Geometric stability and Zariski geometries

B. Zilber

University of Oxford

July 28, 2010
Lecture I

Generalities:

- Model theory allows us to explore the landscape of mathematics and beyond.
Generalities:

- Model theory allows us to explore the landscape of mathematics and beyond.
- **Zariski geometries** is the class of structures discovered in this exploration.
Lecture I

Generalities:

- Model theory allows us to explore the landscape of mathematics and beyond.

- **Zariski geometries** is the class of structures discovered in this exploration.

- Zariski geometries are on the very top of stability hierarchy, so, in the very centre of mathematics.
We think essentially about finite Morley rank structures (often, strongly minimal ones) in a more specific context:
Noetherian Zariski structures: The idea

We think essentially about finite Morley rank structures (often, strongly minimal ones) in a more specific context: we want to treat differently P and $\neg P$.

Example. Algebraic Geometry is a model theory of (algebraically closed) fields with the emphasis on positively quantifier-free definable sets (Zariski-closed sets).
Noetherian Zariski structures: The idea

We think essentially about finite Morley rank structures (often, strongly minimal ones) in a more specific context: we want to treat differently P and $\neg P$.

Example. Algebraic Geometry is a model theory of (algebraically closed) fields with the emphasis on positively quantifier-free definable sets (**Zariski-closed** sets).
Noetherian Zariski structures: Definition and Axioms

Let \mathbf{M} be a structure and let \mathcal{C} be a distinguished sub-collection of the definable subsets of M^n, $n = 1, 2, \ldots$. The sets in \mathcal{C} are called (definable) **closed**. The relations corresponding to the sets are the basic (primitive) relations of the language we will work with. $\langle \mathbf{M}, \mathcal{C} \rangle$, or \mathbf{M}, is a **topological structure** if it satisfies axioms:
Let \mathbf{M} be a structure and let \mathcal{C} be a distinguished sub-collection of the definable subsets of M^n, $n = 1, 2, \ldots$. The sets in \mathcal{C} are called (definable) **closed**. The relations corresponding to the sets are the basic (primitive) relations of the language we will work with. $\langle M, \mathcal{C} \rangle$, or \mathbf{M}, is a **topological structure** if it satisfies axioms:

(L) Topological **Language**: The primitive n-ary relations of the language are exactly the ones that distinguish definable closed subsets of M^n, all n (that is the ones in \mathcal{C}), and every quantifier-free positive formula in the language defines a closed set (so is equivalent to an atomic one).
Noetherian Zariski structures: Definition and Axioms

More precisely:

1. the intersection of a finite family of closed sets is closed;
2. finite unions of closed sets are closed;
3. the domain of the structure is closed;
4. the graph of equality is closed;
5. any singleton of the domain is closed;
6. Cartesian products of closed sets are closed;
7. the image of a closed $S \subseteq M^n$ under a permutation of coordinates is closed;
8. for $a \in M^k$ and S a closed subset of M^{k+l} defined by a predicate $S(x, y)$ the fibre over a

$$S(a, M^l) = \{ b \in M^l : M \models S(a, b) \}$$

is closed.
Noetherian Zariski structures: Definition and Axioms

Remarks
L6 assumes that, for \(S_1 \subseteq M^n \) and \(S_2 \subseteq M^m \) closed, \(S_1 \times S_2 \) is canonically identified with a subset of \(M^{n+m} \) which is closed in the latter.

The canonical identification is

\[
\langle \langle x_1, \ldots, x_k \rangle, \langle y_1, \ldots, y_m \rangle \rangle \mapsto \langle x_1, \ldots, x_k, y_1, \ldots, y_m \rangle.
\]
Noetherian Zariski structures: Definition and Axioms

Remarks
L6 assumes that, for $S_1 \subseteq M^n$ and $S_2 \subseteq M^m$ closed, $S_1 \times S_2$ is canonically identified with a subset of M^{n+m} which is closed in the latter. The canonical identification is

$$\langle \langle x_1, \ldots, x_k \rangle, \langle y_1, \ldots, y_m \rangle \rangle \mapsto \langle x_1, \ldots, x_k, y_1, \ldots, y_m \rangle.$$

A projection

$$pr_{i_1, \ldots, i_m} : \langle x_1, \ldots, x_n \rangle \mapsto \langle x_{i_1}, \ldots, x_{i_m} \rangle, \quad i_1, \ldots, i_m \in \{1, \ldots, n\}.$$

is a continuous map, by L6: the inverse image of a closed set S is closed. Indeed,

$$pr_{i_1,\ldots,i_m}^{-1} S = S \times M^{n-m}$$

up to the order of coordinates.
Noetherian Zariski structures: Definition and Axioms

Constructible sets are the Boolean combinations of members of \(C \).

A subset of \(M_n \) will be called projective if it is a finite union of sets of the form \(\text{pr} S_i \), for some \(S_i \subseteq \text{cl} U_i \subseteq \text{op} M_n + k_i \) and projections \(\text{pr} (i) : M_n + k_i \to M_n \).

Note that any constructible set is projective with trivial projections in its definition.

A topological structure is said to be complete if the image \(\text{pr}_{i_1}, \ldots, i_m S \) of a closed subset \(S \subseteq \text{cl} M_n \) is closed.

A topological structure \(M \) will be called quasi-compact (or just compact) if it is complete and satisfies

\[\bigcap_{t \in T} C_t \text{ is non-empty.} \]
Noetherian Zariski structures: Definition and Axioms

Constructible sets are the Boolean combinations of members of C.
equivalently, finite unions of sets S_i, such that $S_i \subseteq \text{cl} U_i \subseteq \text{op} M^n$.
Noetherian Zariski structures: Definition and Axioms

Constructible sets are the Boolean combinations of members of \mathcal{C}. equivalently, finite unions of sets S_i, such that $S_i \subseteq_{\text{cl}} U_i \subseteq_{\text{op}} M^n$.

A subset of M^n will be called projective if it is a finite union of sets of the form $\text{pr} S_i$, for some $S_i \subseteq_{\text{cl}} U_i \subseteq_{\text{op}} M^{n+k_i}$ and projections $\text{pr}^{(i)} : M^{n+k_i} \to M^n$.

Note that any constructible set is projective with trivial projections in its definition.
Noetherian Zariski structures: Definition and Axioms

Constructible sets are the Boolean combinations of members of C.
equivalently, finite unions of sets S_i, such that $S_i \subseteq \text{cl } U_i \subseteq \text{op } M^n$.
A subset of M^n will be called **projective** if it is a finite union of sets of the form $\text{pr } S_i$, for some $S_i \subseteq \text{cl } U_i \subseteq \text{op } M^{n+k_i}$ and projections $\text{pr }^{(i)} : M^{n+k_i} \to M^n$.
Note that any constructible set is projective with trivial projections in its definition

A topological structure is said to be **complete** if
(P) **Properness** of projections condition holds:
the image $\text{pr}_{i_1,...,i_m} S$ of a closed subset $S \subseteq \text{cl } M^n$ is closed.
Noetherian Zariski structures: Definition and Axioms

Constructible sets are the Boolean combinations of members of C.

equivalently, finite unions of sets S_i, such that $S_i \subseteq_{cl} U_i \subseteq_{op} M^n$.

A subset of M^n will be called projective if it is a finite union of sets of the form $\text{pr} S_i$, for some $S_i \subseteq_{cl} U_i \subseteq_{op} M^{n+k_i}$ and projections $\text{pr}^{(i)} : M^{n+k_i} \to M^n$.

Note that any constructible set is projective with trivial projections in its definition.

A topological structure is said to be complete if

(P) Properness of projections condition holds:
the image $\text{pr}_{i_1,\ldots,i_m} S$ of a closed subset $S \subseteq_{cl} M^n$ is closed.

A topological structure M will be called quasi-compact (or just compact) if it is complete and satisfies

(QC) For any finitely consistent family $\{C_t : t \in T\}$ of closed subsets

$$\bigcap_{t \in T} C_t$$

is non-empty.
Noetherian Zariski structures: Definition and Axioms

A topological structure is called **Noetherian** if it also satisfies: (DCC) **Descending chain condition** for closed subsets: for any closed

\[S_1 \supseteq S_2 \supseteq \ldots \supseteq S_i \supseteq \ldots \]

there is \(i \) such that for all \(j \geq i \), \(S_j = S_i \).
Noetherian Zariski structures: Definition and Axioms

A topological structure is called **Noetherian** if it also satisfies:

(DCC) Descending chain condition for closed subsets: for any closed

\[S_1 \supseteq S_2 \supseteq \ldots S_i \supseteq \ldots \]

there is \(i \) such that for all \(j \geq i \), \(S_j = S_i \).

A definable set \(S \) is called **irreducible** if there are no relatively closed subsets \(S_1 \subseteq_{cl} S \) and \(S_2 \subseteq_{cl} S \) such that \(S_1 \not\subset S_2 \), \(S_2 \not\subset S_1 \) and \(S = S_1 \cup S_2 \).
Noetherian Zariski structures: Definition and Axioms

Good dimension

We assume that to any non-empty projective S a non-negative integer called the dimension of S, $\dim S$, is attached. We postulate the following properties of a good dimension notion:

(DP) **Dim of a point** is 0;

(DU) **Dim of unions:** $\dim(S_1 \cup S_2) = \max\{\dim S_1, \dim S_2\}$;

(SI) **Strong irreducibility:** For any irreducible $S \subseteq_{cl} U \subseteq_{op} M^n$ and its closed subset $S_1 \subseteq_{cl} S$, if $S_1 \neq S$ then $\dim S_1 < \dim S$;

(AF) **Addition formula:** For any irreducible $S \subseteq_{cl} U \subseteq_{op} M^n$ and a projection map $\text{pr} : M^n \to M^m$,

$$\dim S = \dim \text{pr}(S) + \min_{a \in \text{pr}(S)} \dim(\text{pr}^{-1}(a) \cap S).$$

(FC) **Fibre condition:** For any irreducible $S \subseteq_{cl} U \subseteq_{op} M^n$ and a projection map $\text{pr} : M^n \to M^m$ there exists $V \subseteq_{op} \text{pr} S$ (relatively open) such that

$$\min_{a \in \text{pr}(S)} \dim(\text{pr}^{-1}(a) \cap S) = \dim(\text{pr}^{-1}(v) \cap S), \text{ for any } v \in V \cap \text{pr}(S).$$
Complete Noetherian topological structures with good dimension will be called **complete (Noetherian) Zariski structures**.

More generally we replace (P) by (SP) semi-Properness of projection mappings: given a closed irreducible subset $S \subseteq \overline{M}$ and the projection map $pr: M^n \to M^k$, there is a proper closed subset $F \subset pr(S)$ such that $pr(S) \setminus F \subseteq pr(S)$.

Noetherian topological structures with good dimension and satisfying (SP) will be called **(Noetherian) Zariski structures**.
Noetherian Zariski structures: Definition and Axioms

Complete Noetherian topological structures with good dimension will be called complete (Noetherian) Zariski structures.

More generally we replace (P) by

(SP) **semi-Properness** of projection mappings: given a closed irreducible subset $S \subseteq \text{cl } M^n$ and the projection map $\text{pr} : M^n \to M^k$, there is a proper closed subset $F \subset \text{pr } S$ such that $\text{pr } S \setminus F \subseteq \text{pr } S$.
Complete Noetherian topological structures with good dimension will be called **complete (Noetherian) Zariski structures**.

More generally we replace (P) by

(SP) semi-Properness of projection mappings: given a closed irreducible subset $S \subseteq \text{cl } M^n$ and the projection map $\text{pr} : M^n \rightarrow M^k$, there is a proper closed subset $F \subset \text{pr } S$ such that $\text{pr } S \setminus F \subseteq \text{pr } S$.

Noetherian topological structures with good dimension and satisfying (SP) will be called **(Noetherian) Zariski structures**.
Noetherian Zariski structures: Definition and Axioms

In many cases we assume that a Zariski structure satisfies also (EU) **Essential uncountability:** If a closed $S \subseteq M^n$ is a union of countably many closed subsets, then there are finitely many among the subsets, the union of which is S.

1-dimensional presmooth Noetherian Zariski structures satisfying (EU) are called (1-dim Noetherian) Zariski geometry. This can be generalised to a definition of a (n-dim Noetherian) Zariski geometry.
Noetherian Zariski structures: Definition and Axioms

In many cases we assume that a Zariski structure satisfies also (EU) **Essential uncountability:** If a closed $S \subseteq M^n$ is a union of countably many closed subsets, then there are finitely many among the subsets, the union of which is S.

The following is an extra condition crucial for developing a rich theory for Zariski structures.

(PS) **Presmoothness:** For any closed irreducible $S_1, S_2 \subseteq M^n$, for any irreducible component S_0 of $S_1 \cap S_2$,

$$\dim S_0 \geq \dim S_1 + \dim S_2 - \dim M^n.$$
In many cases we assume that a Zariski structure satisfies also

(EU) **Essential uncountability:** If a closed $S \subseteq M^n$ is a union of countably many closed subsets, then there are finitely many among the subsets, the union of which is S.

The following is an extra condition crucial for developing a rich theory for Zariski structures.

(PS) **Presmoothness:** For any closed irreducible $S_1, S_2 \subseteq M^n$, for any irreducible component S_0 of $S_1 \cap S_2$,

$$\dim S_0 \geq \dim S_1 + \dim S_2 - \dim M^n.$$

1-dimensional presmooth Noetherian Zariski structure satisfying (EU) is called **(1-dim Noetherian) Zariski geometry**.
Noetherian Zariski structures: Definition and Axioms

In many cases we assume that a Zariski structure satisfies also

(EU) **Essential uncountability:** If a closed $S \subseteq M^n$ is a union of countably many closed subsets, then there are finitely many among the subsets, the union of which is S.

