
Lectures on Zariski-type structures

Part I

Boris Zilber

1 Axioms for Zariski structures

Let M be a set and let C be a distinguished sub-collection of the subsets
of Mn, n = 1, 2, . . .. The sets in C will be called closed. The relations
corresponding to the sets are the basic (primitive) relations of the language
we will work with.
〈M, C〉, or M , is a topological structure if it satisfies axioms (L).

(L) Language and Topology

1. finite intersections and unions of closed sets are closed;

2. M is closed;

3. the graph of equality is closed;

4. any singleton of the domain is closed;

5. Cartesian products of closed sets are closed;

6. for a ∈Mk and S a closed subset of M k+l defined by a predicate S(x, y)
(x = 〈x1, . . . , xk〉, y = 〈y1, . . . , yl〉), the set S(a,M l) (the fiber over a)
is closed;
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7. the inverse image of a closed set under a projection pri1,...,im
is closed.

Constructible sets are by definition the Boolean combinations of closed
sets.

We continue with the list of axioms.

(SP) semi-Properness of projection mappings:
the image pri1,...,im

(S) of a closed subset S⊆Mn is constructible.

A topological structure is said to be complete if

(P) the image pri1,...,im
(S) of a closed subset S⊆Mn is closed.

A topological structure is called Noetherian if it also satisfies

(DCC) Descending chain condition for closed subsets: for any closed

S1 ⊇ S2 ⊇ . . . Si ⊇ . . .

there is i such that for all j ≥ i, Sj = Si.

A closed S is called irreducible if there are no closed sets S1 and S2 such
that S1 ( S2, S2 ( S1 and S = S1 ∪ S2.
It follows from (DCC), that for any closed S there are distinct closed irre-
ducible S1, . . . , Sk such that

S = S1 ∪ · · · ∪ Sk.

These Si will be called irreducible components of S. They are defined
up to a numeration uniquely.
We can also consider a decomposition S = S1 ∪ S2 for S constructible and
S1, S2 closed in S. If there is no proper such a decomposition of a constructible
S, we say that S is irreducible.
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To any closed subset S ⊆ Mn a natural number called the dimension of
S, dimS is attached
(DP) Dimension of a point is 0;

(DU) Dimension of unions: dim(S1 ∪ S2) = max{dimS1, dimS2};

(FC) Fiber condition: for any pr = pri1,...,im
and a closed irreducible

S⊆Mn the set

Ppr(S, k) = {a ∈ prS : dim(S ∩ pr−1(a)) > k}

is closed in prS.

(AF) Addition formula:

dimS = dim pr(S) + min
a∈pr(S)

dim(pr−1(a) ∩ S)

for any closed irreducible S.

(SI) Strong irreducibility: dimS1 < dimS for irreducible S and S1 ⊂ S,
S1 6= S;

Noetherian topological structures satisfying (SP) and (DP)-(SI) will be called
Zariski structures, sometimes with adjective Noetherian, to distinguish
from analytic Zariski structures introduced later.
In main cases we assume that a Zariski structure satisfies also

(EU) Essential uncountability If a closed S ⊆ Mn is a union of count-
ably many closed subsets, then there are finitely many among the subsets,
the union of which is S.

The following is an assumption crucial for developing a rich theory for Zariski
structures

(PS) Pre-smoothness For any closed irreducible S1, S2 ⊆Mn, the dimen-
sion of any irreducible component of S1 ∩ S2 is not less than

dimS1 + dimS2 − dimMn.
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For simplicity, we add also the extra assumption that M itself is irre-
ducible. However, most of the arguments in the first half of the notes hold
without this assumption.

2 Basic examples

2.1 Algebraic varieties over algebraically closed fields

Let K be an algebraically closed field and M the set of K-points of an
algebraic variety over K. We are going to consider a structure on M :
The natural language for algebraic varieties M is the language the
basic n-ary relations C of which are the Zariski closed subsets of Mn.

Theorem 2.1 Any algebraic variety M over an algebraically closed field in
the natural language and the dimension notion as that of algebraic geometry
is a Zariski structure. The Zariski structure is complete if the variety is
complete. It satisfies (PS) if the algebraic variety is smooth. It satisfies
(EU) iff the field is uncountable.

Proof. Use a book on algebraic geometry. (L) and (DCC) follows im-
mediately from the definition of Zariski geometry and the Noetherianity of
polynomial rings. (P) is a canonical property (completeness) of projective
varieties. The Fiber Condition (FC) along with the addition formula (AF)
is given by Dimension of Fibers Theorem. (PS) is being discussed in the
context of smoothness. �

2.2 Compact complex manifolds

The natural language for a compact complex manifold M has the
analytic subsets of Mn as basic n-ary relations C.
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Theorem 2.2 Any compact complex manifolds M in a natural language and
dimension given as complex analytic dimension is a complete Zariski struc-
ture and satisfies assumptions (PS) (pre-smoothness) and (EU) (essentially
uncountable).

Remark 2.3 In fact, the theorem holds for compact analytic spaces, except
for the pre-smoothness condition.

Remark 2.4 Let
T = Cn/Λ

Λ an additive subgroup of Cn on 2n R-independent generators (lattice).

Then T is a compact complex manifold, a torus.
When n > 1, for most lattices (T, C) is just a group structure, that is, is
locally modular.

2.3 Proper varieties of rigid analytic geometry

( S.Bosch, U.Guentzer, and R.Remmert, Non-Archimedean Analysis)

It is built over a completion of a non-Archimedean valued algebraically closed
field K. The main objects are analytic varieties over K.
The natural language for an analytic variety M is again the language with
analytic subsets of Mn as basic relations.
The definition of a neghbourhood and so of an analytic subset is much more
involved than in the complex case. The main obstacle for an immediate
analogy is the fact that the non-Archimedean topology on K is highly dis-
connected.

Theorem 2.5 Let M be a proper (rigid) analytic variety. Then M, with
respect to the natural language, is a complete Zariski structure satisfying
(EU). It is pre-smooth if the variety is smooth.
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Theorem 2.6 Any Zariski structure M admits elimination of quantifiers,
i.e. any definable subset Q ⊆Mn is constructible.

Theorem 2.7 Any Zariski structure M satisfying (EU) is of finite Morley
rank. More precisely, rkQ ≤ dimQ for any definable set Q.

In particular

Corollary 2.8 A compact complex space is of finite Morley rank.
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Proposition 2.9 For any essentially uncountable Zariski structure M and
M ′�M , the natural extension C ′⊇C of the topology and dimension notions
determine a Zariski structure on M ′. If we choose M ′ to be saturated enough
then it satisfies (EU). If M is presmooth then so is M ′.

Remark 2.10 Notice that the Proposition fails in regard to (DCC) without
assuming (EU) for M.

