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Abstract

The aim of this note is to recast somewhat informal axiom sys-
tem of quantum mechanics used by physicists (Dirac calculus) in the
language of Continuous Logic.

We note an analogy between Tarski’s notion of cylindric algebras,
as a tool of algebraisation of first order logic, and Hilbert spaces which
can serve the same purpose for continuous logic of physics.

1 Dirac’s calculus and axiomatisation of

quantum mechanics

1.1 Axioms of quantum mechanics
The axiomatic formulation of quantum mechanics was set up by Paul

Dirac in 1930 [1] and, in different but equivalent form, by John von Neumann
in 1932. Since 1930 it took Dirac several rewritings and new editions to
bring his calculus to what he could consider satisfactory form. Modern books
present Dirac’s axioms in a succint form, in fact, leaving much of the technical
detail. We present here the Axioms of Quantum Mechanics following [2],
section 6.

The reader with logic background would note that what physicists see
as axioms is very far from what is a conventional set of axioms in a formal
language even in its early form as presented e.g. by Hilbert’s axiomatisation
of geometry [3]
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1.2 Axiom 1. The state of a quantum system is described by a vector |ψ〉
belonging to a complex Hilbert space H. This state is usually called “ket ψ”.
A complex Hilbert space H is a vector space, which can be finite dimensional
or infinite dimensional, equipped with the complex scalar product (also called
inner product) 〈ψ|ψ′〉 between any pair of states |ψ〉, |ψ′〉 in H. The norm,
or modulus, of a generic vector |ψ〉 ∈ H is defined as

||ψ|| = |〈ψ|ψ〉|

and usually |ψ〉 is normalized to one, i.e.||ψ|| = 1. The symbol 〈ψ| which
appears in the definition of the norm is called “bra ψ” and it can be intepreted
as the fuction

〈ψ| : H → C.
For any |ψ′〉 ∈ H this function gives a complex number 〈ψ|ψ′〉 obtained as
scalar product of |ψ〉 and |ψ′〉. In a complex Hilbert space H it exists a set of
basis vectors |φα〉 which are orthonormal, i.e. 〈φα|φβ〉 = δ(α − β), and such
that

|ψ〉 =
∑
α

cα|φα〉 (1)

for any |ψ〉, where the coefficients cα belong to C.
Axiom 2. Any observable (measurable quantity) of a quantum system is

described by a self-adjoint linear operator F : H → H acting on the Hilbert
space of state vectors.

For any classical observable F it exists a corresponding quantum observ-
able F .

Axioms 3.The possible measurable values of an observable F are its
eigenvalues f, such that

F |f〉 = f |f〉
with |f〉 the corresponding eigenstate. The observable |f〉 admits the spectral
resolution

F =
∑
f

f |f〉〈f | (2)

where {|f〉} is the set of orthonormal eigenstates of F , and the mathematical
object 〈f |, called “bra of f”, is a linear map that maps into the complex
number. This also satisfy the identity∑

f

|f〉〈f | = I.
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Axiom 4. The probability P of finding the state |ψ〉 in the state |f〉
(both of norm 1) is given by

P = |〈f |ψ〉|2

This probability P is also the probability of measuring the value f of the
observable F when the system is in the quantum state |ψ〉.

Axiom 5. The time evolution of states and observables of a quantum
system with Hamiltonian H is determined by the unitary operator

Kt := exp(−iHt/~)

, such that |ψ(t)〉 = Kt|ψ〉 is the time-evolved state |ψ〉.

1.3 Now we make several comments on the axioms.
The term “Hilbert space” here should actually be read as the rigged

Hilbert space (see [4]) because it differs from the standard definition by ac-
commodating both the Hilbert space Φ of ket-vectors and the dual space Φ∗

of bra-vectors.
The position states |x〉 form the orthonormal basis of the space Φ∗ of

bra-vectors.
The summation formulas like (1) and (2) are presented in a form of an

integral if the family |ψα〉 is continuous but seems natural in the summation
form when α runs in the discrete spectrum of an operator. The two forms
can be represented uniformly by using spectral measure and the integration
over a relevant spectral measure.

In fact, when a family {|ψα〉 : α ∈ A}, A ⊆ R is given, it can be assumed
that a measure µ = µψ on R is given such that µ(R \A) = 0 and (1) can be
rewritten as

|ψ〉 =

∫
R
c(α) |ψ(α)〉 dα (3)

where dα stands for dµ.