The following is an extra condition crucial for developing a rich theory for Zariski structures.

(PS) **Presmoothness:** For any closed irreducible $S_1, S_2 \subseteq M^n$, for any irreducible component S_0 of $S_1 \cap S_2$,

$$\dim S_0 \geq \dim S_1 + \dim S_2 - \dim M^n.$$

1-dimensional presmooth Noetherian Zariski structure satisfying (EU) is called *(1-dim Noetherian) Zariski geometry.*

This can be generalised to a definition of a *(n-dim Noetherian) Zariski geometry.*
Noetherian Zariski geometries: Examples

"Uncountable" needed to satisfy (EU).
Natural language: \mathcal{C} consists of Zariski-closed subsets of M^n.

3. Definable substructures of $\text{DCF}_0(n)$ of finite Morley rank. (2001)

4. "Quantum geometries."
Noetherian Zariski geometries: Examples

Natural language: \mathcal{C} consists of analytic subsets of M^n.

3. Definable substructures of DCF$_0(\mathbb{R})$ of finite Morley rank.

4. "Quantum geometries."

3. Definable substructures of $\text{DCF}_0(n)$ of finite Morley rank. (2001)

More precisely: every definable substructure of finite Morley rank can be made Zariski in a natural language by removing a subset of smaller rank.

3. Definable substructures of $\text{DCF}_0(n)$ of finite Morley rank. (2001)

4. "Quantum geometries".
Model theory of Noetherian Zariski structures

Let \(M = (M, C) \) be a Noetherian Zariski structure.
Model theory of Noetherian Zariski structures

Let $\mathbf{M} = (M, C)$ be a Noetherian Zariski structure.

Theorem 1 The theory of \mathbf{M} allows quantifier elimination.
Let $M = (M, C)$ be a Noetherian Zariski structure.

Theorem 1 The theory of M allows quantifier elimination.

Theorem 2 The theory of M is ω-stable of finite Morley rank, assuming M satisfies (EU).
Let $M = (M, C)$ be a Noetherian Zariski structure.

Theorem 1 The theory of M allows quantifier elimination.

Theorem 2 The theory of M is ω-stable of finite Morley rank, assuming M satisfies (EU).

Theorem 3 Assume M satisfies (EU). Given $M' \succeq M$ one can naturally extend the topology to M' so that M' becomes a Noetherian Zariski structure satisfying (EU).
Let $\mathbf{M} = (M, C)$ be a Noetherian Zariski structure.

Theorem 1 The theory of \mathbf{M} allows quantifier elimination.
Model theory of Noetherian Zariski structures

Let $\mathbf{M} = (M, C)$ be a Noetherian Zariski structure.

Theorem 1 The theory of \mathbf{M} allows quantifier elimination.

Proof.
Model theory of Noetherian Zariski structures

Let $\mathbf{M} = (\mathbb{M}, \mathcal{C})$ be a Noetherian Zariski structure.

Theorem 1 The theory of \mathbf{M} allows quantifier elimination.

Proof. We need to see that $\text{pr}(S_1 \setminus S_2)$ is constructible
$(S_1, S_2 \in \mathcal{C}, \ S_2 \subset S_1)$.
Let $M = (M, C)$ be a Noetherian Zariski structure.

Theorem 1 The theory of M allows quantifier elimination.

Proof. We need to see that $\text{pr}(S_1 \setminus S_2)$ is constructible ($S_1, S_2 \in C$, $S_2 \subset S_1$). We know that $\text{pr} S_1$ and $\text{pr} S_2$ are.
Model theory of Noetherian Zariski structures

Let $M = (M, C)$ be a Noetherian Zariski structure.

Theorem 1 The theory of M allows quantifier elimination.

Proof. We need to see that $\text{pr}(S_1 \setminus S_2)$ is constructible ($S_1, S_2 \in C, S_2 \subset S_1$). We know that $\text{pr} S_1$ and $\text{pr} S_2$ are.

$$\text{pr}(S_1 \setminus S_2) \subseteq \text{pr} S_1$$
Model theory of Noetherian Zariski structures

Let $\mathbf{M} = (M, \mathcal{C})$ be a Noetherian Zariski structure.

Theorem 1 The theory of \mathbf{M} allows quantifier elimination.

Proof. We need to see that $\text{pr}(S_1 \setminus S_2)$ is constructible ($S_1, S_2 \in \mathcal{C}$, $S_2 \subset S_1$). We know that $\text{pr} S_1$ and $\text{pr} S_2$ are.

$$\text{pr}(S_1 \setminus S_2) \subseteq \text{pr} S_1$$

Clearly, $\text{pr}(S_1 \setminus S_2) \setminus \text{pr} S_2 = \text{pr} S_1 \setminus \text{pr} S_2$ is constructible, so all the difficulty is in

$$\text{pr}(S_1 \setminus S_2) \cap \text{pr} S_2.$$
Let $\mathbf{M} = (M, \mathcal{C})$ be a Noetherian Zariski structure.

Theorem 1 The theory of \mathbf{M} allows quantifier elimination.

Proof. We need to see that $\text{pr}(S_1 \setminus S_2)$ is constructible $(S_1, S_2 \in \mathcal{C}, \; S_2 \subset S_1)$. We know that $\text{pr} S_1$ and $\text{pr} S_2$ are.

$$\text{pr}(S_1 \setminus S_2) \subseteq \text{pr} S_1$$

Clearly, $\text{pr}(S_1 \setminus S_2) \setminus \text{pr} S_2 = \text{pr} S_1 \setminus \text{pr} S_2$ is constructible, so all the difficulty is in

$$\text{pr}(S_1 \setminus S_2) \cap \text{pr} S_2.$$

Using axioms, $\dim \text{pr} S_2 < \dim \text{pr}(S_1 \setminus S_2)$ and so the above can be understood by induction hypothesis on dimension.
Model theory of Noetherian Zariski structures

Let $M = (M, C)$ be a Noetherian Zariski structure.

Theorem 1 The theory of M allows quantifier elimination.

Proof. We need to see that $\text{pr}(S_1 \setminus S_2)$ is constructible ($S_1, S_2 \in C$, $S_2 \subseteq S_1$). We know that $\text{pr} S_1$ and $\text{pr} S_2$ are.

$$\text{pr}(S_1 \setminus S_2) \subseteq \text{pr} S_1$$

Clearly, $\text{pr}(S_1 \setminus S_2) \setminus \text{pr} S_2 = \text{pr} S_1 \setminus \text{pr} S_2$ is constructible, so all the difficulty is in

$$\text{pr}(S_1 \setminus S_2) \cap \text{pr} S_2.$$

Using axioms, $\dim \text{pr} S_2 < \dim \text{pr}(S_1 \setminus S_2)$ and so the above can be understood by induction hypothesis on dimension. All axioms are needed.
Model theory of Noetherian Zariski structures

Theorem 2 The theory of M is ω-stable of finite Morley rank, assuming M satisfies (EU).
Theorem 2 The theory of M is ω-stable of finite Morley rank, assuming M satisfies (EU).

Proof. Use Theorem 1 to show by induction on $\dim Q$, constructible Q, that $\text{Mrk } Q \leq \dim Q$.

(EU) provides \aleph_0-saturation for countable fragments of the language.
Theorem 3 Assume \mathcal{M} satisfies (EU). Given $\mathcal{M}' \succeq \mathcal{M}$ one can naturally extend the topology to \mathcal{M}' so that \mathcal{M}' becomes a Noetherian Zariski structure satisfying (EU).
Model theory of Noetherian Zariski structures

Theorem 3 Assume M satisfies (EU). Given $M' \supseteq M$ one can naturally extend the topology to M' so that M' becomes a Noetherian Zariski structure satisfying (EU).

Proof. We declare subsets of the form $P(a, M')$ in M' closed if P is positive quantifier free.
Theorem 3 Assume \(M \) satisfies (EU). Given \(M' \supseteq M \) one can naturally extend the topology to \(M' \) so that \(M' \) becomes a Noetherian Zariski structure satisfying (EU).

Proof. We declare subsets of the form \(P(a, M') \) in \(M' \) closed if \(P \) is positive quantifier free.
Define \(\dim P(a, M') \geq k \) if \(a \) satisfies the formula that says so (given by (FC)).
Theorem 3 Assume M satisfies (EU). Given $M' \supseteq M$ one can naturally extend the topology to M' so that M' becomes a Noetherian Zariski structure satisfying (EU).

Proof. We declare subsets of the form $P(a, M')$ in M' closed if P is positive quantifier free.

Define $\dim P(a, M') \geq k$ if a satisfies the formula that says so (given by (FC)).

The main difficulties are in checking axioms (SI: strong irreducibility) and (DCC: descending chain condition).
Theorem 3 Assume M satisfies (EU). Given $M' \supseteq M$ one can naturally extend the topology to M' so that M' becomes a Noetherian Zariski structure satisfying (EU).

Proof. We declare subsets of the form $P(a, M')$ in M' closed if P is positive quantifier free.
Define $\dim P(a, M') \geq k$ if a satisfies the formula that says so (given by (FC)).
The main difficulties are in checking axioms (SI: strong irreducibility) and (DCC: descending chain condition).
Again, (EU) is essential in providing a saturation.
Generalities:

▶ Zariski Geometry is a geometry.
Lecture II

Generalities:

- Zariski Geometry is a geometry.
- Zariski Geometry is a "logical completion" of Algebraic Geometry.
Specialisations and infinitesimal calculus

Given a topological structure \mathbf{M} and $\mathbf{M}' \succeq \mathbf{M}$, a specialisation is a surjective homomorphism

$$\pi : \mathbf{M}' \rightarrow \mathbf{M}.$$
Specialisations and infinitesimal calculus

Given a topological structure \mathbf{M} and $\mathbf{M}' \preceq \mathbf{M}$, a **specialisation** is a surjective homomorphism

$$\pi : \mathbf{M}' \to \mathbf{M}.$$

Note:
Specialisations and infinitesimal calculus

Given a topological structure M and $M' \succeq M$, a specialisation is a surjective homomorphism

$$\pi : M' \to M.$$

Note:
π preserves closed subsets.
Specialisations and infinitesimal calculus

Given a topological structure M and $M' \supseteq M$, a specialisation is a surjective homomorphism

$$\pi : M' \rightarrow M.$$

Note:
π preserves closed subsets.
π is the identity on M, since every element of M is named.
Specialisations and infinitesimal calculus

Given a topological structure M and $M' \simeq M$, a **specialisation** is a surjective homomorphism

$$\pi : M' \rightarrow M.$$

Note:

π preserves closed subsets.

π is the identity on M, since every element of M is named.

Example. The field of reals \mathbb{R} is a topological structure in a natural language and, for $\mathbb{R}' \simeq \mathbb{R}$ a specialisation, $\pi : \mathbb{R}' \rightarrow \mathbb{R}$ is the **standard part map**.
Specialisations and infinitesimal calculus

Given a topological structure \mathbf{M} and $\mathbf{M}^\prime \succeq \mathbf{M}$, a specialisation is a surjective homomorphism

$$\pi : \mathbf{M}^\prime \rightarrow \mathbf{M}.$$

Note:

π preserves closed subsets.

π is the identity on \mathbf{M}, since every element of \mathbf{M} is named.

Example. The field of reals \mathbb{R} is a topological structure in a natural language and, for $\mathbb{R}^\prime \succeq \mathbb{R}$ a specialisation, $\pi : \mathbb{R}^\prime \rightarrow \mathbb{R}$ is the *standard part map*.

Proposition. Suppose \mathbf{M} is a quasi-compact structure, $\mathbf{M}^\prime \succeq \mathbf{M}$. Then there is a total specialisation $\pi : \mathbf{M}^\prime \rightarrow \mathbf{M}$. Moreover, any partial specialisation can be extended to a total one.
Specialisations and infinitesimal calculus

Given a topological structure \mathbf{M} and $\mathbf{M}' \succeq \mathbf{M}$, a specialisation is a surjective homomorphism

$$\pi : \mathbf{M}' \rightarrow \mathbf{M}.$$

Note:

π preserves closed subsets.

π is the identity on M, since every element of M is named.

Example. The field of reals \mathbb{R} is a topological structure in a natural language and, for $\mathbb{R}' \succeq \mathbb{R}$ a specialisation, $\pi : \mathbb{R}' \rightarrow \mathbb{R}$ is the standard part map.

Proposition. Suppose \mathbf{M} is a quasi-compact structure, $\mathbf{M}' \succeq \mathbf{M}$. Then there is a total specialisation $\pi : \mathbf{M}' \rightarrow \mathbf{M}$. Moreover, any partial specialisation can be extended to a total one. The inverse also holds for a right choice of topology on \mathbf{M}.
Specialisations and infinitesimal calculus

Given $a \in M^n$ we call $\pi^{-1}(a)$ the infinitesimal neighbourhood of a (in M'). Also denoted $\mathcal{V}_a(M')$ or just \mathcal{V}_a.

Proposition. Every specialisation $\pi_0: M_0 \to M$ can be extended to a universal one $\pi: \ast M \to M$.

Proof. Straightforward Fraissé argument. Assuming π is universal, the geometric properties of \mathcal{V}_a are independent on π and $\ast M$.

Specialisations and infinitesimal calculus

Given \(a \in M^n \) we call \(\pi^{-1}(a) \) the infinitesimal neighbourhood of \(a \) (in \(M' \)). Also denoted \(\mathcal{V}_a(M') \) or just \(\mathcal{V}_a \). This depends strongly on \(M' \) and \(\pi \).
Specialisations and infinitesimal calculus

Given $a \in M^n$ we call $\pi^{-1}(a)$ the infinitesimal neighbourhood of a (in M'). Also denoted $\nu_a(M')$ or just ν_a.
This depends strongly on M' and π.