3 Specialisations

This notion has analogues both in model theory and algebraic geometry. In
the latter the notion under the same name has been used by A.Weil, namely,
ifK is an algebraically closed field and ā a tuple in an extensionK ′ ofK, then
a mapping K[ā] → K is called a specialization if it preserves all equations
with coefficients in K.
In the same setting a specialisation is often called a place and is closely re-
lated to valuations of K ′ with residue field K.

The model-theoretic source of the notion is A.Robinson’s standard-part map
from an elementary extension of R (or C) onto the compactification of the
structure. More involved and very essential way the concept emerges in model
theory is in the context of atomic compactness introduced by J. Mycielski
[My] and studied by B. Weglorz[We] and others.

A structure M is said to be atomic (positive) compact if any finitely
consistent set of atomic (positive) formulas is realised in M.

Theorem 3.1 (B. Weglorz) The following are equivalent for any structure
M :
(i) M is atomic compact;
(ii) M is positive compact;
(iii) M is a retract of any M ′ �M, i.e. there is a homomorphism
π : M ′ →M, fixing M pointwise,

We assume in this section that M is just a topological structure.
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Definition 3.2 Let ∗M �M be an elementary extension of M and M ⊆
A ⊆ ∗M. A map π : A → M will be called a (partial) specialisation, if
for every a from A and an n-ary M -closed S, if a ∈ S(∗M) then π(a) ∈ S.

Remark 3.3 By the definition a specialisation is an identity on M, since
any singleton {s} is closed.

Definition 3.4 A topological structure M will be called quasi-compact
(or just compact) if it is complete, that is satisfies (P) and

(QC) For any finitely consistent family {Ct : t ∈ T} of closed subsets of Mn

⋂

t∈T

Ct is non-empty.

By (DCC), every complete Zariski structure is quasi-compact.

Proposition 3.5 Suppose M is a quasi-compact structure, M ∗ �M. Then
there is a specialisation π : M ∗ → M. Moreover, any partial specialisation
can be extended to a total one.

Proposition 3.6 Let M be a topological structure and suppose that the topol-
ogy is compact and Hausdorff. Then there is unique specialisation π : ∗M →
M.

3.1 Universal specialisations

Definition 3.7 For a (partial) specialisation π : M ∗ → M , we say that the
pair (M ∗, π) is universal (over M) if
for any M ′ �M ∗ �M , any finite subset A ⊂ M ′ and a specialisation π′ :
A∪M ∗ →M extending π, there is an elementary isomorphism α : A→M ∗,
over M ∪ (A ∩M ∗), such that

π′ = π ◦ α on A.
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Proposition 3.8 For any structureM there exists an universal pair (M ∗, π).
If M is quasi-compact, then π is total.

3.2 Infinitesimal neighborhoods

Definition 3.9 For a point a ∈ Mn we call an infinitesimal neighbor-
hood of a the subset in (M ∗)n given as

Va = π−1(a).

Clearly then, for a, b ∈M we have V(a,b) = Va × Vb.

Definition 3.10 Given b ∈Mn denote the n-type over M ∗ :

Nbdb(y) = {¬Q(c′, y) : M |= ¬Q(c, b), Q is closed, 0-definable, c′ ∈ Vc, c ∈Mk}.

As usual Nbdb(M
∗) will stand for the set of realisations of the type in M ∗

and Dom π the domain of π in M ∗.

Lemma 3.11 (i)
Vb = Nbdb(

∗M) ∩ Dom π.

(ii) Given a finite a′ in ∗M and a quantifier-free type F (a′, y) over Ma′, there
exists b′ ∈ Vb satisfying F (a′, b′) provided the type

Nbdb(y) ∪ {F (a′, y)}

is consistent.

Example 3.12 (Topological and Zariski groups ) Let G be a topolog-
ical structure with a basic ternary relation P defining a group structure on
G with the operation

x · y = z ≡ P (x, y, z).

Suppose that G is compact. Consider ∗G � G, a universal specialisation
π : G∗ → G and the infinitesimal neighborhood V ⊆G∗ of the unit. Then V
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is a nontrivial normal subgroup of G∗.

Let M be a complete Zariski structure and G⊆ open Mn. Take a universal
total specialisation

π : ∗M →M.

Then V ∩G(∗M) is an infinitesimal subgroup of G(∗M).

Problem Algebraicity conjecture for simple Zariski groups G (without pres-
moothness) is not known.
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3.3 Non-standard analysis in Zariski geometries

Definition 3.13 Assume F ⊆ D ×M k is irreducible closed in D×M k and
pr(F ) = D. We say then F is an (irreducible) cover of D.
Let F be a cover of D and assume that dimF (a′, y) = r for generic a′ ∈ D
(we call it the dimension of a generic fiber). a ∈ D will be called regular
for F if dimF (a, y) = r. The set of points regular for F will be denoted
reg(F/D).
The cover is said to be (generically) finite if r = 0, that is generic fibers
are finite.

Lemma 3.14 dim(D \ reg(F/D)) ≤ dimD − 2.

Proof. The set {〈a, b〉 ∈ F : a ∈ (D \ reg(F/D))} is a proper closed subset
of F. Thus the estimate follows from (SI) and (AF).�

Corollary 3.15 Suppose F is a cover of an irreducible D, dimD = 1. Then
every a ∈ D is regular.

Theorem 3.16 (Implicit Function Theorem) Let F ⊆ D × M k be an
irreducible cover of a presmooth set D, 〈a, b〉 ∈ F and assume that a ∈ D is
regular for F. Then for every a′ ∈ Va ∩D(∗M) there exists b′ ∈ Vb, such that
〈a′, b′〉 ∈ F (∗M).
If the cover is finite then a′ 7→ b′ is a function Va → Vb.

4 Multiplicities

Lemma 4.1 Let F ⊆ D ×M k be an irreducible finite cover of D in a, D
presmooth. If F (a, b) and a′ ∈ Va ∩D(∗M) is generic in D then

#(F (a′, ∗M) ∩ Vb) ≥ #(F (a′′, ∗M) ∩ Vb), for all a′′∈Va ∩D(∗M)
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Definition 4.2 Let 〈a, b〉 ∈ F and F be a finite covering of D in 〈a, b〉.
Define

multb(a, F/D) = #F (a′, ∗Mk) ∩ Vb, for a′ ∈ Va generic in D over M.

By Lemma 4.1, this is a well-defined notion, independent on the choice of
generic a′. Moreover, the proof of Lemma 4.1 contains also the proof of the
following

Lemma 4.3 m ≥ multb(a, F/D) iff there is an irreducible cover F (m) ⊆
D ×Mmk of D, finite at a, such that for any generic a′ ∈ Va ∩D(∗M) there
are distinct b′1, . . . , b

′
m ∈ Vb with 〈a′, b′1, . . . , b

′
m〉 ∈ F (m).

