<m

√
n

f(
k√
n
) −

∫ m

−m

f(x)dx| < ϵ

Indeed, the discrete formula is a Riemann sum with spacing ∆x = 1√
n
.

By the left Riemann sums estimate for an interval (a, b)

Err ≤Mf
(a− b)2

2N
=Mf

(2m)2

4m
√
n

where N is the number of points between a = m and b = −m and Mf =

max{f ′(x) : b ≤ x < a}. Clearly, Mf
(2m)2

4m
∈ R and thusMf

(2m)2

4m
√
n
< ϵ because

1√
n
is a non-standard infinitesimal.
Thus the application of the quantifier in the asymptotic class agrees with

the quantifier in the ultraproduct. It follows that the inner product opera-
tion in the asymptotic class agrees with the inner product operation in the
ultraproduct, once it is determined by integration. This is enough to obtain
the correspondence for the construction of interpretable linear functionals
and the rigged Hilbert space in the asymptotic class and in the ultraprod-
uct. It follows that the inner product operation ⟨ψ1|ψ2⟩ is preserved by the
ultraproduct for all ψ1, ψ2 ∈ HDef .

Finally, the operators in O are preserved by the ultraproduct because
they are expressible in terms of Eloc. This includes Weyl operators.

□

5 Gaussian and perturbation-Gaussian states

5.1 Gaussian predicates.
Call an m-predicate ψ(k1, . . . , km) on U(n) basic Gaussian if there is a

η ∈ C and a positive-definite quadratic form Q(x1, . . . , xm) over Q such that

ψ(k1, . . . , km) = e−πi
Q(k1,...,km)

n = e
−πiQ(

k1√
n
,..., km√

n
)

For the continuous U :

ψ(x1, . . . , xm) = e−πiQ(x1,...,xm),

where Q is a over R.
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Since by definition e−irp is a Gaussian predicate, we consider the Fourier-
dual one point characteristic function u[r] to be a Gaussian state.

Note that Q(x1, . . . , xm) can be written in the form that singles out a
particular variable, say x1,

Q(x1, . . . , xm) = ax2 + 2xb(ȳ) + c(ȳ)

where x = x1, ȳ is the rest of the variables, b(ȳ) a linear form and c(ȳ) a
quadratic form.

Now a Gaussian predicate can be written as

ψ(k, p̄) = e−πi
c(p̄)
n · e−πi

ak2+2kb(p̄)
n

in the discrete setting, and

ψ(x, ȳ) = e−πic(ȳ)) · e−πi(ax2+2xb(ȳ)

in continuous seting.

For the discrete version, if a ̸= 0, we call the rational number a the
period of ψ with respect to variable k.

If a = 0 and b(p̄) = b · (L1p1+ . . .+Lmpm) with L1, . . . , Lm coprime tuple
of integers, then the period of ψ with respect to variable k is equal to b.

Definitions. Call non-standard integer n highly divisible if it is divis-
ble by all standard integers.

Let n be highly divisble and |U| = n. We say that a subset X ⊂ Um is
d-dense if X contains a submodule of Um of finite index.

5.2 Lemma (Gauss summation). On U(n), for n highly divisible:

1√
n

∑
− n

2a
≤k< n

2a

e−πi
ak2+2kb(p̄)

n =

√
1

a
· e

πi
4 · e−πi

b(p̄)2

an (20)

for all p̄ in a d-dense subset of Um−1, and equals 0 outside the d-dense subset.
and in case a = 0, b(p̄) = b · p for b ∈ Q,

1√
n

∑
− n

2b
≤k< n

2b

eπi
2bkp)

n = b−1δU(n)(p) (21)
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where

δ(U(n)(p) =

{
0 if p ̸= 0√
n otherwise

Proof. Let a = A
D
> 0 where A,D ∈ Z. We choose D so that D · b(p̄) is

over Z. Note that n
2a

is an integer because n is divisible by A by assumptions.
Now let

Xa = {p̄ ∈ Um−1 : A|Db(p̄)}.

This is a dense subset of Um−1. For a p̄ ∈ Xa the function

e−πi
ak2+2kb(p̄)

n

of variable k has period n
a
and b(p̄)

a
is an integer. Thus the summands in

ak2 + 2kb(p̄) = a(k +
b(p̄)

a
)2 − b(p̄)2

a
= an2 − b(p̄)2

a

are integer and we can write

∑
− n

2a
≤k< n

2a

e−πi
ak2+2kb(p̄)

n = eiπ
b(p̄)2

a
n

∑
0≤n< n

a

e−πian
2

n = eiπ
b(p̄)2

an ·
√

n

a
e

πi
4

where at the last step we used the classical Gauss’ quadratic sums equality.
In case p̄ /∈ Xa the Gauss sum is equal 0.

Now consider the case a = 0, b = B
D
, for B,D ∈ N coprime. If p = 0

mod B then all the summands in (21) are equal to 1 and we get
√
n
b

for the
value of the formula. Alternatively, if p ̸= 0 mod B then we get all the roots
of 1 of order n

b
as summands, and the sum is equal 0.

□

5.3 Lemma. For any d-dense subset X ⊂ U(n)m for any ȳ ∈ Rm there is
p̄ ∈ X such that st( 1√

n
p̄) = ȳ.

Proof. When p runs in U(n) = [−n
2
, n
2
] the numbers st( 1√

n
p) runs contin-

uously between −∞ and +∞. Thus there is p̄ ∈ U(n)m such that st( 1√
n
p̄).