A specialisation $\pi : *M \to M$, for $*M \succeq M$, is said to be universal if:

Proposition. Every specialisation $\pi_0 : M_0 \to M$ can be extended to a universal one $\pi : *M \to M$.
Specialisations and infinitesimal calculus

Given \(a \in M^n \) we call \(\pi^{-1}(a) \) the infinitesimal neighbourhood of \(a \) (in \(M' \)). Also denoted \(\nu_a(M') \) or just \(\nu_a \).

This depends strongly on \(M' \) and \(\pi \).

A specialisation \(\pi : *M \to M \), for \(*M \succeq M \), is said to be **universal** if:

for any \(M' \succeq *M \succeq M \), any finite subset \(A \subset M' \) and a specialisation \(\pi' : A \cup *M \to M \) extending \(\pi \), there is an elementary embedding \(\alpha : A \to *M \), over \(A \cap *M \), such that

\[
\pi' = \pi \circ \alpha \text{ on } A.
\]
Specialisations and infinitesimal calculus

Given $a \in M^n$ we call $\pi^{-1}(a)$ the infinitesimal neighbourhood of a (in M'). Also denoted $\mathcal{V}_a(M')$ or just \mathcal{V}_a. This depends strongly on M' and π.

A specialisation $\pi : *M \rightarrow M$, for $*M \succeq M$, is said to be universal if:

for any $M' \succeq *M \succeq M$, any finite subset $A \subset M'$ and a specialisation $\pi' : A \cup *M \rightarrow M$ extending π, there is an elementary embedding $\alpha : A \rightarrow *M$, over $A \cap *M$, such that

$$\pi' = \pi \circ \alpha \text{ on } A.$$

Proposition. Every specialisation $\pi^0 : M^0 \rightarrow M$ can be extended to a universal one $\pi : *M \rightarrow M$.

Specialisations and infinitesimal calculus

Given \(a \in M^n \) we call \(\pi^{-1}(a) \) the infinitesimal neighbourhood of \(a \) (in \(M' \)). Also denoted \(\mathcal{N}_a(M') \) or just \(\mathcal{N}_a \).

This depends strongly on \(M' \) and \(\pi \).

A specialisation \(\pi : *M \to M \), for \(*M \succeq M \), is said to be universal if:
for any \(M' \succeq *M \succeq M \), any finite subset \(A \subset M' \) and a specialisation \(\pi' : A \cup *M \to M \) extending \(\pi \), there is an elementary embedding \(\alpha : A \to *M \), over \(A \cap *M \), such that

\[
\pi' = \pi \circ \alpha \text{ on } A.
\]

Proposition. Every specialisation \(\pi^0 : M^0 \to M \) can be extended to a universal one \(\pi : *M \to M \).

Proof. Straightforward Fraissé argument.
Specialisations and infinitesimal calculus

Given $a \in M^n$ we call $\pi^{-1}(a)$ the infinitesimal neighbourhood of a (in M'). Also denoted $\nu_a(M')$ or just ν_a. This depends strongly on M' and π.

A specialisation $\pi : *M \to M$, for $*M \succeq M$, is said to be universal if:

for any $M' \succeq *M \succeq M$, any finite subset $A \subset M'$ and a specialisation $\pi' : A \cup *M \to M$ extending π, there is an elementary embedding $\alpha : A \to *M$, over $A \cap *M$, such that

$$\pi' = \pi \circ \alpha \text{ on } A.$$

Proposition. Every specialisation $\pi^0 : M^0 \to M$ can be extended to a universal one $\pi : *M \to M$.

Proof. Straightforward Fraissé argument.

Assuming π is universal, the geometric properties of ν_a are independent on π and $*M$.

Proposition. Given irreducible $S \subseteq_{\text{cl}} M^n$ and $a \in S$, the intersection $S(\ast M) \cap \mathcal{V}_a$ contains a generic point.
Proposition. Given irreducible $S \subseteq_{cl} M^n$ and $a \in S$, the intersection $S(\star M) \cap \mathcal{V}_a$ contains a generic point.

Proof. Easy. Use universality of π.
Specialisations and infinitesimal calculus

Proposition. Given irreducible $S \subseteq_{cl} M^n$ and $a \in S$, the intersection $S(\ast M) \cap \mathcal{V}_a$ contains a generic point.

Proof. Easy. Use universality of π.

Corollary. If irreducible $S_1, S_2 \subseteq_{cl} M^n$ coincide in an infinitesimal neighbourhood, then $S_1 = S_2$.
Proposition. Given irreducible $S \subseteq_{\text{cl}} M^n$ and $a \in S$, the intersection $S(*M) \cap \mathcal{V}_a$ contains a generic point.

Proof. Easy. Use universality of π.

Corollary. If irreducible $S_1, S_2 \subseteq_{\text{cl}} M^n$ coincide in an infinitesimal neighbourhood, then $S_1 = S_2$.

Theorem (Implicit Function Theorem) Given a Zariski geometry M and an irreducible constructible presmooth $D \subseteq M^n$ suppose an irreducible $F \subseteq_{\text{cl}} D \times M^k$ projects onto D with finite fibres (finite covering of D).

Let $a \in D$, $\langle a, b \rangle \in F$ and $a' \in \mathcal{V}_a \cap D(*M)$. Then
Specialisations and infinitesimal calculus

Proposition. Given irreducible $S \subseteq \text{cl } M^n$ and $a \in S$, the intersection $S(*M) \cap \mathcal{V}_a$ contains a generic point.

Proof. Easy. Use universality of π.

Corollary. If irreducible $S_1, S_2 \subseteq \text{cl } M^n$ coincide in an infinitesimal neighbourhood, then $S_1 = S_2$.

Theorem (Implicit Function Theorem) Given a Zariski geometry M and an irreducible constructible presmooth $D \subseteq M^n$ suppose an irreducible $F \subseteq \text{cl } D \times M^k$ projects onto D with finite fibres (finite covering of D).

Let $a \in D$, $\langle a, b \rangle \in F$ and $a' \in \mathcal{V}_a \cap D(*M)$.

Then

1. There exists $b' \in \mathcal{V}_b$ such that $\langle a', b' \rangle \in F(*M)$.

Specialisations and infinitesimal calculus

Proposition. Given irreducible $S \subseteq \text{cl } M^n$ and $a \in S$, the intersection $S(*\!M) \cap \mathcal{V}_a$ contains a generic point.

Proof. Easy. Use universality of π.

Corollary. If irreducible $S_1, S_2 \subseteq \text{cl } M^n$ coincide in an infinitesimal neighbourhood, then $S_1 = S_2$.

Theorem (Implicit Function Theorem) Given a Zariski geometry M and an irreducible constructible presmooth $D \subseteq M^n$ suppose an irreducible $F \subseteq \text{cl } D \times M^k$ projects onto D with finite fibres (finite covering of D).

Let $a \in D, \langle a, b \rangle \in F$ and $a' \in \mathcal{V}_a \cap D(*\!M)$.

Then

1. There exists $b' \in \mathcal{V}_b$ such that $\langle a', b' \rangle \in F(*\!M)$.

The maximal number of possible such b' for a given $a' \in \mathcal{V}_a$ will be called **the multiplicity of** F **at** a: $\text{mult}_a(F/D)$.
Specialisations and infinitesimal calculus

Proposition. Given irreducible \(S \subseteq \text{cl} \ M^n \) and \(a \in S \), the intersection \(S(\ast M) \cap \mathcal{V}_a \) contains a generic point.

Proof. Easy. Use universality of \(\pi \).

Corollary. If irreducible \(S_1, S_2 \subseteq \text{cl} \ M^n \) coincide in an infinitesimal neighbourhood, then \(S_1 = S_2 \).

Theorem (Implicit Function Theorem) Given a Zariski geometry \(M \) and an irreducible constructible presmooth \(D \subseteq M^n \) suppose an irreducible \(F \subseteq \text{cl} \ D \times M^k \) projects onto \(D \) with finite fibres (finite covering of \(D \)).

Let \(a \in D, \langle a, b \rangle \in F \) and \(a' \in \mathcal{V}_a \cap D(\ast M) \).

Then

1. There exists \(b' \in \mathcal{V}_b \) such that \(\langle a', b' \rangle \in F(\ast M) \).

The maximal number of possible such \(b' \) for a given \(a' \in \mathcal{V}_a \) will be called **the multiplicity of** \(F \) at \(a \): \(\text{mult}_a(F/D) \).

2. There is an open subset \(\text{Reg} F/D \subseteq_{\text{op}} D \) such that \(\text{mult}_a(F/D) = 1 \) iff \(a \in \text{Reg} F/D \).
Specialisations and infinitesimal calculus

Proposition. Given irreducible $S \subseteq_{\text{cl}} M^n$ and $a \in S$, the intersection $S(*)M) \cap \mathcal{V}_a$ contains a generic point.

Proof. Easy. Use universality of π.

Corollary. If irreducible $S_1, S_2 \subseteq_{\text{cl}} M^n$ coincide in an infinitesimal neighbourhood, then $S_1 = S_2$.

Theorem (Implicit Function Theorem) Given a Zariski geometry M and an irreducible constructible presmooth $D \subseteq M^n$ suppose an irreducible $F \subseteq_{\text{cl}} D \times M^k$ projects onto D with finite fibres (finite covering of D).

Let $a \in D, \langle a, b \rangle \in F$ and $a' \in \mathcal{V}_a \cap D(*)M)$. Then

1. There exists $b' \in \mathcal{V}_b$ such that $\langle a', b' \rangle \in F(*)M)$. The maximal number of possible such b' for a given $a' \in \mathcal{V}_a$ will be called **the multiplicity of F at a**: $\text{mult}_a(F/D)$.

2. There is an open subset $\text{Reg } F/D \subseteq_{\text{op}} D$ such that $\text{mult}_a(F/D) = 1$ iff $a \in \text{Reg } F/D$.
Corollary. For $a \in \text{Reg } F/D$ and $\langle a, b \rangle \in F$ the set $F \cap (\mathcal{V}_a \times \mathcal{V}_b)$ is the graph of a function $\varphi : \mathcal{V}_a \to \mathcal{V}_b$ (local function).
Specialisations and infinitesimal calculus

Let L_1, L_2 and P be constructible irreducible presmooth sets and $I_i \subseteq \text{cl} L_i \times P$, $i = 1, 2$, irreducible. We will call a curve coded by $\ell \in L_i$ the set

$$\hat{\ell} = \{ p \in P : \langle \ell, p \rangle \in I_i \}.$$
Specialisations and infinitesimal calculus

Let L_1, L_2 and P be constructible irreducible presmooth sets and $I_i \subseteq \text{cl } L_i \times P$, $i = 1, 2$, irreducible. We will call a curve coded by $\ell \in L_i$ the set

$$\hat{\ell} = \{p \in P : \langle \ell, p \rangle \in I_i\}.$$

Assume that for each $\ell \in L_i$, $\dim \hat{\ell} = 1$ and for any generic $\langle \ell_1, \ell_2 \rangle \in L_1 \times L_2$, $\hat{\ell}_1 \cap \hat{\ell}_2$ is non-empty and finite.
Specialisations and infinitesimal calculus

Let L_1, L_2 and P be constructible irreducible presmooth sets and $l_i \subseteq_{cl} L_i \times P$, $i = 1, 2$, irreducible. We will call a curve coded by $\ell \in L_i$ the set

$$\hat{\ell} = \{ p \in P : \langle \ell, p \rangle \in l_i \}.$$

Assume that for each $\ell \in L_i$, dim $\hat{\ell} = 1$ and for any generic $\langle \ell_1, \ell_2 \rangle \in L_1 \times L_2$, $\hat{\ell}_1 \cap \hat{\ell}_2$ is non-empty and finite. Then, using the notion of multiplicity we can define the relation

$$T(p, \ell_1, \ell_2) := \ell_1 \text{ and } \ell_2 \text{ are tangent at point } p \in \hat{\ell}_1 \cap \hat{\ell}_2$$

As a corollary we can define the jet of curves from L_1 passing through $p \in P$ and tangent to generic $\ell \in L_2$:

$$[\ell]_p.$$
Specialisations and infinitesimal calculus

Let L_1, L_2 and P be constructible irreducible presmooth sets and $l_i \subseteq \text{cl} L_i \times P$, $i = 1, 2$, irreducible. We will call a curve coded by $\ell \in L_i$ the set

$$\hat{\ell} = \{ p \in P : \langle \ell, p \rangle \in l_i \}.$$

Assume that for each $\ell \in L_i$, $\dim \hat{\ell} = 1$ and for any generic $\langle \ell_1, \ell_2 \rangle \in L_1 \times L_2$, $\hat{\ell}_1 \cap \hat{\ell}_2$ is non-empty and finite. Then, using the notion of multiplicity we can define the relation

$$T(p, \ell_1, \ell_2) := \ell_1 \text{ and } \ell_2 \text{ are tangent at point } p \in \hat{\ell}_1 \cap \hat{\ell}_2$$

As a corollary we can define the jet of curves from L_1 passing through $p \in P$ and tangent to generic $\ell \in L_2$: $[\ell]_p$.
Specialisations and infinitesimal calculus

Let L_1, L_2 and P be constructible irreducible presmooth sets and $l_i \subseteq_{cl} L_i \times P$, $i = 1, 2$, irreducible. We will call a curve coded by $\ell \in L_i$ the set

$$\hat{\ell} = \{ p \in P : \langle \ell, p \rangle \in l_i \}.$$

Assume that for each $\ell \in L_i$, $\dim \hat{\ell} = 1$ and for any generic $\langle \ell_1, \ell_2 \rangle \in L_1 \times L_2$, $\hat{\ell}_1 \cap \hat{\ell}_2$ is non-empty and finite. Then, using the notion of multiplicity we can define the relation

$$T(p, \ell_1, \ell_2) := \ell_1 \text{ and } \ell_2 \text{ are tangent at point } p \in \hat{\ell}_1 \cap \hat{\ell}_2$$

As a corollary we can define the jet of curves from L_1 passing through $p \in P$ and tangent to generic $\ell \in L_2$: $[\ell]_p$.