Call a finite covering unramified at 〈a, b〉 if multb(a, F/D) = 1 and let

unr(F/D) = {〈a, b〉 ∈ F : multb(a, F/D) = 1}.

Let
mult(a, F/D) =

∑

b∈F (a,Mk)

multb(a, F/D).

Proposition 4.4 (Multiplicity Properties) Suppose D is pre-smooth.
Then
(i) the definitions above do not depend on the choice of M ∗ and π;
(ii)

mult(a, F/D) = #F (a′,M∗k)

for a′ ∈ D(M ∗) generic over M (not necessarily in Va) and the number does
not depend on the choice of a in D;
(iii) the set

jm(F/D) = {〈a, b〉 : a ∈ reg(F/D) & multb(a, F/D) ≥ m}

is definable and relatively closed in the set reg(F/D) ×M k. Moreover, there
is m such that for every a ∈ reg(F/D) we have multb(a, F/D) ≤ m.

(iv) unr(F/D) is open in F and the set

D1 = {a ∈ reg(F/D) : ∀b(F (a, b) → 〈a, b〉 ∈ unr(F/D))}

is dense in D.
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5 Elements of intersection theory.

Definition 5.1 Let P and L be constructible irreducible sets in M and
I ⊆ P × L be closed in P × L and irreducible, pr2I = L. We call such an I
a family of closed subsets of P. One can think of l ∈ L as the parameter
for a closed subset {p ∈ P : pIl}.

Any l ∈ L identifies a subset of those points of P, that are incident to l,
though we allow two distinct l′s of L represent the same set.
As a rule we write simply p ∈ l instead of pIl, thus the mentioning of I is
omitted and we simply refer to L as a family of closed subsets of P.

Definition 5.2 Let L1 and L2 be irreducible families of closed subsets of an
irreducible set P . In this situation for p ∈ P and l1 ∈ L1, l2 ∈ L2 define the
index of intersection of the two sets at the point p with respect to
L1, L2 as

indp(l1, l2/L1, L2) = #l′1 ∩ l
′
2 ∩ Vp,

where 〈l′1, l
′
2〉 ∈ Vl1,l2 ∩ L1(

∗M) × L2(
∗M) is generic over M.

Definition 5.3 The index of intersection of the two families as above is

ind(L1, L2) = #(l′1 ∩ l
′
2)

where 〈l′1, l
′
2〉 ∈ L1(

∗M) × L2(
∗M) is generic over M.

Proposition 5.4 Assume L1 × L2 and P × L1 × L2 are pre-smooth, irre-
ducible and for some generic 〈l1, l2〉 ∈ L1×L2 the intersection l1∩ l2 is finite.
Then

(i) the definition of the index at a point does not depend on the choice of ∗M,
π and generic l′1, l

′
2;

(ii)
∑

p∈l1∩l2

indp(l1, l2/L1, L2) = ind(L1, L2);
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(iii) for generic 〈l1, l2〉 ∈ L1 × L2 and p ∈ l1 ∩ l2

indp(l1, l2/L1, L2) = 1;

(iv) the set

{〈p, l1, l2〉 ∈ P × L1 × L2 : indp(l1, l2/L1, L2) ≥ k}

is closed.

Proof. This is contained in the properties of multiplicities for finite cover-
ings, since F = {〈p, l1, l2〉 : p ∈ l1&p ∈ l2&l1 ∈ L1&l2 ∈ L2} is a covering
(maybe reducible) of L1 ×L2. To apply Proposition 4.4 notice that any com-
ponent Fi of F is of the same dimension, hence the projection of Fi on L1×L2

is dense in L1 × L2 and Fi is finite in 〈p, l1, l2〉. Evidently,

indp(l1, l2/L1, L2) =
∑

i

multp(〈l1, l2〉, Fi/L1 × L2).

�

Remark 5.5 The Proposition effectively states that closed subsets from the
same presmooth family are numerically equivalent (see [Ha]).

Problem Develop a theory of intersection and of numerical equivalence of
closed sets in presmooth Zariski structures.

Definition 5.6 Suppose for some 〈l1, l2〉 ∈ L1 × L2 l1 ∩ l2 is finite. Two
closed sets l1, l2 from families L1, L2, respectively are called simply tangent
at the point p with respect to L1, L2 if there is an infinite irreducible
component of l1 ∩ l2, containing p or

indp(l1, l2/L1, L2) ≥ 2.
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6 Curves and their branches (very technical

section)

We assume here that C is an one-dimensional irreducible presmooth Zariski
set in a Zariski structure M.
We also assume that the Zariski structure on C is non-linear (equivalently,
non-locally modular). It is equivalent that the Zariski geometry on C is am-
ple:

(AMP) There is a 2-dimensional irreducible faithful family L of curves on
C2.
L itself is locally (infinitesimally) isomorphic to an open subset of C2.

Definition 6.1 Let 〈a, b〉 be a point in C2. A subset γ⊆V〈a,b〉 is said to be
a branch of a curve at 〈a, b〉 if there are m ≥ 2, c ∈ Cm−2, an irreducible
smooth family G of curves through 〈a, b〉_c with an incidence relation I and
a curve g ∈ G such that the cover I of G× C,

〈u, 〈x, y〉_z〉 7→ 〈u, x〉,

is regular (hence finite) and unramified at 〈g, 〈a, b〉_c〉, and

γ = {〈x, y〉 ∈ V〈a,b〉 : ∃z ∈ Vc 〈g
′, 〈x, y〉_z〉 ∈ I}

for a g′ ∈ Vg ∩G(M ∗).

The definition assumes that g′ represents a possibly ’nonstandard’ curve in
the neighborhood of g passing through a standard point 〈a, b〉_c. We usuall
denote γ by g̃′.

It follows from the definition and Proposition 3.16 that g̃′ is a graph of a
function from Va onto Vb. We call the corresponding object the associated
(local) function g̃ : Va → Vb (from a to b ) from a family G with
trajectory c.
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Definition 6.2 Let I1 and I2 be two families of local functions from a to b,
with trajectories c1 and c2.We say that the correspondent branches defined
by g1 ∈ G1 and g2 ∈ G2 are tangent at 〈a, b〉, and write

g1 T g2,

if there is an irreducible component S = S(I1,I2,a,b,c1,c2) of the set

{〈u1, u2, x, y, z1, z2〉 ∈ G1 ×G2 × C2 × Cm1−2 × Cm2−2 :
〈u1, x, y, z1〉 ∈ I1 & 〈u2, x, y, z2〉 ∈ I2}

(1)

such that

1. 〈g1, g2, a, b, c1, c2〉 ∈ S;

2. the image of the natural projections of S into G1 ×G2

〈u1, u2, x, y, z1, z2〉 7→ 〈u1, u2〉

is dense in G1 ×G2.