2 The axioms in the setting of Continuous

Logic

2.1 Similarly to [6] we think in terms of continuous logic (CL) predicates/states
on the domain which, for simplicity, is identified with R in its usual metric.
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We assume
R =

⋃
k∈N

Ik

where Ik are intervals of finite length, Ik ⊂ Ik+1.
Similarly to [6] define basic n-ary predicates, also called states, to be maps

ψ : Rn → C

which are limits of continuous maps

ψk : Ink → S ⊂ C, k ∈ N

where S is the unit circle in C.
Among the states there are the position states 〈x|, x ∈ R, which have

the form of Dirac’s delta functions δDir
x (z) := δDir(x − z). These form an

orthonormal basis of the space of bra-vectors.
The space of ket-vectors is represented by continuous functions ψ : R→ S

and the inner product between |ψ〉 and 〈x|

〈x|ψ〉 := ψ(x)

and the inner product of position states is set to be

〈x1|x2〉 = δDir(x2 − x1). (4)

The momentum states |p〉 are represented as

|p〉 :=
1√
2π

eipx, p ∈ R

and form an orthonormal basis of the space of ket-vectors.
The summation formula and the inner product is given in Dirac’s inter-

pratation, in particular

〈p1|p2〉 =
1

2π

∫
R

e−ip1xeip2xdx = δDir(p2 − p1)

where one uses the standard Fourier integral result∫
R

e−pxdx = 2πδDir(p).
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Orthogonality here and in (4) is understood in terms of Dirac’s delta in place
of the Kronecker delta.

Dirac’s calculus allows rigorous interpretation of such calculations in
terms of finite complex values.

More generally, let Hm be the set of all m-ary predicates which by defi-
nition have structure of C-vector spaces and

C = H0 ⊂ . . . ⊂ Hm ⊂ . . . ⊂ Hm+1 . . .H.

Also, one uses quantifiers, linear maps written as integrals

φ(z1, . . . , zn) 7→
∫
R
φ(z1, . . . , zn)dzn.

In fact, this is a collection of linear maps∫
: Hm+1 → Hm,

the rules of calculation of which as defined by Dirac [1] improper integration.
In particular, ∫

R
φ(z1, . . . , zn)dzn := lim

k→∞

∫
Ik

φ(z1, . . . , zn)dzn (5)

(which fits with the requirements of continuous model theory).
A special binary operation in the spaces, inner product,

Hm ×Hm → C; 〈φ(z1, . . . , zn), ψ(z1, . . . , zn)〉 =

∫
Rm

φ∗ · ψ dz1 . . . dzm

where φ∗ is the complex comjugate of φ and
∫
Rm is m-multiple integral. 〈φ|ψ〉

can be seen as a continuous predicate of equality φ = ψ.
One restricts the notion of state to predicates φ such that 〈φ|φ〉 = 1.

An important role in the theory is played by a collection of linear maps
(operators)

L : Hm → Hm

with physical meanings. Each of these of the form

φ(z̄1, z̄2) 7→
∫
Rk

α(ȳ, z̄1) · φ(ȳ, z̄2) dȳ
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where |ȳ| = |z̄1| = k, α ∈ H2k.
All of the above together makes the Hm a collection of Hilbert spaces

with linear operators and H an ambient Hilbert space.

The time evolution operator exp(−iHt/~) acts on states as a uni-
tary operator determining the evolution of a state in time t with a given
Hamiltonian H. A state φt0 determining a system at time t0 evolves into
a state φt := exp(−iH(t − t0)/~) with the probability amplitude equal to
〈φt0 |φt〉, which is a complex number of modulus 1. The calculation of the
CL-formulae φt and 〈φt0 |φt〉 (which involve mainly calculations of the appli-
cation of quantifier

∫
) is the central problem of quantum theory, equivalent

to solving the associated Schrödinger equation.

The above (along with further details of the Dirac calculus given in [1])
describes the formulae, the connectives and the quantifiers

∫
of continuous

logic for quantum mechanics.

3 Abstract algebraic logic and the Hilbert

space formalism

3.1 The axiomatic description of quantum mechanical theory in the form of
rigged Hilbert space may be quite confusing from the logician point of view
– there are no logical sentences which can be called axioms.

What Axioms 1 – 5 render instead is the topological-algebraic structure
of a Hilbert space with operators.

Recall now the algebraisation of logic approach, perhaps less popular
among logicians nowadays, versions of which were introduced by A.Lindenbaum,
A.Tarski, P.Halmos for the first order setting.

It is quite natural to see the Hilbert space formalism as the form of
algebraic logic in the context of the continuous logic of physics.

The qualification ’physics’ seems relevant here because of the specific
nature of its predicates (states) and quantifiers.

3.2 In drawing an analogy with the first order case, namely Tarski’s cylin-
der algebras, note that the physical theory misses a clear definition of an
interpretation, that is of a model, an elementary equivalence and related
notions.

Recall the Main Theorem on Cylindric Algebras (see e.g. [5])
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Let A and B be two structures in the same first-order language, and
CA,CB the respective cylinder algebras.

Then A is elementarily equivalent to B iff CA ∼= CB, where the isomor-
phism identifies sets definable by the same formulas.

The problem of furnishing a definition of a structure M and the inter-
pretation of the language of quantum mechanics in the context of continuous
model theory is practically solved by Dirac for the case of the particle quan-
tum mechanics. One chooses a manifoldM for the universe of the structure
and sets predicates (states) to be of the form

ψ :Mn → C

where, for each subdomain D ⊆ Mn of finite diameter, ψ(D) ⊆ CD for a
compact CD ⊂ C.