Lemma. Given a family of curves L on P as above, the set of jets $[L]_p$ through p is definable (interpretable) and under certain assumptions can be identified with a Zariski constructible set.
Proposition. Non-local modularity implies: some irreducible $P \subseteq \text{op} M \times M$, some Zariski irreducible presmooth set L in M and $I \subseteq \text{cl} L \times P$ define a 2-dimensional family of curves on P.

At a generic point $\langle a, b \rangle \in M^2$ a generic curve ℓ_1 locally (i.e. in infinitesimal neighbourhood) is the graph of a local function $\lambda_1: V_a \to V_b$.

Given ℓ_1 and ℓ_2, the local function $\lambda_2^{-1}/\lambda_1: V_a \to V_a$ corresponds to a new curve through $\langle a, a \rangle$ (rather a branch of a curve).
Classification of 1-dim non-locally modular Noetherian Zariski geometries

Proposition. Non-local modularity implies: some irreducible $P \subseteq_{\text{op}} M \times M$, some Zariski irreducible presmooth set L in M and $I \subseteq_{\text{cl}} L \times P$ define a 2-dimensional family of curves on P.
Classification of 1-dim non-locally modular Noetherian Zariski geometries

Proposition. Non-local modularity implies: some irreducible $P \subseteq_{op} M \times M$, some Zariski irreducible presmooth set L in M and $I \subseteq_{cl} L \times P$ define a 2-dimensional family of curves on P. At a generic point $\langle a, b \rangle \in M^2$ a generic curve ℓ_1 locally (i.e. in infinitesimal neighbourhood) is the graph of a local function

$$\lambda_1 : \mathcal{V}_a \to \mathcal{V}_b.$$
Classification of 1-dim non-locally modular Noetherian Zariski geometries

Proposition. Non-local modularity implies: some irreducible $P \subseteq_{\text{op}} M \times M$, some Zariski irreducible presmooth set L in M and $I \subseteq_{\text{cl}} L \times P$ define a 2-dimensional family of curves on P.

At a generic point $\langle a, b \rangle \in M^2$ a generic curve ℓ_1 locally (i.e. in infinitesimal neighbourhood) is the graph of a local function

$$\lambda_1 : \mathcal{V}_a \to \mathcal{V}_b.$$

Given ℓ_1 and ℓ_2 the local function

$$\lambda_1^{-1} \circ \lambda_2 : \mathcal{V}_a \to \mathcal{V}_a$$

corresponds to a new curve through $\langle a, a \rangle$ (rather a branch of a curve).
Classification of 1-dim non-locally modular Noetherian Zariski geometries

Proposition.

The set Γ of all local functions $\gamma : \mathcal{V}_a \rightarrow \mathcal{V}_a$ obtained in this way is definable.
Classification of 1-dim non-locally modular Noetherian Zariski geometries

Proposition.
- The set Γ of all local functions $\gamma : \mathcal{V}_a \to \mathcal{V}_a$ obtained in this way is definable.
- The set of jets $[\Gamma]$ can be defined as a Zariski 1-dimensional irreducible set.

Corollary. There is a group structure (G, \cdot) definable by Zariski-closed predicates on a 1-dim irreducible Zariski set. (Copy the proof of Weil's group chunk theorem).
Classification of 1-dim non-locally modular Noetherian Zariski geometries

Proposition.

- The set Γ of all local functions $\gamma : \mathcal{V}_a \to \mathcal{V}_a$ obtained in this way is definable.
- The set of jets $[\Gamma]$ can be defined as a Zariski 1-dimensional irreducible set.
- For any generic pair $\gamma_1, \gamma_2 \in \Gamma$ there is a generic $\gamma \in \Gamma$ such that
 \[[\gamma_1 \circ \gamma_2] = [\gamma]. \]
 That is $[\Gamma]$ has a structure of a pre-group.
Classification of 1-dim non-locally modular Noetherian Zariski geometries

Proposition.

- The set Γ of all local functions $\gamma : \mathcal{V}_a \to \mathcal{V}_a$ obtained in this way is definable.
- The set of jets $[\Gamma]$ can be defined as a Zariski 1-dimensional irreducible set.
- For any generic pair $\gamma_1, \gamma_2 \in \Gamma$ there is a generic $\gamma \in \Gamma$ such that
 \[[\gamma_1 \circ \gamma_2] = [\gamma]. \]
 That is $[\Gamma]$ has a structure of a pre-group.

Corollary. There is a group structure (G, \circ) definable by Zariski-closed predicates on a 1-dim irreducible Zariski set G. (Copy the proof of Weil’s group chunk theorem).
Classification of 1-dim non-locally modular Noetherian Zariski geometries

With more work one obtains

- There is a field structure \((K, +, \cdot)\) definable by Zariski-closed predicates on a 1-dim Zariski set \(K\).
Classification of 1-dim non-locally modular Noetherian Zariski geometries

With more work one obtains

- There is a field structure \((K, +, \cdot)\) definable by Zariski-closed predicates on a 1-dim Zariski set \(K\).
- The projective spaces \(\mathbb{P}^n(K)\) obtain a structure of a complete Zariski geometry.
Classification of 1-dim non-locally modular Noetherian Zariski geometries

With more work one obtains

- There is a field structure \((K, +, \cdot)\) definable by Zariski-closed predicates on a 1-dim Zariski set \(K\).
- The projective spaces \(\mathbb{P}^n(K)\) obtain a structure of a complete Zariski geometry.
- The theory of multiplicities can be applied to get an intersection theory in projective spaces. In particular, the following generalisation of Bezout’s theorem holds: given in \(\mathbb{P}^2(K)\) a curve \(\ell\) and an algebraic curve \(\ell_{\text{alg}}\)

\[
\#_{\text{mult}}(\ell \cap \ell_{\text{alg}}) = \deg \ell \cdot \deg \ell_{\text{alg}},
\]

where \(\deg \ell\) is defined as a number of point in the intersection of a generic straight line in \(\mathbb{P}^2(K)\) with \(\ell\).
Classification of 1-dim non-locally modular Noetherian Zariski geometries

With more work one obtains

- There is a field structure \((K, +, \cdot)\) definable by Zariski-closed predicates on a 1-dim Zariski set \(K\).
- The projective spaces \(\mathbb{P}^n(K)\) obtain a structure of a complete Zariski geometry.
- The theory of multiplicities can be applied to get an intersection theory in projective spaces. In particular, the following generalisation of Bezout’s theorem holds: given in \(\mathbb{P}^2(K)\) a curve \(\ell\) and an algebraic curve \(\ell_{\text{alg}}\)

\[
\#_{\text{mult}}(\ell \cap \ell_{\text{alg}}) = \deg \ell \cdot \deg \ell_{\text{alg}},
\]

where \(\deg \ell\) is defined as a number of point in the intersection of a generic straight line in \(\mathbb{P}^2(K)\) with \(\ell\).
- The latter implies that any \(S \subseteq_{\text{cl}} \mathbb{P}^n(K)\) must be algebraic (generalisation of Chow’s theorem).
Classification of 1-dim non-locally modular Noetherian Zariski geometries

Since M is not orthogonal to K, there is a finite-to-finite correspondence between M and K.

This can be converted into a non-constant partial map $f: M \to K$ (meromorphic map) and to a total Zariski-continuous function $\bar{f}: M \to \mathbb{P}^1(K)$.

In general, such functions can be seen as coordinate functions and given $f = \langle \bar{f}_1, \ldots, \bar{f}_n \rangle$ we obtain a map $f: M \to \mathbb{P}^1(K)^n \subseteq \mathbb{P}^N(K)$.

$f(M)$ is a quasi-projective curve $C \subseteq \mathbb{P}^N(K)$ and $f: M \to C$ is a Zariski-continuous finite covering of the algebraic curve C.

The latter classifies M up to the finite fibres $f^{-1}(a)$, $a \in C$.

Classification of 1-dim non-locally modular Noetherian Zariski geometries

- Since M is not orthogonal to K, there is a finite-to-finite correspondence between M and K.
- This can be converted into a non-constant partial map $f : M \rightarrow K$ (*meromorphic* map) and to a total Zariski-continuous function $\tilde{f} : M \rightarrow \mathbb{P}^1(K)$.
Classification of 1-dim non-locally modular Noetherian Zariski geometries

- Since M is not orthogonal to K, there is a finite-to-finite correspondence between M and K.
- This can be converted into a non-constant partial map $f : M \to K$ (meromorphic map) and to a total Zariski-continuous function $\bar{f} : M \to \mathbf{P}^1(K)$.
- In general, such functions can be seen as co-ordinate functions and given $f = \langle \bar{f}_1, \ldots, \bar{f}_n \rangle$ we obtain a map

$$
f : M \to [\mathbf{P}^1(K)]^n \subseteq \mathbf{P}^N(K).
$$

$f(M)$ is a quasi-projective curve $C \subseteq \mathbf{P}^N(K)$ and

$$
f : M \to C
$$

is a Zariski-continuous finite covering of the algebraic curve C.
Classification of 1-dim non-locally modular Noetherian Zariski geometries

- Since M is not orthogonal to K, there is a finite-to-finite correspondence between M and K.
- This can be converted into a non-constant partial map $f : M \to K$ (meromorphic map) and to a total Zariski-continuous function $\tilde{f} : M \to \mathbb{P}^1(K)$.
- In general, such functions can be seen as co-ordinate functions and given $f = \langle \tilde{f}_1, \ldots, \tilde{f}_n \rangle$ we obtain a map
 \[f : M \to [\mathbb{P}^1(K)]^n \subseteq \mathbb{P}^N(K). \]

 $f(M)$ is a quasi-projective curve $C \subseteq \mathbb{P}^N(K)$ and
 \[f : M \to C \]

 is a Zariski-continuous finite covering of the algebraic curve C.
- The latter classifies M up to the finite fibres $f^{-1}(a), a \in C$.
Lecture III

Generalities:

The classification of 1-dimensional Zariski geometries found its application in e.g. Diophantine Geometry.
Generalities:

The classification of 1-dimensional Zariski geometries found its application in e.g. Diophantine Geometry.

But even more interesting is that it lead to the discovery of a class of **new geometric objects**.
New geometric objects

There exists 1-dimensional M such that no covering $f : M \to C$ is bijective (C an algebraic curve).
New geometric objects

There exists 1-dimensional \mathbf{M} such that no covering $f : \mathbf{M} \to C$ is bijective (C an algebraic curve). In other words, 1-dimensional Zariski geometry can be different from an algebraic curve.
New geometric objects

Example. Let M be the set

$$\{\langle x, \epsilon \rangle : x, \epsilon \in K, \epsilon^2 = 1\}$$

for K an algebraically closed field of characteristic 0.
New geometric objects

Example. Let M be the set

$$\{\langle x, \epsilon \rangle : x, \epsilon \in K, \epsilon^2 = 1\}$$

for K an algebraically closed field of characteristic 0. We have binary predicate E on M interpreted as the equivalence relation

$$\langle x, \epsilon \rangle E \langle x', \epsilon' \rangle \text{ iff } x = x'.$$
New geometric objects

Example. Let M be the set

$$\{ \langle x, \epsilon \rangle : x, \epsilon \in K, \epsilon^2 = 1 \}$$

for K an algebraically closed field of characteristic 0. We have binary predicate E on M interpreted as the equivalence relation

$$\langle x, \epsilon \rangle E \langle x', \epsilon' \rangle \text{ iff } x = x'.$$

So, the set $K = M/E$ is definable and we have all polynomially defined relations on K, lifted to relations on M, in our language.
New geometric objects

Example. Let M be the set

$$\{\langle x, \epsilon \rangle : x, \epsilon \in K, \epsilon^2 = 1 \}$$

for K an algebraically closed field of characteristic 0. We have binary predicate E on M interpreted as the equivalence relation

$$\langle x, \epsilon \rangle E \langle x', \epsilon' \rangle \text{ iff } x = x'.$$

So, the set $K = M/E$ is definable and we have all polynomially defined relations on K, lifted to relations on M, in our language. Let $R \subseteq K \setminus \{0\}$ be a subset with the property:

$$y \in R \text{ iff } -y \notin R.$$

Introduce a new ternary relation $A \in \mathcal{C}, A \subseteq M \times M \times K$:

$$A(\langle x_1, \epsilon_1 \rangle, \langle x_2, \epsilon_2 \rangle, y) \text{ iff } x_2 = x_1 + 1 \land y^2 = x_1^2 \land$$

$$\land ((y \in R \land \epsilon_1 = \epsilon_2) \lor (y \notin R \land y \neq 0 \land \epsilon_1 \neq \epsilon_2) \lor y = 0)$$
New geometric objects

Proposition. (i) \(M\) is a 1-dimensiona Noetherian Zariski geometry which (ii) can not be identified with an algebraic curve. Moreover, \(M\) is not definable (not interpretable) in an algebraically closed field.
New geometric objects

Proposition. (i) M is a 1-dimensiona Noetherian Zariski geometry which (ii) can not be identified with an algebraic curve. Moreover, M is not definable (not interpretable) in an algebraically closed field.

Proof. (i)
New geometric objects

Proposition. (i) M is a 1-dimensiona Noetherian Zariski geometry which (ii) can not be identified with an algebraic curve. Moreover, M is not definable (not interpretable) in an algebraically closed field.