3. for i = 1 and i = 2 the images of the maps

〈u1, u2, x, y, z1, z2〉 7→ 〈x, y, zi, ui〉

are dense in Ii and the corresponding covers by S are regular at the
points 〈a, b, ci, gi〉.

Remark 6.3 Once I1, I2, a, b, c1, c2 have been fixed one has finitely many
choices for the irreducible component S.

Remark 6.4 We can write item 3 as a first-order formula

〈a, b, ci, gi〉 ∈ reg(S/Ii).

Corollary 6.5 The formula

T :=
⋃

S

S(u1, u2, a, b, c1, c2) & 〈a, b, c1, u1〉 ∈ reg(S/I1) & 〈a, b, c2, u2〉 ∈ reg(S/I2)

(with parameters a, b, c1, c2) defines the tangency relation between u1 ∈ G1

and u2 ∈ G2.
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7 Getting a group and a field

The following is crucial.

Proposition 7.1 (Jets of curves) The tangency relation is generically a
definable equivalence relation on the families of branches of curves passing
through a given point 〈a, b〉 ∈ C2.
The set J of jets (classes under the equivalence) of curves through 〈a, a〉 ∈ C 2

is a presmooth Zariski curve and has a definable pre-group structure induced
by the composition of the associated local functions.

In a standard way one derives from this

Lemma 7.2 There is an irreducible presmooth one-dimensional Abelian group
G definable in C, moreover G is locally isomorphic to C and the group oper-
ation is Zariski continuous.

One can now assume that C itself has a group structure (C,+) and consider
curves passing through 〈0, 0〉. It turns out that the associated local functions
are preserving the additive structure on C, modulo tangency. This leads to
the following

Proposition 7.3 There is an irreducible presmooth one-dimensional K in
C with a field structure on it.
The field operations on K are Zariski continuous.

8 Intersection theory in projective spaces over

K and the Purity Theorem

We study first how algebraic curves in P2(K) intersect with general curves.

Ld stands for the family of algebraic curves on P2(K), so curves from L1 are
called straight lines.
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Lemma 8.1 Let c be a general irreducible curve. There is a finite subset cs

of c such that for any d > 0 and any line l ∈ Ld tangent to c at a point
p ∈ c \ cs there is a straight line lp ∈ L1 which is tangent to both l and c.

Proof. (Assuming P2(K) is complete). By definition of tangency there are
distinct points p′, p′′ ∈ Vp ∩ l

′
1 ∩ l

′
2 for generic l′ ∈ Ld ∩ Vl. Obviously, 〈p′, p′′〉

is generic in c × c. Take now the straight line l′ passing through p′, p′′. Set
lp = π(l′).�

Lemma 8.2 Let l1 + · · · + ld denote a curve of degree d, which is a union
of d distinct straight lines with no three of them passing through a common
point. Then a straight line l is tangent to l1 + · · · + ld with respect to L1, Ld

iff it coincides with one of the lines l1, . . . , ld.

Proof. If l is tangent to l1 + · · ·+ ld, then they intersect in less than d points
or have an infinite intersection. In our case only the latter is possible. �

Definition 8.3 For a family L of curves call degree of curves of L the
number

deg(L) = ind(L,L1),

that is the number of points in the intersection of a generic member of L
with a generic straight line.

For a single curve c we write deg∗(c) for deg({c}), that is for the number of
points in the intesection of c with a generic straight line.

Theorem 8.4 (The generalised Bezout theorem) For any curve c on
P2(K)

ind({c}, Ld) = d · deg∗ c,

in particular, for an algebraic curve a

#c ∩ a ≤ deg∗ c · deg a.
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Proof. Assume a ∈ Ld and take l1 + · · ·+ ld as above such that none of the
straght lines is tangent to c.
Claim. c and l1 + · · · + ld are not tangent.
By 8.1 the tangency would imply that there is an l tangent to c and tangent
to l1 + · · · + ld. Lemma 8.2 says this not the case.
The claim implies that the intersection indices of the curves c and l1 + · · · + ld
are equal to 1 for any point in the intersection, so by formula 5.4(ii)

ind({c}, Ld) = #c ∩ (l1 + · · · + ld) = d · deg∗ c.

On the other hand
#c ∩ a ≤ ind({c}, Ld)

since point multiplicities are minimal for generic intersections, by 5.4(iii). �

Lemma 8.5 If a curve c is a subset of an algebraic curve a, then c is alge-
braic.

Theorem 8.6 (The generalised Chow theorem) Any closed subset of Pn

is an algebraic subvariety of Pn.

Proof. (For n = 2.) Let c be a closed subset of P2. W.l.o.g. we may assume c
is an irreducible curve. Let q = deg∗ c. Now choose d such that (d−1)/2 > q.
Fix a subset X of c, containing exactly d · q + 1 points. Then by dimension
considerations there is a curve a ∈ Ld containing X. By the generalised Be-
zout Theorem #(c∩a) ≤ d · q or the intersection is infinite. Since the former
is excluded by construction, c has an infinite intersection with the algebraic
curve a. Thus c coincides with an irreducible component of a, which is also
algebraic by Lemma 8.5.�

Theorem 8.7 (The purity theorem) Any relation R induced on K from
M is definable in the natural language and so is constructible.
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Proof. By elimination of quantifiers for Zariski structures it suffices to prove
the statement for closed R⊆Kn. Consider the canonical (algebraic) embed-
ding of Kn into Pn and the closure R̄⊆Pm of R. By the generalised Chow
theorem R̄ is an algebraic subset of Pn. But R = R̄ ∩Kn.�

9 Main Theorem

Theorem 9.1 (Main Theorem) Let M be a a Zariski structure satisfying
(EU) and C a presmooth Zariski curve in M. Assume that C is non-linear
(equivalently C is ample in the sense of section 6). Then there is a noncon-
stant continuous map

f : C → P1(K).

Moreover, f is a finite map (f−1(x) is finite for every x ∈ C), and for any
n, for any definable subset S⊆Cn, the image f(S) is a constructible subset
(in the sense of algebraic geometry) of [P1(K)]n.

Proof. This is an easy corollary of theorems in the previous sections. �

Definition 9.2 For a given Zariski set N and a fieldK a continuous function
g : N → K with the domain containing an open subset of N will be called
Z-meromorphic on N .

Notice that the sum and the product of two meromorphic functions on N
are Z-meromorphic. Moreover, if g is Z-meromorphic and nonzero then 1/g
is a meromorphic function. In other words the set of meromorphic functions
on N forms a field.

We denote KZ(N) the field of Z-meromorphic functions on N.

Remark 9.3 Notice that if the characteristic of K is p > 0 then with any Z-
meromorphic function f one can associate distinct Z-meromorphic functions
φn ◦ f, n ∈ Z, where φ is the Frobenious automorphism of the field x 7→ xp.
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More refined version of the main theorem is the following.