For an interpretation of the language associated with H one defines
the states (predicates) onM and rules of calculating the rigged Hilbert space
operations over the states (CL-connectives) and the quantifier

∫
M . Note that

linear operators, including the time evolution operator, are included in the
list of Hilbert space operations.

Write the respective structure as

(M;H).

Once the structure of a rigged Hilbert space H is fixed it identifies a com-
plete quantum mechanical theory. The class of structures (M;H) with
a fixed H will be considered as the class of models of the complete theory
represented in the form of the rigged Hilbert space H.

The fragment of QM where such interpretation is well-defined is the
theory of a finite number of free particles and more generally “Gaussian”
quantum mechanics, determined by a Hamiltonians with quadratic potential
(which includes the quantum harmonic oscillator, not a free particle). Such
theory, with the choice of operators in H restricted to unitary operators (the
Weyl operators and the time evolution operators) is analysed in [6]. It is
noticed that the theory has quantifier elimination under the natural choice
of basic predicates. Moreover, the theory has a continuous model (Rn;H)
as well as a family of discrete pseudo-finite models (with the universe Vv)
depending on a choice of parameters p, l, i, non-standard integers.
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To move further from there one needs to include self-adjoint operators
(such as P,Q and H) in the definition of H along with the operation

exp : L 7→ eiL

defined for self-adjoint L. Note that interpretation of the time evolution op-
erator ei

H
~ t over M = R amounts to a path-integral calculation and requires

some non-conventional determination of a non-convergent limit even for the
case of the quantum harmonic oscillator, see [7], 7.7.4.

More problems arise with including perturbation methods into the formal-
ism. These treat the important Planck constant ~ as an infinitesimal while
physics estimates it by a known a real number.

3.3 What is the CL-classification theory status of the theories represented
by various H?

3.4 Remark. Rigged Hilbert spaces provide a powerful mathematical
framework to extend quantum mechanics, allowing distributions and gener-
alized eigenfunctions to be rigorously handled. However, not every element
corresponds to a physically realisable state – some are purely mathematical
artifacts. See [9]

3.5 The broader setting of quantum field theory (QFT) is in many regards
similar but much more problematic. One of the main sources of difficulties
is thatM in this case has to be infinite-dimensional. [8], section 8, contains
a discussion of Axioms for QFT.

In the following definition of interpretation (models) of a CL-theories of
physics we mimic the first-order setting of models of Hamiltonian mechanics,
which has the form of phase space.

3.6 Definition. Let H be a rigged Hilbert space,

H = (H; O)

where H is a complete Hermitian space, O a collection of linear operators
on Hn → Hm. We write Oe in place of O if we include exp : L → eiL for
self-adjoint L ∈ O. We assume O contains the Weyl operators of the form
eaiP and ebiQ for a, b rational numbers (“rational” Weyl operators).
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An H-structure (V;H) is given by
- a universe which consists of the configuration space V with a ∗R+-

valued metric (non-standard reals) on each;
- collections Fn n ∈ N, of states, that is maps ψ : Vn → ∗C (into the

non-standard complex numbers) closed under ∗C-linear combinations;
- a Hermitian inner product 〈ψ1|ψ2〉; Fn × Fn → ∗C is defined for all n
- a collection of linear operators OF = {LF : L ∈ O}:

LF : Fn → Fm for each L : Hn → Hm

- an interpretation functor is a homomorphism

C :
Fn → H⊗n; n ∈ N,
OF � O;
∗C � C ∪ {∞}

which respects the Hermitian structure and the algebra of linear operators,
coincides with the standard part map on ∗C and satisfies the condition:

EigWF � EigW

surjection on the Weyl operators W eigenfunctions-bases, for W ∈ O.
The respective structure V = (V,C,H) will be called a model of H.

3.7 Remarks.
In general, the images C(Fn) ⊆ H⊗n are not uniquely defined byH. This is

motivated by Remark 3.4. Respectively, the class of models of H corresponds
in general to a theory which is not necessarily complete.

In analogy with the Main Theorem on Cylindric Algebras, 3.2, we say
that structures V and W are CL-equivalent if CV ∼= CW.

3.8 It is not hard to see that H itself provides a “canonical” universe V
with the trivial interpretation. However, (V,C,H) suggests multitude of
other possibilities for V. and C.

Conceptually one can think of the functor C : V 7→ H as a structural
approximation in the sense of [6] and [10] (called lm therein). Indeed, C
approximates a “rough” model of reality V by a “smooth” H. This is indeed
how approximation has been applied in [6] to pass from a family of discrete
(pseudo-finite) structures to classical Hilbert space setting.
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Note, that in [6] we work in a more general setting where states take their
values in a discrete (pseudofinite) field ψ : Vn → F. It is then shown that
for quantum mechanics one can embed F ⊂ ∗C. This explains our use of ∗C
in the definition of models, although it might be advisable to use a more
abstract F instead.
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