Proof. (i)

- every formula is a Boolean combination of \exists-formulas.
New geometric objects

Proposition. (i) M is a 1-dimensional Noetherian Zariski geometry which (ii) cannot be identified with an algebraic curve. Moreover, M is not definable (not interpretable) in an algebraically closed field.

Proof. (i)

- every formula is a Boolean combination of \exists-formulas.
- Closed sets are defined as given by positive \exists-formulas of a certain form.

(ii) Use the well-known fact: If an ACF K is interpretable in an ACF F, then K is definably isomorphic to F.

Consider Galois theory of $(K(x,\epsilon))_K$ and prove that one cannot interpret $⟨x,\epsilon⟩$ as a tuple in a field extension of K.
New geometric objects

Proposition. (i) M is a 1-dimensiona Noetherian Zariski geometry which (ii) can not be identified with an algebraic curve. Moreover, M is not definable (not interpretable) in an algebraically closed field.

Proof. (i)

- every formula is a Boolean combination of \exists-formulas.
- Closed sets are defined as given by positive \exists-formulas of a certain form.
- With some work, check all the Zariski axioms.
New geometric objects

Proposition. (i) M is a 1-dimensional Noetherian Zariski geometry which (ii) can not be identified with an algebraic curve. Moreover, M is not definable (not interpretable) in an algebraically closed field.

Proof. (i)
- every formula is a Boolean combination of \exists-formulas.
- Closed sets are defined as given by positive \exists-formulas of a certain form.
- With some work, check all the Zariski axioms.

(ii)
- Use the well-known fact: If an ACF_0 K is interpretable in an ACF_p F, then K is definably isomorphic to F.
New geometric objects

Proposition. (i) M is a 1-dimensiona Noetherian Zariski geometry which (ii) can not be identified with an algebraic curve. Moreover, M is not definable (not interpretable) in an algebraically closed field.

Proof. (i)

- every formula is a Boolean combination of \exists-formulas.
- Closed sets are defined as given by positive \exists-formulas of a certain form.
- With some work, check all the Zariski axioms.

(ii)

- Use the well-known fact: If an ACF$_0$ K is interpretable in an ACF$_p$ F, then K is definably isomorphic to F.
- Consider *Galois theory* of $(K(\langle x, \epsilon \rangle) : K)$ and prove that one can not interprete $\langle x, \epsilon \rangle$ as a tuple in a field extension of K.
New geometric objects
Reinterpretation.

Think of \(\langle x, 1 \rangle \) and \(\langle x, -1 \rangle \) as "vectors" \(e^x \) and \(-e^x \), a pair for each value of \(x \in K \).
The 1-dimensional space generated by \(e^x \) consists of formal pairs \(y \cdot e^x \), for \(y \in K \), equivalently, \(z \cdot (-e^x) \), \(z \in K \), with assumption \(y \cdot e^x = (-y) \cdot (e^x) \).
Given \(e^x \) we will have, by assumptions, a \(y = \sqrt{x} \) such that \(A(e^x, e^x+1, y) \) and \(A(e^x, -e^x+1, -y) \) hold.
Interpret this as a map \(a: e^x \mapsto y \cdot e^x+1 \) or a linear operator
\(a: z \cdot e^x \mapsto yz \cdot e^x \).
The same \(A(e^x, e^x+1, y) \) can be given the interpretation
\(a^*: z \cdot e^x+1 \mapsto yz \cdot e^x \).
We have two linear operators \(a \) and \(a^* \) acting in the linear space generated by the \(e^x \) which satisfy
\((a^*a - aa^*) e^x = e^x \).
New geometric objects

Reinterpretation. Think of $\langle x, 1 \rangle$ and $\langle x, -1 \rangle$ as "vectors" e_x and $-e_x$, a pair for each value of $x \in K$.
New geometric objects

Reinterpretation. Think of \(\langle x, 1 \rangle \) and \(\langle x, -1 \rangle \) as "vectors" \(e_x \) and \(-e_x \), a pair for each value of \(x \in K \).

The 1-dimensional space generated by \(e_x \) consists of formal pairs \(y \cdot e_x \), for \(y \in K \).
New geometric objects

Reinterpretation. Think of $\langle x, 1 \rangle$ and $\langle x, -1 \rangle$ as "vectors" e_x and $-e_x$, a pair for each value of $x \in K$.

The 1-dimensional space generated by e_x consists of formal pairs $y \cdot e_x$, for $y \in K$, equivalently, $z \cdot (-e_x)$, $z \in K$, with assumption $y \cdot e_x = (-y) \cdot (-e_x)$.
New geometric objects

Reinterpretation. Think of $\langle x, 1 \rangle$ and $\langle x, -1 \rangle$ as "vectors" e_x and $-e_x$, a pair for each value of $x \in K$.

The 1-dimensional space generated by e_x consists of formal pairs $y.e_x$, for $y \in K$, equivalently, $z.(-e_x)$, $z \in K$, with assumption $y.e_x = (-y).(-e_x)$.

Given e_x we will have, by assumptions, a $y = \sqrt{x}$ such that $A(e_x, e_{x+1}, y)$ and $A(e_x, -e_{x+1}, -y)$ hold.
New geometric objects

Reinterpretation. Think of $\langle x, 1 \rangle$ and $\langle x, -1 \rangle$ as "vectors" e_x and $-e_x$, a pair for each value of $x \in K$.

The 1-dimensional space generated by e_x consists of formal pairs $y.e_x$, for $y \in K$, equivalently, $z.(-e_x)$, $z \in K$, with assumption $y.e_x = (-y).(-e_x)$.

Given e_x we will have, by assumptions, a $y = \sqrt{x}$ such that $A(e_x, e_{x+1}, y)$ and $A(e_x, -e_{x+1}, -y)$ hold.

Interpret this as a map $\mathbf{a} : e_x \mapsto y.e_{x+1}$
New geometric objects

Reinterpretation. Think of $\langle x, 1 \rangle$ and $\langle x, -1 \rangle$ as "vectors" e_x and $-e_x$, a pair for each value of $x \in K$.

The 1-dimensional space generated by e_x consists of formal pairs $y \cdot e_x$, for $y \in K$, equivalently, $z.(-e_x)$, $z \in K$, with assumption $y \cdot e_x = (-y).(-e_x)$.

Given e_x we will have, by assumptions, a $y = \sqrt{x}$ such that $A(e_x, e_{x+1}, y)$ and $A(e_x, -e_{x+1}, -y)$ hold.

Interpret this as a map $a : e_x \mapsto y \cdot e_{x+1}$ or a *linear operator* on 1-dimensional spaces:

$$ a : z \cdot e_x \mapsto yz \cdot e_{x+1}. $$
New geometric objects

Reinterpretation. Think of \(\langle x, 1 \rangle \) and \(\langle x, -1 \rangle \) as "vectors" \(e_x \) and \(-e_x \), a pair for each value of \(x \in K \).

The 1-dimensional space generated by \(e_x \) consists of formal pairs \(y.e_x \), for \(y \in K \), equivalently, \(z.(-e_x) \), \(z \in K \), with assumption \(y.e_x = (-y).(-e_x) \).

Given \(e_x \) we will have, by assumptions, a \(y = \sqrt{x} \) such that \(A(e_x, e_{x+1}, y) \) and \(A(e_x, -e_{x+1}, -y) \) hold.

Interpret this as a map \(a : e_x \mapsto y.e_{x+1} \)
or a *linear operator* on 1-dimensional spaces:

\[
a : z.e_x \mapsto yz.e_{x+1}.
\]

The same \(A(e_x, e_{x+1}, y) \) can be given the interpretation

\[
a^\dagger : z.e_{x+1} \mapsto yz.e_x.
\]
New geometric objects

Reinterpretation. Think of $\langle x, 1 \rangle$ and $\langle x, -1 \rangle$ as "vectors" e_x and $-e_x$, a pair for each value of $x \in K$.

The 1-dimensional space generated by e_x consists of formal pairs $y.e_x$, for $y \in K$, equivalently, $z.(-e_x)$, $z \in K$, with assumption $y.e_x = (-y).(-e_x)$.

Given e_x we will have, by assumptions, a $y = \sqrt{x}$ such that $A(e_x, e_{x+1}, y)$ and $A(e_x, -e_{x+1}, -y)$ hold.

Interpret this as a map $a : e_x \mapsto y.e_{x+1}$ or a linear operator on 1-dimensional spaces:

$$a : z.e_x \mapsto yz.e_{x+1}.$$

The same $A(e_x, e_{x+1}, y)$ can be given the interpretation

$$a^\dagger : z.e_{x+1} \mapsto yz.e_x.$$

We have two linear operators a and a^\dagger acting in the linear space generated by the e_x which satisfy

$$(a^\dagger a - aa^\dagger)e_x = e_x.$$
Co-ordinate algebra for M.

1. Want to explain a geometric object M in terms of co-ordinates in K.
Co-ordinate algebra for M.

1. Want to explain a geometric object M in terms of co-ordinates in K.

2. For "non-classical" M the algebra $K[M]$ of Zariski-continuous functions can not separate points in M : $K[M] = K[C_M]$ (same as for the algebraic curve).
Co-ordinate algebra for \mathbf{M}.

1. Want to explain a geometric object \mathbf{M} in terms of co-ordinates in K.

2. For "non-classical" \mathbf{M} the algebra $K[\mathbf{M}]$ of Zariski-continuous functions can not separate points in M: $K[\mathbf{M}] = K[C_{\mathbf{M}}]$ (same as for the algebraic curve).

3. Extend $K[\mathbf{M}] \subseteq \mathcal{H}[\mathbf{M}]$, bigger algebra, to include enough *auxiliary* function $\mathbf{M} \to K$.
 This will separate points but
 - $\mathcal{H}[\mathbf{M}]$ and its elements are not canonically definable from \mathbf{M}.
Co-ordinate algebra for \mathbf{M}.

1. Want to explain a geometric object \mathbf{M} in terms of co-ordinates in K.

2. For "non-classical" \mathbf{M} the algebra $K[\mathbf{M}]$ of Zariski-continuous functions can not separate points in M : $K[\mathbf{M}] = K[C_\mathbf{M}]$ (same as for the algebraic curve).

3. Extend $K[\mathbf{M}] \subseteq \mathcal{H}[\mathbf{M}]$, bigger algebra, to include enough auxiliary function $M \to K$.
 This will separate points but
 - $\mathcal{H}[\mathbf{M}]$ and its elements are not canonically definable from \mathbf{M}.
 - $\mathcal{H}[\mathbf{M}]$ does not "see" relations and operations on \mathbf{M}.

4. Consider the algebra $A(\mathbf{M})$ of linear operators on $\mathcal{H}[\mathbf{M}]$ generated by ones of the form $\psi(t) \to f(t) \cdot \psi(bt)$,
 $\psi, f \in \mathcal{H}[\mathbf{M}]$,
 depending on the structure of \mathbf{M}.

5. $(A(\mathbf{M}), *)$ does not depend on $\mathcal{H}(\mathbf{M})$, only on \mathbf{M}.
 One recovers the whole of structure \mathbf{M} from $A(\mathbf{M})$.
Co-ordinate algebra for \mathbf{M}.

1. Want to explain a geometric object \mathbf{M} in terms of co-ordinates in K.
2. For "non-classical" \mathbf{M} the algebra $K[\mathbf{M}]$ of Zariski-continuous functions can not separate points in M : $K[\mathbf{M}] = K[C_\mathbf{M}]$ (same as for the algebraic curve).
3. Extend $K[\mathbf{M}] \subseteq \mathcal{H}[\mathbf{M}]$, bigger algebra, to include enough auxiliary function $M \to K$.
 This will separate points but
 - $\mathcal{H}[\mathbf{M}]$ and its elements are not canonically definable from \mathbf{M}.
 - $\mathcal{H}[\mathbf{M}]$ does not "see" relations and operations on \mathbf{M}.
4. Consider the algebra $\mathcal{A}(\mathbf{M})$ of linear operators on $\mathcal{H}[\mathbf{M}]$ generated by ones of the form
 - $\psi(t) \to f(t) \cdot \psi(t), \quad \psi, f \in \mathcal{H}[\mathbf{M}]$,
Co-ordinate algebra for \(\textbf{M} \).

1. Want to explain a geometric object \(\textbf{M} \) in terms of co-ordinates in \(K \).

2. For "non-classical" \(\textbf{M} \) the algebra \(K[\textbf{M}] \) of Zariski-continuous functions can not separate points in \(M : K[\textbf{M}] = K[C_\textbf{M}] \) (same as for the algebraic curve).

3. Extend \(K[\textbf{M}] \subseteq \mathcal{H}[\textbf{M}] \), bigger algebra, to include enough auxilliary function \(M \to K \).

 This will separate points but

 \begin{itemize}
 \item \(\mathcal{H}[\textbf{M}] \) and its elements are not canonically definable from \(\textbf{M} \).
 \item \(\mathcal{H}[\textbf{M}] \) does not "see" relations and operations on \(\textbf{M} \).
 \end{itemize}

4. Consider the algebra \(\mathcal{A}(\textbf{M}) \) of linear operators on \(\mathcal{H}[\textbf{M}] \) generated by ones of the form

 \begin{itemize}
 \item \(\psi(t) \to f(t) \cdot \psi(t) \), \(\psi, f \in \mathcal{H}[\textbf{M}] \),
 \item \(\psi(t) \to \psi(bt) \), \(b : M \to M \) operation on \(M \).
 \end{itemize}

 We also define formal adjoint \(X^* \) for operators \(X \) in \(\mathcal{A}(\textbf{M}) \), depending on the structure of \(\textbf{M} \).
Co-ordinate algebra for \mathbf{M}.