Proposition 9.4 Under the assumptions of 9.1 there exists a smooth alge-
braic curve X over K and a Zariski epimorphism

ψ : C → X

with the universality property: for any algebraic curve Y over K and a Zariski
epimorphism τ : C → Y there exists a Zariski epimorphism σ : X → Y such
that σ ◦ τ = ψ.
The field K(X) of rational functions is isomorphic over K to a subfield of
KZ(C) and KZ(C) is equal to the unseparable closure of the field K(X).

Remark 9.5 In general τ is not a bijection, that is C is not isomorphic to
an algebraic curve.

The main theorem is crucial to prove the Algebraicity Conjecture for groups
definable in presmooth Zariski structures.

Theorem 9.6 (Algebraicity of groups) Let G be a simple Zariski group
satisfying (EU) and such that some one-dimensional irreducible Z-subset C
in G is presmooth. Then G is Zariski isomorphic to an algebraic group Ĝ(K),
for some algebraically closed field K.

Proof. We start with a general statement.
Claim 1. Let G be a simple group of finite Morley rank. Then Th(G) is
categorical in uncountable cardinals (in the language of groups). Moreover,
G is almost strongly minimal.
This is a direct consequence of the Indecomposability Theorem on finite
Morley rank groups.
Claim 2. Given a strongly minimal set C definable in G, there is a a definable
relation F ⊆G×Cm, m = rkG, establishing a finite-to-finite correspondence
between a subset R⊆G and a subset D⊆Cm such that dim(G\R) < m and
dim(Cm \D) < m.
This is a consequence of the proof of the above statement.
Claim 3. For G as in the condition of the theorem, there exists a a noncon-
stant meromorphic function G→ K.
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To prove the claim first notice that C in Claim 2 can be replaced by K
because there is a finite-to-finite correspondence between the two. Now apply
the argument with symmetric functions as in the proof of the Claim in Main
Theorem. This proves the present claim.
Now consider the field the field KZ(G) of meromorphic functions G → K.
Each g ∈ G acts on KZ(G) by f(x) 7→ f(g · x). This gives a representation
of G as the group of automorphisms of KZ(G). This action can also be seen
as the K-linear action on the K-vector space KZ(G). As is standard in the
theory of algebraic groups (Rosenlicht’s Theorem) using the Purity Theo-
rem one can see that there is a G-invariant finite dimensional K-subspace
V of KZ(G). Hence G can be represented as a definable subsgroup Ĝ(K) of
GL(V ), and by the Purity Theorem again this subgroup is algebraic. This
representation is an isomorphism since G is simple.�

Notice that presmoothness is paramount for this proof. In the case of Zariski
groups without presmoothness (which, of course, still are of finite Morley
rank by Theorem 2.7) the Algebraicity Conjecture remains open.
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Lectures on Zariski-type structures
Part II

10 Analytic Zariski structures

(Based on joint works and discussions with N.Peatfield, L.Smith, A.Hasson,
M.Gavrilovich and J.Kirby)

We introduce analytic-Zariski structures as (non-Noetherian) topological struc-
tures with good dimension notion, that is the fiber condition (FC) and the
addition formula (AF) hold in the same form as in section 1.

We change the condition of semi-properness (SP) to a more general form
consistent with its previous use.

We also generalise (DU), (SI) and (EU) and add an important assumption
(AS), the analytic stratification of closed sets.

The intersection of a family of basic closed sets is called closed. The union
of a family of basic open sets is called open.

Warning. Closed and open in general are not first-order definable.

We write U⊆ opM
n to say that U is open in Mn and S⊆ clM

n to say ’closed’.

Dimension.

To any nonempty definable S a non-negative integer called the dimension
of S, dimS, is attached.
In addition to (DP) we assume also.

(CU) countable unions If S =
⋃

i∈N Si then dimS = maxi∈N dimSi;
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(WP) (weak properness). Let D⊆ clU⊆ opM
n, F ⊆ clD× V, V ⊆ opM

k and
pr : D × V → D be the projection map.
Suppose dim pr(F ) = dimD. Then there are closed subsets D1, D2 ⊆cl D
such that D1 \D2⊆pr(F ) and dim(D1 \D2) = dimD.

Obviously, (SP) implies (WP).

Exercise 10.1 Show that (CU) in the presence of (DCC) implies both (DU)
and (EU) of section 1.

Irreducibility.

Definition 10.2 A definable set S⊆Mn is said to be strongly irreducible
if, for every S ′ ( S, closed in S, we have dimS ′ < dimS.

Remark 10.3 For Zariski structures we postulated by (SI) that irreduciblity
is equivalent to strong irreducibility. Now this is true for analytic sets only (
see below).

We postulate as before for S closed in an open set and strongly irreducible:

(AF)
dim pr(S) = dimS − min

u∈pr(S)
dim(pr−1(u) ∩ S);

(FC)
{a ∈ pr(S) : dim pr−1(a) ∩ S ≥ k}

is closed in pr(S).

Analytic subsets.

Definition 10.4 A subset S⊆U⊆ opM
n of an open set is called analytic in

U if S is closed in U and for every a ∈ S there is an open Va⊆ opU such that
S ∩ Va can be decomposed into finitely many strongly irreducible subsets.
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We postulate the following properties

(INT) (Intersections) If S1, S2 ⊆an U are irreducible then S1 ∩ S2 is analytic
in U ;

(CMP) (Components) If S ⊆ anU and a ∈ S then there is Sa ⊆ anU, a finite
union of irreducible analytic subsets of U, and some S ′

a⊆anU such that
a ∈ Sa \ S

′
a and S = Sa ∪ S

′
a;

Each of the irreducible sets whose union is Sa above is called an irre-
ducible component of S containing a.

(CC) (Countability of the number of components) Any S ⊆an U is the union
of at most countably many irreducible components.

Exercise 10.5 For S analytic and a ∈ pr(S), the fiber S(a,M) is analytic.

Exercise 10.6 If S ⊆an U is irreducible, V open, then S∩V is an irreducible
analytic subset of V and, if non-empty, dimS ∩ V = dimS.

Exercise 10.7 (i) ∅, any singleton and U are analytic in U ;

(ii) If S1, S2 ⊆an U then S1 ∪ S2 is analytic in U ;

(iii) If S1 ⊆an U1 and S2 ⊆an U2, then S1 × S2 is analytic in U1 × U2;

(iv) If S ⊆an U and V ⊆U is open then S ∩ V ⊆an V ;

(v) If S1, S2 ⊆an U then S1 ∩ S2 is analytic in U.
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Definition 10.8 Given a subset S⊆ clU⊆ op M
n we define the notion of the

analytic rank of S in U, arkU (S), which is a natural number satisfying

1. arkU (S) = 0 iff S = ∅;

2. arkU (S) ≤ k + 1 iff there is a set S ′⊆ cl S such that arkU (S ′) ≤ k and
with the set S0 = S \ S ′ being analytic in U \ S ′.