Density of X implies that there is a tuple of non-negative standard inte-
gers d̄ such that p̄+ d̄ ∈ X. But st( 1√

n
d̄) = 0̄ and thus we can assume p̄ ∈ X.

□

17



5.4 Corollary
Let (U∗,HDef ,O) be the ultraproduct constructed in 4.7, n highly divisible,

and e−πiax2+2xb(ȳ) a Gaussian predicate on U∗, where a, b are rational. Then,

the related that Gaussian predicate e−πi
ak2+2kb(p̄)

n on U(n) can be chosen so
that for any positive ϵ ∈ R

|
∑

− n
2a

<k≤ n
2a

e−πi
ak2+2kb(p̄)

n −
∫
R
e−πi(ax2+2xb(ȳ))dx| < ϵ (22)

if a > 0, and

|
∑

− n
2b

<k≤ n
2b

e−πi
2kb(p̄)

n −
∫
R
e−πi2xbdx| < ϵ (23)

if a = 0.

5.5 Global versions of quantifiers.
The global quantifier is

Eglob
k ψ(k) := st

 1√
n

∑
− n

2P
<k≤ n

2P

ψ(k)


where P is the period of ψ.

5.6 Proposition. Given a pseudo-finite H-structure with U = U(n), n,
highly divisible, and a Gaussian predicate ψ with variables k, p̄:

Eglob
k ψ(k, p̄) = Eloc

k ψ(k, p̄)

for each p̄ in a d-dense subset.
Proof. This is a direct consequence of 5.4 and 4.7. □

5.7 Beyond free particles. Anharmonic oscillator. The Gaussian
fragment of quantum mechanics modelled above (with a little more work
includes also quantum harmonic oscillator) is the only part of QM which
allows exact solutions. The more general version of QM would include states

of the form e−i
x2+f(x)

2h
) where f(x) is a polynomial of degree > 2. In fact, the

theory, due to physical and mathematical issues only deal with quite specific
forms of such states. The key example is that of an anharmonic oscillator

18



e−ix
2+λx4

2h as analysed in [19]. This is also a much simplified analogue of so
called ϕ4-quantum field theory.

The important difference with the Gaussian case is that Dirac calculus
over such states, namely the key calculation∫

R
e−ix

2+λx4

2h dx, λ > 0

can only be carried out using perturbation methods, which impose specific
restriction on coefficients, in particular h have to be infinitesimally small in
the example.

This leads us to restrict our analysis to discrete states of the form

ψ(k) := e−πi
H(k2+ 1

L
k4)

2n

perturbed Gaussian states where H, L positive integers and

h =
1

2πH
.

As in the Gaussian case we assume that H divides n. Note that H also plays
here a role of (asymptotic) period for ψ, perturbed Gaussian states are not
of period n

H
.

Set x =
√

1
n
k. Then3

e−πi
H(k2+ 1

L
k4)

n = e−ix
2+λx4

2h , λ =
n

L

5.8 As for the above Gaussian states the application of the global quantifier
to a perturbed state ψ is defined as

Eglob
k ψ(k) :=

√
1

n

∑
− n

2H
≤k< n

2H

ψ(k)

That is for ψ as above

Eglob
k ψ(k) :=

√
1

n

∑
− n

2H
≤k< n

2H

e−πi
Hk2+H

L
k4

n =

√
2

n

∑
0≤k< n

2H

e−πi
Hk2+H

L
k4

n

3Physicists also consider perturbative states with term λxd for d ≥ 3. In this case

λ := nd/2−1

L .
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assumin n
2H

> 1 is an integer.
We will assume that

λ = O(1).

Then under the restriction 0 ≤ k < n
2H

we have

Hk4

Ln
<

n3

LH3
= O(

n2

H3
) (24)

5.9 Let ϕ(k) = 1− e(
H
L
k4

2n
). Consider the partition of the sum

Eglob
k ψ = 2h

1
2

√
H

n

∑
0≤k< n

2H

e−πi
Hk2+H

L
k4

n =

= h
1
2

2

√
H

n

∑
0≤k< n

2H

e−πiHk2

n + 2

√
H

n

∑
0≤k< n

H2

ϕ(k)e−πiHk2

2n

 =

= h
1
2 (T0(h) + Tϕ(h)).

We know that
T0(h) = e−

πi
4 .

So our aim is to evaluate Tϕ(h).

5.10 Note that

ϕ(k) = 1− eπi
Hk4

Ln = πi
Hk4

Ln
+O((

Hk4

Ln
)2) = πi

λHk4

n2
+ ϵ

Note that k4 ≤ ( n
H
)4 and thus Hk4

n2
≤ 2πh( n

H
)2 and ϵ = o(h), so

|ϕ(k)| ≤ h ·O(λ( n
H
)2)

Tϕ(h) = |2
√
H

n

∑
0≤k< n

2H

ϕ(k)e−πiHk2

n | ≤ |2
√
H

n

∑
0≤k< n

2H

ϕ(k)| ≤ h

√
H

n
· n
H
·O(λ n2

H2
) =

= λh ·O( n
H
)2+1/2

We will say

h → 0 iff
n

H
= O(1).
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5.11 Corollary
Tϕ(H) ≤ O(1) · λh when h → 0.

5.12 Corollary

Eglob
k ψ(k, h) = h

1
2

√
2πe

πi
4 (1 + I(h)), where I(h) = O(1) · λh when h → 0.

This is in a good agreement with Eloc
k ψ(k, h) calculated in [18] and [19]

as an asymptotic (non-convergent) series of h.
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