1. Want to explain a geometric object \mathbf{M} in terms of co-ordinates in K.

2. For "non-classical" \mathbf{M} the algebra $K[\mathbf{M}]$ of Zariski-continuous functions can not separate points in $M : K[\mathbf{M}] = K[C_{\mathbf{M}}]$ (same as for the algebraic curve).

3. Extend $K[\mathbf{M}] \subseteq \mathcal{H}[\mathbf{M}]$, bigger algebra, to include enough auxiliary function $M \rightarrow K$. This will separate points but
 - $\mathcal{H}[\mathbf{M}]$ and its elements are not canonically definable from \mathbf{M}.
 - $\mathcal{H}[\mathbf{M}]$ does not "see" relations and operations on \mathbf{M}.

4. Consider the algebra $\mathcal{A}(\mathbf{M})$ of linear operators on $\mathcal{H}[\mathbf{M}]$ generated by ones of the form
 - $\psi(t) \rightarrow f(t) \cdot \psi(t)$, $\psi, f \in \mathcal{H}[\mathbf{M}]$,
 - $\psi(t) \rightarrow \psi(bt)$, $b : M \rightarrow M$ operation on M.

We also define formal adjoint X^* for operators X in $\mathcal{A}(\mathbf{M})$, depending on the structure of \mathbf{M}.

5. $(\mathcal{A}(\mathbf{M}), \ast)$ does not depend on $\mathcal{H}(\mathbf{M})$, only on \mathbf{M}. One recovers the whole of structure \mathbf{M} from $\mathcal{A}(\mathbf{M})$.
Co-ordinate algebras: Quantum algebras at roots of unity

A canonical correspondence

\[M \leftrightarrow A(M) \]

is well-established only for special class of algebras \(A \) and structures \(M \).
Co-ordinate algebras: Quantum algebras at roots of unity

A canonical correspondence

\[M \leftrightarrow \mathcal{A}(M) \]

is well-established only for special class of algebras \(\mathcal{A} \) and structures \(M \).

A \(K \)-algebra \(\mathcal{A} \) will be called an algebra at root of unity if it satisfies:

- \(\mathcal{A} \) is finitely generated Noetherian.
- \(\mathcal{A} \) is a finite-dimensional module over its centre \(Z(\mathcal{A}) \).
- Further assumptions (that might be redundant).

Examples

- The algebra \(T_2^q \) generated by \(U \) and \(V \) with defining relation \(UV = qVU \), in case \(q \in \mathbb{N} = 1 \).
- Many other algebras, e.g. quantum groups \(SL(2, K)^q \), \(Usl_q(2, K) \).
Co-ordinate algebras: Quantum algebras at roots of unity

A canonical correspondence

\[M \leftrightarrow \mathcal{A}(M) \]

is well-established only for special class of algebras \(\mathcal{A} \) and structures \(M \).

A \(K \)-algebra \(\mathcal{A} \) will be called an algebra at root of unity if it satisfies:

1. \(\mathcal{A} \) is finitely generated Noetherian.
Co-ordinate algebras: Quantum algebras at roots of unity

A canonical correspondence

\[M \leftrightarrow \mathcal{A}(M) \]

is well-established only for special class of algebras \(\mathcal{A} \) and structures \(M \).

A \(K \)-algebra \(\mathcal{A} \) will be called an algebra at root of unity if it satisfies:

1. \(\mathcal{A} \) is finitely generated Noetherian.
2. \(\mathcal{A} \) is a finite-dimensional module over its centre \(Z(\mathcal{A}) \).

Examples

- The algebra \(T_2^q \) generated by \(U \) and \(V \) with defining relation \(UV = qVU \), in case \(q^N = 1 \).
- Many other algebras, e.g. quantum groups \(SL(2, K)^q \), \(Usl_2^q \).
Co-ordinate algebras: Quantum algebras at roots of unity

A canonical correspondence

$$M \leftrightarrow \mathcal{A}(M)$$

is well-established only for special class of algebras \mathcal{A} and structures M.

A K-algebra \mathcal{A} will be called an algebra at root of unity if it satisfies:

1. \mathcal{A} is finitely generated Noetherian.
2. \mathcal{A} is a finite-dimensional module over its centre $Z(\mathcal{A})$.
3. Further assumptions (that might be redundant).
Co-ordinate algebras: Quantum algebras at roots of unity

A canonical correspondence

\[M \leftrightarrow \mathcal{A}(M) \]

is well-established only for special class of algebras \(\mathcal{A} \) and structures \(M \).

A \(K \)-algebra \(\mathcal{A} \) will be called \textbf{an algebra at root of unity} if it satisfies:

1. \(\mathcal{A} \) is finitely generated Noetherian.
2. \(\mathcal{A} \) is a finite-dimensional module over its centre \(Z(\mathcal{A}) \).
3. Further assumptions (that might be redundant).

Examples

- The algebra \(T_q^2 \) generated by \(U \) and \(V \) with defining relation

 \[UV = qVU, \text{ in case } q^N = 1. \]

- Many other algebras, e.g. quantum groups \(SL(2, K)_q \), \(Usl_q(2, K) \).
Theorem. There is a canonical procedure that puts in correspondence to any K-algebra \mathcal{A} at root of unity, K algebraically closed, a Zariski geometry \mathcal{M}, so that \mathcal{A} can be canonically recovered from \mathcal{M}.
Co-ordinate algebras: Quantum algebras at roots of unity

Theorem. There is a canonical procedure that puts in correspondence to any K-algebra A at root of unity, K algebraically closed, a Zariski geometry M, so that A can be canonically recovered from M.

Construction. Consider the affine variety $V = V(A)$ corresponding to the affine commutative algebra $Z(A)$. To each point of V corresponds a unique, up to isomorphism, N-dimensional A-module. The bundle of such modules over V is $M(A)$.
Co-ordinate algebras: Quantum algebras at roots of unity

Theorem. There is a canonical procedure that puts in correspondence to any K-algebra \mathcal{A} at root of unity, K algebraically closed, a Zariski geometry \mathcal{M}, so that \mathcal{A} can be canonically recovered from \mathcal{M}.

Construction. Consider the affine variety $V = V(\mathcal{A})$ corresponding to the affine commutative algebra $Z(\mathcal{A})$. To each point of V corresponds a unique, up to isomorphism, N-dimensional \mathcal{A}-module. The bundle of such modules over V is $\mathcal{M}(\mathcal{A})$.

The procedure extends the classical duality between an affine algebraic variety and its co-ordinate algebra.
Co-ordinate algebras: Quantum algebras at roots of unity

Theorem. There is a canonical procedure that puts in correspondence to any K-algebra \mathcal{A} at root of unity, K algebraically closed, a Zariski geometry M, so that \mathcal{A} can be canonically recovered from M.

Construction. Consider the affine variety $V = V(\mathcal{A})$ corresponding to the affine commutative algebra $Z(\mathcal{A})$. To each point of V corresponds a unique, up to isomorphism, N-dimensional \mathcal{A}-module. The bundle of such modules over V is $M(\mathcal{A})$.

The procedure extends the classical duality between an affine algebraic variety and its co-ordinate algebra.

Question. What to do for a general value of q?
Trichotomy conjecture and Hrushovski counterexamples

Classical first-order λ-categorical structures for uncountable λ:

1. Structures with trivial geometry
2. Linear (locally-modular) structures: (Abelian divisible torsion-free groups; Abelian groups of prime exponent; Vector spaces over a given division ring ...)
3. Algebraically closed fields.

Trichotomy Conjecture: Every strongly minimal structure is reducible to 1, 2 or 3.
False in general (Hrushovski, 1988).
Almost true for Zariski geometries (HZ, 1993).
Trichotomy conjecture and Hrushovski counterexamples

Classical first-order λ-categorical structures for uncountable λ:

1. Structures with trivial geometry
Trichotomy conjecture and Hrushovski counterexamples

Classical first-order λ-categorical structures for uncountable λ:

1. Structures with trivial geometry
2. Linear (locally-modular) structures: (Abelian divisible torsion-free groups; Abelian groups of prime exponent; Vector spaces over a given division ring ...)

Trichotomy Conjecture: Every strongly minimal structure is reducible to 1, 2 or 3.
False in general (Hrushovski, 1988).
Almost true for Zariski geometries (HZ, 1993).
Trichotomy conjecture and Hrushovski counterexamples

Classical first-order λ-categorical structures for uncountable λ:

1. Structures with trivial geometry
2. Linear (locally-modular) structures: (Abelian divisible torsion-free groups; Abelian groups of prime exponent; Vector spaces over a given division ring ...)
3. Algebraically closed fields.
Trichotomy conjecture and Hrushovski counterexamples

Classical first-order λ-categorical structures for uncountable λ:

1. Structures with trivial geometry
2. Linear (locally-modular) structures: (Abelian divisible torsion-free groups; Abelian groups of prime exponent; Vector spaces over a given division ring ...)
3. Algebraically closed fields.

Trichotomy Conjecture: Every strongly minimal structure is reducible to 1, 2 or 3.
Trichotomy conjecture and Hrushovski counterexamples

Classical first-order λ-categorical structures for uncountable λ:

1. Structures with trivial geometry
2. Linear (locally-modular) structures: (Abelian divisible torsion-free groups; Abelian groups of prime exponent; Vector spaces over a given division ring ...)
3. Algebraically closed fields.

Trichotomy Conjecture: Every strongly minimal structure is reducible to 1,2 or 3.

False in general (Hrushovski, 1988).
Trichotomym conjecture and Hrushovski counterexamples

Classical first-order λ-categorical structures for uncountable λ:

1. Structures with trivial geometry
2. Linear (locally-modular) structures: (Abelian divisible torsion-free groups; Abelian groups of prime exponent; Vector spaces over a given division ring ...)
3. Algebraically closed fields.

Trichotomy Conjecture: Every strongly minimal structure is reducible to 1, 2 or 3.

False in general (Hrushovski, 1988).
Almost true for Zariski geometries (HZ, 1993).
Hrushovski counterexamples: construction

Given a class of structures M with dimension notions d_1 and d_2, we want to consider a new function f on M.

On (M, f), introduce a predimension $\delta(X) = d_1(X \cup f(X)) - d_2(X)$.

Consider structures (M, f) which satisfy the Hrushovski inequality: $\delta(X) \geq 0$ for any finite $X \subset M$.

Amalgamate all such structures to get a universal and homogeneous structure in the class. The resulting structure (\tilde{M}, f) will have a good dimension notion and a nice geometry.
Hrushovski counterexamples: construction

- Given a class of structures \mathcal{M} with a dimension notions d_1, and d_2 we want to consider a *new function* f on \mathcal{M}.

 - Introduce a predimension $\delta(X) = d_1(X \cup f(X)) - d_2(X)$.

 - Consider structures (\mathcal{M}, f) which satisfy the Hrushovski inequality: $\delta(X) \geq 0$ for any finite $X \subset \mathcal{M}$.

 - Amalgamate all such structures to get a universal and homogeneous structure in the class.

 - The resulting structure $(\tilde{\mathcal{M}}, f)$ will have a good dimension notion and a nice geometry.
Hrushovski counterexamples: construction

- Given a class of structures \(M \) with a dimension notions \(d_1 \), and \(d_2 \) we want to consider a new function \(f \) on \(M \).
- On \((M, f)\) introduce a predimension

\[
\delta(X) = d_1(X \cup f(X)) - d_2(X).
\]
Hrushovski counterexamples: construction

- Given a class of structures \mathbf{M} with a dimension notions d_1, and d_2 we want to consider a new function f on \mathbf{M}.

- On (\mathbf{M}, f) introduce a predimension

\[\delta(X) = d_1(X \cup f(X)) - d_2(X). \]

- Consider structures (\mathbf{M}, f) which satisfy the Hrushovski inequality:

\[\delta(X) \geq 0 \text{ for any finite } X \subset \mathbf{M}. \]
Hrushovski counterexamples: construction

- Given a class of structures \mathbf{M} with a dimension notions d_1, and d_2 we want to consider a new function f on \mathbf{M}.
- On (\mathbf{M}, f) introduce a predimension

\[
\delta(X) = d_1(X \cup f(X)) - d_2(X).
\]

- Consider structures (\mathbf{M}, f) which satisfy the Hrushovski inequality:

\[
\delta(X) \geq 0 \text{ for any finite } X \subset \mathbf{M}.
\]

- Amalgamate all such structures to get a universal and homogeneous structure in the class.
Hrushovski counterexamples: construction

- Given a class of structures \mathbf{M} with a dimension notions d_1, and d_2 we want to consider a *new function* f on \mathbf{M}.
- On (\mathbf{M}, f) introduce a **predimension**

\[\delta(X) = d_1(X \cup f(X)) - d_2(X). \]

- Consider structures (\mathbf{M}, f) which satisfy the **Hrushovski inequality**:

\[\delta(X) \geq 0 \text{ for any finite } X \subset \mathbf{M}. \]

- Amalgamate all such structures to get a *universal and homogeneous* structure in the class.
- *The resulting structure* $(\tilde{\mathbf{M}}, f)$ *will have a good dimension notion and a nice geometry.*
Example of Hrushovski’s construction

Given a class of fields \((K, +, \cdot)\) we want to consider a new function \(f\) on \(K\).

Introduce a predimension \(\delta(X) = \text{tr.d}.(X \cup f(X)) - |X|\).

Consider structures \((K, f)\) which satisfy the Hrushovski inequality:

\[\delta(X) \geq 0 \]

for any finite \(X \subset K\).

Amalgamate all such structures to get a universal and homogeneous structure in the class.