The next assumptions guarantees that the class of analytic subsets explicitly
determines the class of closed subsets in .

(AS) [Analytic stratification] Any closed subset S⊆Mn is of finite ana-
lytic rank.

Obviously, any nonempty analytic subset of U has analytic rank 1.

Example 10.9 Let F ⊆C2 be a graph of an entire analytic function and F̄
its closure in [P1(C)]2. It follows from Picar’s Theorem that

F̄ = F ∪ ({∞} × P1(C)),

in particular F̄ has analytic rank 2.

Generalised analytic sets are defined as the subsets of [P1(C)]n for all n,
obtained from classical (algebraic) Zariski closed subsets of [P1(C)]n and F̄
by applying the positive operations: cartesian products, finite intersections,
unions and projections.
This definition and the following theorem are valid for an arbitrary alge-
braically closed complete valued field instead of C.

Theorem (1996) Any generalised analytic set in an algebraically closed com-
plete valued field is of finite analytic rank.

So, the prototype of closed sets are the generalised analytic sets.

A topological structure with good dimension satisfying axioms (INT)-(AS)
will be called an analytic Zariski structure.
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We also are going to use the following special properties.

(PS) Presmoothness If S1, S2 ⊆an U ⊆ opM
n both S1, S2 irreducible, then

for any irreducible component S0 of S1 ∩ S2

dimS0 ≥ dimS1 + dimS2 − dimU.

(MLT) Multiplicities
Let S ⊆an U × V, U⊆ opM

k, V ⊆ opM
m, (a, b) ∈ S and suppose S is given by

a relation S(u, v) such that all the fibers of the natural projection (u, v) 7→ v
restricted to S are of dimension 0. Then there exist open subsets U0 ⊆ U,
V0 ⊆ V and an µ ∈ N such that (a, b) ∈ U0 × V0 and if S(µ) is the analytic
subset of U0 ×V µ

0 given by S(u, v1)& . . .&S(u, vµ), (a′, b′1, . . . , b
′
µ) ∈ S(µ) then

b′i = b′j for some i < j ≤ µ.

Notice that (MLT) is automatic for Noetherian presmooth Zariski structures,
see section 4.

11 Compact analytic Zariski structures

We assume in this section that M is compact, that is projections of closed
sets are closed (P) and any finitely consistent family of closed sets has a
nonempty intersection (QC).

The following theorem from a joint paper with N.Peatfield is an abstract
analogue of theorems about complex and rigid analytic manifolds.

Theorem 11.1 Let (M, C) be a compact analytic Zariski structure and C0 be
the subfamily of C consisting of subsets analytic in Mn, all n. Then (M, C0)
is a (Noetherian) Zariski structure.
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12 Non-elementary model theory of analytic

Zariski structures

We discuss a QE issues in this section. Presmoothness is not assumed.

Definition 12.1 We call a countable structure M0 with a countable family
C0 of basic relations skeletal in (M, C) if

1. M0⊆M, C0⊆C, (M0, C0) ≺ (M, C0);

2. (M0, C0) is a topological structure with dimension induced from M and
satisfies analytic stratification (AS);

3. for any S ⊆an U ⊆op M
n such that S is M0-definable, every irreducible

irreducible component Si of S is M0-definable.

Exercise 12.2 Given a countable C0 ⊆ C, there exists a countable skeletal
(M0, C0) such that C0⊆C0.

We fix below a countable skeletal (M0, C0).

Definition 12.3 For finite X⊆M we define the C0-predimension

δ(X) = min{dimS : X ∈ S, S ⊆an U ⊆op M
n, S is C0-definable}

and dimension
∂(X) = min{δ(XY ) : Y ⊆M}.

For X ⊆M finite, we say that X is self-sufficient and write X ≤ M, if
∂(X) = δ(X).

Definition 12.4 A subset P ⊆Mn will be called projective if P = pr(S),
for some S ⊆an U ⊆op M

n+k, pr : Mn+k →Mn.

We work now under assumption that dimM = 1 and M is irreducible.

Lemma 12.5 Given a projective M0-definable P ⊆Mn,

dimP = max{∂(x) : x ∈ P (M)}.
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Lemma 12.6 Suppose X ≤ M, X ′ ≤ M and the quantifier-free M0-type of
X is equal to that of X ′. Then

X ≡ω1,ω X
′.

Proof. We show that for any Y such that XY ≤ M there is Y ′ with
X ′Y ′ ≤ M and XY ≡q−free X

′Y ′. This wins the Ehrenfeucht-Fráisse game
for X ≡ X ′.�

Definition 12.7 For x ∈Mn, the projective type of x over M is

{P : x ∈ P (M), P is a projective set over M0}∪

∪{¬P : x /∈ P (M), P is a projective set over M0}.

Lemma 12.8 Suppose, for finite X,X ′ ⊆M, the projective M0-types of X
and X ′ coincide. Then

X ≡ω1,ω X
′.

Proof. We can extend X⊆X̃ ≤M and X ′⊆X̃ ′ ≤M so that

X̃ ≡q−free X̃
′.

Now apply the Lemma above.

Corollary 12.9 (Non-elementary near model completeness.) EveryM0-
Lω1,ω-type realised in M is equivalent to a projective type.
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13 Non-standard analysis in analytic Zariski

structures

We study here universal specialisations π : ∗M → M from an elementary
extension ∗M �M onto an analytic Zariski structure M.

Important change in the definition. It is useful to restrict the choice of
possible ∗M to the ones that preserve (countable) irreducible decompositions.
So, in particular, for a descrete (that is dimension 0) analytic S, we will have

S(∗M) = S(M).

Proposition 13.1 Let D ⊆an U⊆ opM
m be a presmooth irreducible set and

F ⊆an D × V be a finite cover of D, V ⊆ opM
k, a ∈ D.

Then, for every a′ ∈ Va ∩D(∗M) there exists b′ ∈ Vb, such that 〈a′, b′〉 ∈ F.

Corollary 13.2 The Implicit Function Theorem holds in presmooth analytic
Zariski structures.

Corollary 13.3 Let G be a presmooth analytic Zariski group, ∗G � G and
π : ∗G → G a universal specialisation. Then the infinitesimal neighborhood
V of the unit of the group is a subgroup of ∗G.
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14 Analytic Zariski structures. Examples

14.1 Easy examples.

Simplified exponentiation

Let (V, exp, F ) be the two-sorted structure with

V = (C,+), F = (C,+, ·), exp : V → F.

Theorem 14.1 The first order theory of (V, exp, F ) allows quantifier-elimination
in the natural language and is superstable.
(V, exp, F ) is presmooth analytic Zariski, all closed sets are analytic.