The resulting structure \((\tilde{K}, f)\) is \(\omega\)-stable and with some extra work (collapse) one can get a new uncountably categorical structure from \((\tilde{K}, f)\).
Example of Hrushovski’s construction

▶ Given a class of fields \((K, +, \cdot)\) we want to consider a new function \(f\) on \(K\).
Example of Hrushovski’s construction

- Given a class of fields \((K, +, \cdot)\) we want to consider a new function \(f\) on \(K\).
- On \((K, f)\) introduce a predimension

\[
\delta(X) = \text{tr.d.}(X \cup f(X)) - |X|.
\]
Example of Hrushovski’s construction

- Given a class of fields \((K, +, \cdot)\) we want to consider a new function \(f\) on \(K\).
- On \((K, f)\) introduce a predimension

\[
\delta(X) = \text{tr.d.}(X \cup f(X)) - |X|.
\]

- Consider structures \((K, f)\) which satisfy the Hrushovski inequality:

\[
\delta(X) \geq 0 \text{ for any finite } X \subset K.
\]
Example of Hrushovski’s construction

- Given a class of fields \((K, +, \cdot)\) we want to consider a new function \(f\) on \(K\).
- On \((K, f)\) introduce a predimension

\[
\delta(X) = \text{tr.d.}(X \cup f(X)) - |X|.
\]

- Consider structures \((K, f)\) which satisfy the Hrushovski inequality:

\[
\delta(X) \geq 0 \text{ for any finite } X \subset K.
\]

- Amalgamate all such structures to get a universal and homogeneous structure in the class.
Example of Hrushovski’s construction

- Given a class of fields $(K, +, \cdot)$ we want to consider a new function f on K.
- On (K, f) introduce a predimension
 \[
 \delta(X) = \text{tr.d.}(X \cup f(X)) - |X|.
 \]
- Consider structures (K, f) which satisfy the Hrushovski inequality:
 \[
 \delta(X) \geq 0 \text{ for any finite } X \subset K.
 \]
- Amalgamate all such structures to get a universal and homogeneous structure in the class.
- The resulting structure (\tilde{K}, f) is ω-stable and with some extra work (collapse) one can get a new uncountably categorical structure from (\tilde{K}, f).
Are Hrushovski structures mathematical pathologies?

Observation: If K is a field and we want $f = e^x$ to be a group homomorphism, then the predimension must be $\delta(X) = \text{tr} \cdot d(X \cup e^X) - \text{lin} \cdot d(Q(X)) \geq 0$.

The Hrushovski inequality, in the case of the complex numbers, $e^x = \exp$, is equivalent to:

$\text{tr} \cdot d(x_1, \ldots, x_n, e^{x_1}, \ldots, e^{x_n}) \geq n$ assuming that x_1, \ldots, x_n are linearly independent.

This is the Schanuel conjecture.
Are Hrushovski structures mathematical pathologies?

Observation: If K is a field and we want $f = \exp$ to be a group homomorphism

$$
\exp(x_1 + x_2) = \exp(x_1) \cdot \exp(x_2)
$$

The Hrushovski inequality, in the case of the complex numbers, $\exp = \exp$, is equivalent to:

$$
\text{tr} \cdot \text{dim}(x_1, \ldots, x_n, \exp(x_1), \ldots, \exp(x_n)) \geq n
$$

assuming that x_1, \ldots, x_n are linearly independent.

This is the Schanuel conjecture.
Are Hrushovski structures mathematical pathologies?

Observation: If K is a field and we want $f = \text{ex}$ to be a group homomorphism

$$\text{ex}(x_1 + x_2) = \text{ex}(x_1) \cdot \text{ex}(x_2)$$

then the predimension \textbf{must be}

$$\delta(X) = \text{tr.d.}(X \cup \text{ex}(X)) - \text{lin.d.}_\mathbb{Q}(X) \geq 0.$$
Are Hrushovski structures mathematical pathologies?

Observation: If K is a field and we want $f = \text{ex}$ to be a group homomorphism

$$\text{ex}(x_1 + x_2) = \text{ex}(x_1) \cdot \text{ex}(x_2)$$

then the predimension must be

$$\delta(X) = \text{tr.d.}(X \cup \text{ex}(X)) - \text{lin.d.}_\mathbb{Q}(X) \geq 0.$$

The Hrushovski inequality, in the case of the complex numbers, $\text{ex} = \text{exp}$, is equivalent to:

$$\text{tr.d.}(x_1, \ldots, x_n, e^{x_1}, \ldots, e^{x_n}) \geq n$$

assuming that x_1, \ldots, x_n are linearly independent.
Are Hrushovski structures mathematical pathologies?

Observation: If K is a field and we want $f = \exp$ to be a group homomorphism

$$\exp(x_1 + x_2) = \exp(x_1) \cdot \exp(x_2)$$

then the predimension must be

$$\delta(X) = \text{tr.d.}(X \cup \exp(X)) - \text{lin.d.}(X) \geq 0.$$

The Hrushovski inequality, in the case of the complex numbers, $\exp = \exp$, is equivalent to:

$$\text{tr.d.}(x_1, \ldots, x_n, e^{x_1}, \ldots, e^{x_n}) \geq n$$

assuming that x_1, \ldots, x_n are linearly independent.

This is the Schanuel conjecture.
Pseudo-exponentiation

Consider the class of fields of characteristic 0 with a function \(\text{ex} : K \rightarrow (K, +, \cdot, \text{ex}) \) satisfying

EXP1: \(\text{ex}(x_1 + x_2) = \text{ex}(x_1) \cdot \text{ex}(x_2) \)

EXP2: \(\ker \text{ex} = \pi \mathbb{Z}, \) some \(\pi \in K. \)

Consider the subclass satisfying the Schanuel condition **SCH:**

\(\text{tr}.d.(X \cup \text{ex}(X)) - \text{lin}.d.(X) \geq 0. \)

Amalgamation process produces an algebraically-exponentially closed field with pseudo-exponentiation, \(K^{\text{ex}}(\lambda), \) of cardinality \(\lambda. \)
Consider the class of fields of characteristic 0 with a function \(\text{ex} \): \(K_{\text{ex}} = (K, +, \cdot, \text{ex}) \) satisfying

\[
\text{EXP1: } \text{ex}(x_1 + x_2) = \text{ex}(x_1) \cdot \text{ex}(x_2)
\]

\[
\text{EXP2: ker ex} = \pi \mathbb{Z}, \text{some } \pi \in K
\]

Consider the subclass satisfying the Schanuel condition \(\text{SCH} \):

\[
\text{tr}. \text{d}. (X \cup \text{ex}(X)) - \text{lin}. \text{d}. (X) \geq 0
\]

Amalgamation process produces an algebraically-exponentially closed field with pseudo-exponentiation \(K_{\text{ex}}(\lambda) \), of cardinality \(\lambda \).
Pseudo-exponentiation

Consider the class of fields of characteristic 0 with a function \(\text{ex} : K_{\text{ex}} = (K, +, \cdot, \text{ex}) \) satisfying

EXP1: \(\text{ex}(x_1 + x_2) = \text{ex}(x_1) \cdot \text{ex}(x_2) \)

EXP2: \(\ker \text{ex} = \pi \mathbb{Z}, \) some \(\pi \in K. \)
Consider the class of fields of characteristic 0 with a function ex: $K_{\text{ex}} = (K, +, \cdot, \text{ex})$ satisfying

\begin{align*}
\text{EXP1: } \text{ex}(x_1 + x_2) &= \text{ex}(x_1) \cdot \text{ex}(x_2) \\
\text{EXP2: } \ker \text{ex} &= \pi \mathbb{Z}, \text{ some } \pi \in K.
\end{align*}

Consider the subclass satisfying the Schanuel condition

\[\text{SCH: } \text{tr.d.}(X \cup \text{ex}(X)) - \text{lin.d.}(X) \geq 0. \]
Pseudo-exponentiation

Consider the class of fields of characteristic 0 with a function $ex: K_{ex} = (K, +, \cdot, ex)$ satisfying

EXP1: $ex(x_1 + x_2) = ex(x_1) \cdot ex(x_2)$

EXP2: $\ker ex = \pi \mathbb{Z}$, some $\pi \in K$.

Consider the subclass satisfying the Schanuel condition

$$\text{SCH} : \quad \text{tr.d.}(X \cup ex(X)) - \text{lin.d.}(X) \geq 0.$$

Amalgamation process produces an *algebraically-exponentially closed field with pseudo-exponentiation*, $K_{ex}(\lambda)$, of cardinality λ.
Pseudo-exponentiation

Algebraic-exponential closedness (existential closedness) takes the form: EC: For any non-overdetermined irreducible system of polynomial equations $P(x_1, \ldots, x_n, y_1, \ldots, y_n) = 0$ there exists a generic solution satisfying $y_i = e^{x_i}$ for $i = 1, \ldots, n$.

Also we have the Countable Closure property: CC: Analytic subsets of n of dimension 0 are countable. ACF_0: Axioms for algebraically closed fields of characteristic 0.
Pseudo-exponentiation

Algebraic-exponential closedness (existential closedness) takes the form:

EC: For any *non-overdetermined* irreducible system of polynomial equations

\[P(x_1, \ldots, x_n, y_1, \ldots, y_n) = 0 \]

there exists a generic solution satisfying

\[y_i = \exp(x_i) \quad i = 1, \ldots, n. \]
Pseudo-exponentiation

Algebraic-exponential closedness (**existential closedness**) takes the form:

EC: For any *non-overdetermined* irreducible system of polynomial equations

\[P(x_1, \ldots, x_n, y_1, \ldots, y_n) = 0 \]

there exists a generic solution satisfying

\[y_i = \exp(x_i) \quad i = 1, \ldots, n. \]

Also we have the **Countable Closure** property:

CC: *Analytic* subsets of \(\mathbb{A}^n \) of dimension 0 are countable.
Pseudo-exponentiation

Algebraic-exponential closedness (existential closedness) takes the form:

EC: For any *non-overdetermined* irreducible system of polynomial equations

\[P(x_1, \ldots, x_n, y_1, \ldots, y_n) = 0 \]

there exists a generic solution satisfying

\[y_i = e^{x_i} \quad i = 1, \ldots, n. \]

Also we have the **Countable Closure** property:

CC: *Analytic* subsets of \(n \) of dimension 0 are countable.

ACF\(_0\): Axioms for algebraically closed fields of characteristic 0.
Main Theorem Given an uncountable cardinal λ, there is a unique, up to isomorphism, structure K_{ex} of cardinality λ satisfying

$$ACF_0 + EXP + SCH + EC + CC$$
Pseudo-exponentiation

Main Theorem Given an uncountable cardinal \(\lambda \), there is a unique, up to isomorphism, structure \(K_{ex} \) of cardinality \(\lambda \) satisfying

\[
ACF_0 + \text{EXP} + \text{SCH} + \text{EC} + \text{CC}
\]

Conjecture The field of complex numbers \(\mathbb{C}_{exp} \) is isomorphic to the unique field with exponentiation \(K_{ex} \) of cardinality \(2^{\aleph_0} \).
Main Theorem Given an uncountable cardinal λ, there is a unique, up to isomorphism, structure K_{ex} of cardinality λ satisfying

$$ACF_0 + EXP + SCH + EC + CC$$

Conjecture The field of complex numbers \mathbb{C}_{exp} is isomorphic to the unique field with exponentiation K_{ex} of cardinality 2^{\aleph_0}.

Equivalently: \mathbb{C}_{exp} satisfies $SCH + EC$.
Pseudo-exponentiation
The Main Theorem is a consequence of:

Theorem A

\[\text{The } \omega, \omega(\mathbb{Q}) \text{-sentence ACF}_0 + \text{EXP} + \text{SCH} + \text{EC} + \text{CC} \text{ is axiomatising a quasi-minimal excellent class.} \]

Theorem B

(Essentially S. Shelah 1983)

A quasi-minimal excellent class is categorical in any uncountable cardinality.

The proof of Theorem A uses:

1. The Galois and Kummer theory.
2. The structure of the multiplicative group \(F^* \) for global fields \(F \).
3. The new fact (with M. Bays): Let \(L_1, \ldots, L_n \) be algebraically closed fields mutually linearly disjoint over their intersections. Then, for the multiplicative group of their composite, \((L_1 \cdot \ldots \cdot L_n)^* \sim = L_1^* \cdot \ldots \cdot L_n^* \times A \), for a free abelian group \(A \).
Pseudo-exponentiation

The Main Theorem is a consequence of:

Theorem A The $L_{\omega_1,\omega}(Q)$-sentence

$\text{ACF}_0 + \text{EXP} + \text{SCH} + \text{EC} + \text{CC}$

is axiomatising a **quasi-minimal excellent class**.
Pseudo-exponentiation

The Main Theorem is a consequence of:

Theorem A The $L_{\omega_1,\omega}(Q)$-sentence

$$\text{ACF}_0 + \text{EXP} + \text{SCH} + \text{EC} + \text{CC}$$

is axiomatising a **quasi-minimal excellent class**.

Theorem B (Essentially S. Shelah 1983) A **quasi-minimal excellent class** is categorical in any uncountable cardinality.
Pseudo-exponentiation

The Main Theorem is a consequence of:

Theorem A The $L_{\omega_1, \omega}(Q)$-sentence $ACF_0 + EXP + SCH + EC + CC$ is axiomatising a **quasi-minimal excellent class**.

Theorem B (Essentially S.Shelah 1983) A quasi-minimal excellent class is categorical in any uncountable cardinality.