(V, exp, F ) is not compact and not complete.

Problem Describe possible completions and compactifications of

(V n, exp, (F×)n)

such that V gets a linear completion C(V n) and the map exp extends to

C(V n) → C(F×)n).

This problem leads to toric geometry and corresponding combinatorics of
cones and fans.

Because of weak elimination of imaginaries in linear structures “cones-fans”
method is almost the only possible way of completing (V n, exp, (F×)n).

Theorem 14.2 (L.Smith) The completion is presmooth if and only if the
corresponding fan is simplicial. In particular, the corresponding mirror orb-
ifold (in sort F ) is presmooth.

Analytic tori
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We want to bring a reacher language into the class of complex tori, which
in the natural (Zariski) language of compact complex manifolds in generic
cases reduces to the language of commutative groups.

T = Cg/Λ

admits no (global) analytic subsets S⊆T k other than those definable in the
group structure, if Λ does not satisfy certain conditions.

Lemma 14.3 For any 2n-lattice Λ (with 2n generators) there is a n-sublattice
Λ0⊆Λ such that

Cg/Λ0
∼= (C×)g as complex manifolds

and, setting Ω = exp(Λ), one has

T ∼= (C×)g/Ω as complex manifolds.

In other words, T is the image under the holomorphic group homomorphism
p : (C×)g → T.

Similar construction makes sense in the context of rigid analytic geometry.
Namely, for an algebraically closed field K, complete with respect to a non-
Archimedean valuation, one considers a discrete subgroup Ω ⊂ (K×)g (with
respect to multiplication) of rank g and T = (K×)g/Ω.

Let K be an algebraically closed field, g ≥ 1 and Ω ⊂ Kg, a g-generators
free subgroup of the multiplicative group (K×)g. Let

T = (K×)g/Ω and p : (K×)g → T the canonical group homomorphism.

We write K̇ for the structure on K\{0} in the language with all the algebraic
Zariski closed relations as basic.
Let K̇Ω denote the expansion of K̇ by the g-ary predicate Ω for the subgroup.

Theorem 14.4 (i) The theory of K̇Ω is near model complete (every definable
subset is the Boolean combination of projections of quantifier-free).
(ii) The theory of K̇Ω is superstable.
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(iii) Any definable subset of Ωk is a coset of a subgroup Γ of the form

Γ = Ωk ∩ Tor, Tor an algebraic subgroup of K̇gk.

(iv) K̇Ω is a presmooth analytic Zariski structure.

Proof. Use the Lang property of Ω in K̇.�

Obviously K̇Ω is definably equivalent to the two-sorted structure
(

K̇, p, T
)

.

Theorem 14.5
(

K̇, p, T
)

is presmooth analytic Zariski in both sorts. It is

compact in sort T.

By the Implicit Function Theorem we have a nontrivial K-algebra of (in-
finitesimally local) functions

f : V0⊆
∗T → V0⊆

∗K.

15 Hard examples

Complex exponentiation and the pseudo-exponentiation

We want to endow the field structure (K,+, ·) with a new function ex so that

ex(x1 + x2) = ex(x1) · ex(x2)

and (K,+, ·, ex) is as stable as possible
Following Hrushovski’s method we introduce the predimension function, for
X⊆finK,

δ(X) = tr.degQ(X ∪ ex(X)) − lin.dimQ(X)

and postulate first requirement for ex
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δ(X) ≥ 0 all X.

The Hrushovski inequality, in the case of the complex numbers and ex = exp,
is equivalent to

tr.degQ(x1, . . . , xn, e
x1 , . . . , exn) ≥ n

assuming that x1, . . . , xn are linearly independent.
This is the Schanuel conjecture.

We then carry out Frásse amalgamation in the class of all structures Kex =
(K,+, ·, ex) satisfying

ker ex ∼= Z.

The resulting structures satisfy the Schanuel condition (Sch) and are exis-
tentially closed (EC) in the class.

Reminder. Hrushovski’s dimension

∂(X) := min{δ(XY ) : Y ⊆ finK}.

∂(Y/X) = ∂(X ∪ Y ) − ∂(X).

∂(y/X) = 0 is a dependence relation.

Theorem 15.1 (Categoricity) For any uncountable κ there exists unique
Kex with card, K = κ satisfying (Sch), (EC) and
(CCP), the countable closure property: for any X ⊆ finK there is at
most countably many y ∈ K dependent on X.

Proof. We use
(1) non-elementary model theory (Shelah’s excellent classes);
(2) Galois and Kummer’s theory;
(3) the theory of linearly disjoint extensions of fields.�
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Existential closedness (EC) is the condition:

Let Pa(x1, . . . xn, y1, . . . , yn) be an irreducible system of polynomials with co-
efficients ā and (x0

1, . . . x
0
n, y

0
1, . . . , y

0
n) its generic zero. Assume

(normality)
tr.degQa(x

0
i1
, . . . x0

im
, y0

i1
, . . . , y0

im
) ≥ m

for any distinct i1, . . . , im after any admissible transformation of variables

(freeness) x0
i /∈ aclQ(a) and y0

i /∈ aclQ(a) for all i after any admissible trans-
formation of variables.

Then there is a generic zero of Pa such that

y0
i = ex(x0

i ), i = 1, . . . , n.

Theorem 15.2 Assume Schanuel’s conjecture as well as (EC) holds for
Cexp. Then Cexp is isomorphic to the unique Kex of cardinality continuum.

Proposition 15.3 The normality and freeness of Pa is an algebraic (con-
structible) condition on ā.

Corollary 15.4 An uncountable Kex is a topological structure with good di-
mension satisfying semi-properness of projection condition.

Theorem 15.5 An uncountable field with pseudo-exponentiation is a pres-
mooth analytic Zariski structure.
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Lectures on Zariski-type structures
Part III

Elements of non-commutative Zariski geome-
try

16 Non-algebraic presmooth Noetherian Zariski

curve

Let G = Z act nontrivially on Z/4Z, and let G̃ be the semidirect product:
f, h are the generators of Z/4Z, Z, respectively,

f4 = 1; fh = hf−1 (2)

are the defining relations.
Notice, that h2 commutes with f, and hence, the centre Z(G) of G is gener-
ated by h2 and f 2, so has index 4 in G.
Fix a ∈ C, not a root of unity. We claim that there is a strongly minimal
double cover p : D → {C×} in the language containing the relations induced
by the field structure on C and unary operations f, h, defining a faithful
action of G̃ on D such that:
f, h respect the kernel of p (that is p(x) = p(x′) implies p(f(x)) = p(f(x′))
and p(h(x)) = p(h(x′)) and induce the (unfaithful) action on {C×} :

p(h(x)) = a2p(x), p(f(x)) = −p(x). (3)

The final example is a structure with the universe D and an equivalence re-
lation E given by the kernel of p on D;

f, h are operations, acting on D as described above;
for any Zariski-closed relation S on C× we have p−1(S) as a relation on D.

Call the relations introduced above closed and introduce the dimension no-
tion in D as induced from C by p.

Then using elimination of quantifiers one gets
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Proposition 16.1 D is an irreducible 1-dimensional presmooth Zariski struc-
ture. Its field of meromorphic functions is C(t), same as for the affine line
C.

Proposition 16.2 D is not definable in an algebraically closed field.

Proof. Suppose to the contrary that D is an algebraic curve.

Claim 1. D is algebraically irreducible.
Use the fact that G̃ is non-splitting.

Claim 2. D can not have a subgroup of regular automorphisms isomorphic
to G̃.�

Interpretation in the reals.
Denote

Q0 = {x ∈ C : Re(x) ≥ 0 & Im(x) > 0 ∨ Re(x) ≤ 0 & Im(x) < 0},

Q1 = iQ0,

D = Q0 ∪Q1

p(x) = x2, f(x) = ix,

h(x) =

{

ax, if x ∈ Q0

−ax, if x ∈ Q1
(4)

Notice that f 4(x) = x, f(h(x)) = h(f−1(x)) for any x ∈ C and p(h(x)) =
a2p(x), p(f(x)) = −p(x). It follows that the construction is isomorphic to
the Example above.

Coordinate algebra of D

Lemma 16.3 We can define

x : D → C and x̌ : D → C
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so that inside any orbit G̃ · e, e ∈ D, it agrees with f and h :

x(t) · x(t) = p(t) = x̌(t) · x̌(t)

x(f(t)) = ix(t), x̌(f(t)) = −ix̌(t)

x(h(t)) = ax̌(t), x̌(h(t)) = ax(t).

Let H be the C-algebra generated by x and x̌.
f and h act on H as linear operators

F : ψ 7→ ψ ◦ f,

H : ψ 7→ ψ ◦ h,

and so do
X : ψ 7→ x · ψ and X̌ : ψ 7→ x̌ · ψ.

We get an algebra A = A(D) of linear operators that reflects the structure
of D.

Lemma 16.4 The isomorphism type of A(D) does not depend on the con-
crete choice of x and x̌ as long as the defining relations above hold.

Define the sign function

sgn(t) :=
x̌(t)

x(t)
.

By defining relations the value of sgn(t) is either 1 or −1.
Set for λ ∈ C×,

sgn(λ) = sgn(t), if λ = p(t).

Lemma 16.5 The function

sgn : C → {−1, 1}

is well-defined and satisfies the properties

sgn(−λ) = −sgn(λ),

sgn(a2λ) = sgn(λ).
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Irreducible representations.
Every point t ∈ D gives rise to an irreducible representation, or an A-module
Mt. The operators f and h act naturally on

Mt
∼= Ms as A-modules iff p(t) = p(s).

So this is uninteresting (but recovers C×).

We choose a leading eigenvector in each Mt and define the orientation of Mt

to be 1 or −1 using sgn.

Proposition 16.6 The space D of irreducible modules of orientation 1 are
in a one-to-one correspondence with points of D. The operators f and h act
naturally on the space of modules preserving the orientation. D is isomorphic
to D as Zariski structures.

17 A generalisation. Quantum torus at the

root of unity.

Let ε ∈ K be a primitive root of unity of prime order n, K an algebraically
closed field.
We define the K-algebra Qn,

Qn = 〈U,U−1, V, V −1〉

as the algebra given by the generators and relations .

UU−1 = 1, V V −1 = 1,

Un = V n,

UV = εV U.

We consider the n-sign function

sgn : F → {1, ε, . . . , εn−1}
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satisfying, for a fixed α ∈ F,

sgn(ε · λ) = εsgn(λ),

sgn(αλ) = sgn(λ).

We consider the space Qn of all orientation 1 irreducible Qn-modules with
the action of natural operators from Qn on it.

Proposition 17.1 Qn is a 1-dimensional non-algebraic smooth Zariski struc-
ture covering the algebraic variety F×.
In particular,

Q2 = D

from the original example.

If we start with ’Manin’s quantum plane’

UV = εV U

then we have a non-algebraic covering of F × F.

18 Poizat’s bad field

Definition 18.1 A bad field is a structure (K,+, ·, G) with
MR(K) = N > 1 and G < K×, a multiplicative subgroup, MR(G) = 1.

Problem (197?) Do bad field exist?

Theorem (Baldwin and Holland, 2002) Yes, for each N > 1, if we drop the
requirement that G is a group.

Theorem ( B.Poizat, 2000) There exists an almost bad fields (K,+, ·, G)
with MR(K) = ω ×N and
G < K×, a multiplicative subgroup, MR(G) = ω.
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Proof. Use Hrushovski’s construction.

Problem. Explain these examples analytically.

Solutions, for N = 2 :

Take K = C.
Let h be an irrational real number and

G = {exp((1 + ih)t+ q) : t ∈ R, q ∈ Q}

Theorem 18.2 Assume Schanuel’s conjecture. Then (C,+, ·, G) is a model
of Poizat’s theory.

Let
G = {exp((1 + ih)t+m) : t ∈ R, m ∈ Z}

Theorem 18.3 Assume Schanuel’s conjecture. Then

1.Th(C,+, ·, G) is near model complete and superstable,

U(C) = ω · 2, U(G) = ω.

2. The spiral G0 = exp[(1 + ih)R] is type-definable in (C,+, ·, G) as the
connected component of G.

3. The field of reals is Lω1,ω-definable in (C,+, ·, G).

In terms of Hrushovski dimension

dim(C) = 2, dim(G) = 1

in this theory.
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Problem Is (C,+, ·, G) in a natural language an analytic Zariski structure?

Claim The structure

T 2
h := C×/G

in the induced language is a form of the non-commutative torus.

Definition 18.4 (A.Connes) The noncommutative (quantum) torus is

T 2
h = (S × S)/Fh

where

S ∼= {x ∈ C : |x| = 1}

and

Fh = {〈exp(it), exp(iht)〉 : t ∈ R}, the Kronecker foliation.

Indeed,
T 2

h := C×/G

G = G0 · Γ, Γ = exp(Z),

C×/Γ ∼= S × S topologically

the image of the spiral G0 in C×/Γ corresponds to Fh.

Problem Is C×/G in the induced language analytic Zariski? Compare it to
(S × S)/Fh.

Alternative representations of the quantum torus.
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Let E(C)⊆P2(C) be a (generic) elliptic curve. Let F ⊆E(C) be a Kronecker
foliation on E(C).

Feasible Theorem E(C) in the language of Zariski closed relations together
with F is near model complete and superstable. Hrushovski dimensions are

dimE = 2, dimF = 1.

Feasible corollary
E(C)/F

in the induced language is a representation of T 2
h .
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