The proof of Theorem A uses:

1. The Galois and Kummer theory.
2. The structure of the multiplicative group F^* for global fields F.
3. The new fact (with M.Bays): Let L_1, \ldots, L_n be algebraically closed fields mutually linearly disjoint over their intersections. Then, for the multiplicative group of their composite, $(L_1 \cdot \ldots \cdot L_n)^* \sim L_1^* \cdot \ldots \cdot L_n^* \times A$, for a free abelian group A.
Pseudo-exponentiation

The Main Theorem is a consequence of:

Theorem A The $L_{\omega_1,\omega}(Q)$-sentence

$ACF_0 + \text{EXP} + \text{SCH} + \text{EC} + \text{CC}$

is axiomatising a **quasi-minimal excellent class**.

Theorem B (Essentially S.Shelah 1983) *A quasi-minimal excellent class is categorical in any uncountable cardinality.*

The proof of Theorem A uses:

1. The Galois and Kummer theory.
Pseudo-exponentiation

The Main Theorem is a consequence of:

Theorem A The $L_{\omega_1,\omega}(Q)$-sentence

$ACF_0 + EXP + SCH + EC + CC$

is axiomatising a **quasi-minimal excellent class**.

Theorem B (Essentially S. Shelah 1983) *A quasi-minimal excellent class is categorical in any uncountable cardinality.*

The proof of Theorem A uses:

1. The Galois and Kummer theory.
2. The structure of the multiplicative group F^* for global fields F.
Pseudo-exponentiation

The Main Theorem is a consequence of:

Theorem A The $L_{\omega_1,\omega}(Q)$-sentence $ACF_0 + \text{EXP} + \text{SCH} + \text{EC} + \text{CC}$ is axiomatising a **quasi-minimal excellent class**.

Theorem B (Essentially S. Shelah 1983) A quasi-minimal excellent class is categorical in any uncountable cardinality.

The proof of Theorem A uses:

1. The Galois and Kummer theory.
2. The structure of the multiplicative group F^* for global fields F.
3. The new fact (with M. Bays): Let L_1, \ldots, L_n be algebraically closed fields *mutually linearly disjoint over their intersections*. Then, for the multiplicative group of their composite,

$$(L_1 \cdot \ldots \cdot L_n)^* \cong L_1^* \cdot \ldots \cdot L_n^* \times A,$$

for a free abelian group A.
Conclusion

Hrushovski’s counter-examples are not pathologies.
Generalities:

- Noetherian Zariski Geometry is an extension of Algebraic Geometry (into a non-commutative domain).
Lecture V

Generalities:

- Noetherian Zariski Geometry is an extension of Algebraic Geometry (into a non-commutative domain).
- Some interesting mathematics may lie outside the narrow context of Noetherian Zariski geometries.
Analytic Zariski geometries

Definition. We say that $\mathbf{M} = (\mathcal{M}, \mathcal{C})$ is a pre-analytic Zariski structure if:

- $\mathbf{M} = (\mathcal{M}, \mathcal{C})$ is a topological structure with good dimension notion.

- For every $S \subseteq \text{cl} \mathcal{U} \subseteq \text{op} \mathcal{M}^n$ there are at most countably many constructible irreducible sets $\mathcal{S}_i \subseteq \mathcal{M}^n$, $I \in \mathbb{N}$, with $S = \bigcup \mathcal{S}_i.$
Analytic Zariski geometries

Definition. We say that $\mathbf{M} = (M, C)$ is a pre-analytic Zariski structure if:

1. $\mathbf{M} = (M, C)$ is a topological structure with good dimension notion.
2. (case $\dim M = 1$) given $F \subseteq_{\text{cl}} V \subseteq_{\text{op}} M^{n+k}$ with the projection $\text{pr} : M^{n+k} \to M^n$ such that $\dim \text{pr} F = n$, there exists $D \subseteq_{\text{op}} M^n$ such that $D \subseteq \text{pr} F$.
Definition. We say that $M = (M, C)$ is a pre-analytic Zariski structure if:

- $M = (M, C)$ is a topological structure with good dimension notion.
- (case $\dim M = 1$) given $F \subseteq_{cl} V \subseteq_{op} M^{n+k}$ with the projection $\text{pr} : M^{n+k} \rightarrow M^n$ such that $\dim \text{pr} F = n$, there exists $D \subseteq_{op} M^n$ such that $D \subseteq \text{pr} F$.
- For every $S \subseteq_{cl} U \subseteq_{op} M^n$ there are at most countably many constructible irreducible sets $S_i \subseteq M^n$, $i \in \mathbb{N}$, with
 \[S = \bigcup S_i. \]
Definition (continued) A pre-analytic Zariski \mathbf{M} is said to be analytic if

- Given a subset $S \subseteq \text{cl} \ U \subseteq \text{op} \ M^n$ the natural number $U(S)$, (analytic rank) is well-defined by:

 1. $U(S) = 0$ iff $S = \emptyset$;
 2. $U(S) \leq k + 1$ iff there is a set $S' \subseteq \text{cl} S$ such that $U(S') \leq k$, and the set $S_0 = S \setminus S'$ is a countable union of irreducible closed subsets.
Definition (continued) A pre-analytic Zariski \mathbf{M} is said to be analytic if

- Given a subset $S \subseteq_{\text{cl}} U \subseteq_{\text{op}} \mathbb{M}^n$ the natural number $u(S)$, (analytic rank) is well-defined by:
 1. $u(S) = 0$ iff $S = \emptyset$;
 2. $u(S) \leq k + 1$ iff there is a set $S' \subseteq_{\text{cl}} S$ such that $u(S') \leq k$, and the set $S^0 = S \setminus S'$ is a countable union of irreducible closed subsets.

A subset $S \subseteq_{\text{cl}} U \subseteq_{\text{op}} \mathbb{M}^n$ is said to be analytic if $u(S) = 1$.
Let \mathcal{M} be an analytic Zariski structure of dimension 1. We choose a large enough countable fragment $\mathcal{C}_0 \subseteq \mathcal{C}$ (including constants) closed under certain properties.
Let M be an analytic Zariski structure of dimension 1. We choose a large enough countable fragment $C_0 \subseteq C$ (including constants) closed under certain properties.

Theorem 1 Every $L_{\infty,\omega}(C_0)$-type realised in M is equivalent to a type consisting of existential (first-order) formulas and the negations of existential formulas (non-elementary near-model-completeness).
Model theory of pre-analytic Zariski structures

Let \mathbf{M} be an analytic Zariski structure of dimension 1. We choose a large enough countable fragment $C_0 \subseteq C$ (including constants) closed under certain properties.

Theorem 1 Every $L_{\infty,\omega}(C_0)$-type realised in \mathbf{M} is equivalent to a type consisting of existential (first-order) formulas and the negations of existential formulas (non-elementary near-model-completeness).

Theorem 2. There are only countably many $L_{\infty,\omega}(C_0)$-types realised in \mathbf{M} (non-elementary ω-stability).
Let \mathbf{M} be an analytic Zariski structure of dimension 1. We choose a large enough countable fragment $C_0 \subseteq C$ (including constants) closed under certain properties.

Theorem 1 Every $L_{\infty,\omega}(C_0)$-type realised in \mathbf{M} is equivalent to a type consisting of existential (first-order) formulas and the negations of existential formulas (*non-elementary near-model-completeness*).

Theorem 2. There are only countably many $L_{\infty,\omega}(C_0)$-types realised in \mathbf{M} (*non-elementary ω-stability*).
Model theory of analytic Zariski structures

How the proof works.
How the proof works.

For finite $X \subseteq M$ we define the C_0-predimension

$$\delta(X) = \min \{ \dim S : \bar{X} \in S, S \subseteq_{cl} U \subseteq_{op} M^n, S \text{ is } C_0\text{-definable} \}$$
How the proof works.

For finite $X \subseteq M$ we define the C_0-predimension

$$\delta(X) = \min\{\dim S : \bar{X} \in S, S \subseteq_{\text{cl}} U \subseteq_{\text{op}} M^n, S \text{ is } C_0\text{-definable}\}$$

and dimension

$$d(X) = \min\{\delta(XY) : \text{finite } Y \subset M\}.$$
Model theory of analytic Zariski structures

How the proof works.

For finite $X \subseteq M$ we define the C_0-predimension

$$\delta(X) = \min\{\dim S : \tilde{X} \in S, S \subseteq_{cl} U \subseteq_{op} M^n, S \text{ is } C_0\text{-definable}\}$$

and dimension

$$d(X) = \min\{\delta(XY) : \text{finite } Y \subset M\}.$$

For $X \subseteq M$ finite, we say that X is **self-sufficient** and write $X \leq M$, if $d(X) = \delta(X)$.
How the proof works.

Lemma 1 For a projective $P \subseteq M^n$

$$\dim P = \max\{d(X) : \tilde{X} \in P\}.$$
How the proof works.

Lemma 1 For a projective $P \subseteq M^n$

$$\dim P = \max \{d(X) : \vec{X} \in P\}.$$

Lemma 2. Given X, X', XY all finite self-sufficient, suppose $X \equiv_{qftp} X'$. Then there is Y' such that $XY \equiv_{qftp} X'Y'$.
Model theory of analytic Zariski structures

Pregeometry on M

Set, for finite $X \subseteq M$,

$$(X) = \{ y \in M : d(Xy) = d(X) \}.$$
Model theory of analytic Zariski structures

Pregeometry on M

Set, for finite $X \subseteq M$,

$$(X) = \{ y \in M : d(Xy) = d(X) \}.$$

Theorem 3 $(M,)$ is an ω-homogeneous pregeometry with countable closure property. I.e.

In other words, M is quasi-minimal ω-homogeneous over submodels.
Model theory of analytic Zariski structures

Pregeometry on M

Set, for finite $X \subseteq M$,

$$(X) = \{y \in M : d(Xy) = d(X)\}.$$

Theorem 3 $(M, _)$ is an ω-homogeneous pregeometry with countable closure property. I.e.

1. $X \subseteq Y \Rightarrow (X) \subseteq (Y)$;
2. $((X)) = (X)$;
3. $z \in (X, y) \setminus (X) \Rightarrow y \in (X, z)$;
4. (X) is countable for a countable X;
5. $Y \equiv \exists (X) Y' \Rightarrow$ exists an elementary monomorphism over (X), $(XY) \rightarrow (XY')$.

In other words, M is quasi-minimal ω-homogeneous over submodels.
Model theory of analytic Zariski structures

Pregeometry on M

Set, for finite $X \subseteq M$,

$$(X) = \{ y \in M : d(Xy) = d(X) \}.$$

Theorem 3 (M, \cdot) is an ω-homogeneous pregeometry with countable closure property. I.e.

1. $X \subseteq Y \Rightarrow (X) \subseteq (Y)$;
2. $((X)) = (X)$;
3. $z \in (X, y) \setminus (X) \Rightarrow y \in (X, z)$;
4. (X) is countable for a countable X;
Model theory of analytic Zariski structures

Pregeometry on M

Set, for finite $X \subseteq M$,

$$(X) = \{ y \in M : d(Xy) = d(X) \}.$$

Theorem 3 $(M,)$ is an ω-homogeneous pregeometry with countable closure property. I.e.

1. $X \subseteq Y \Rightarrow (X) \subseteq (Y)$;
2. $((X)) = (X)$;
3. $z \in (X, y) \setminus (X) \Rightarrow y \in (X, z)$;
4. (X) is countable for a countable X;
5. $Y \equiv^3_{(X)} Y' \Rightarrow$ exists an elementary monomorphism over $(X), (XY) \to (XY')$.

In other words, M is quasi-minimal ω-homogeneous over submodels.
Model theory of analytic Zariski structures

Pregeometry on M

Set, for finite $X \subseteq M$,

$$(X) = \{ y \in M : d(Xy) = d(X) \}.$$

Theorem 3 $(M, _)$ is an ω-homogeneous pregeometry with countable closure property. I.e.

1. $X \subseteq Y \Rightarrow (X) \subseteq (Y)$;
2. $((X)) = (X)$;
3. $z \in (X, y) \setminus (X) \Rightarrow y \in (X, z)$;
4. (X) is countable for a countable X;
5. $Y \equiv^3_{(X)} Y' \Rightarrow$ exists an elementary monomorphism over $(X), (XY) \rightarrow (XY')$.

In other words, M is quasi-minimal ω-homogeneous over submodels.
Model theory of analytic Zariski structures

Is M excellent?
Is M excellent?

Fact. For all *natural* analytic Zariski M, when the answer is known: yes.

Theorem 4 Suppose M is excellent. Then for every $\kappa > \text{card}M$ there is a (pre)analytic Zariski M' of cardinality κ,

$$M \leq M'.$$
Is M excellent?

Fact. For all *natural* analytic Zariski M, when the answer is known: *yes.*

Theorem 4 Suppose M is excellent. Then for every $\kappa > \text{card}M$ there is a (pre)analytic Zariski M' of cardinality κ,

$$M \leq M'.$$

This M' is unique up to isomorphism.
Examples of analytic Zariski geometries

1. Abstract covers of the algebraic torus K^*, for an uncountable algebraically closed field K, any characteristic.
Examples of analytic Zariski geometries

1. Abstract covers of the algebraic torus K^*, for an uncountable algebraically closed field K, any characteristic.
2. Universal covers of complex abelian varieties in Gavrilovich’s language.
Examples of analytic Zariski geometries

1. Abstract covers of the algebraic torus K^*, for an uncountable algebraically closed field K, any characteristic.

2. Universal covers of complex abelian varieties in Gavrilovich’s language.

3. Some structures obtained via Hrushovski construction, as pre-analytic structures.
Examples of analytic Zariski geometries

1. Abstract covers of the algebraic torus K^*, for an uncountable algebraically closed field K, any characteristic.
2. Universal covers of complex abelian varieties in Gavrilovich’s language.
3. Some structures obtained via Hrushovski construction, as pre-analytic structures.
4. Pseudo-exponentiation, as a pre-analytic structure (?)