
Analytic Zariski structures, predimensions and

non-elementary stability

Boris Zilber
University of Oxford

25 August 2008

The notion of an analytic Zariski structure was introduced in [1] by the
author and N.Peatfield in a form slightly different from the one presented
here. Analytic Zariski generalises the previously known notion of a Zariski
structure (see [2] for one-dimensional case and [3], [4] for the general defini-
tion) mainly by dropping the requirement of Noetherianity and weakening
the assumptions on the projections of closed sets. This leads to interesting
new phenomena, in particular, the family of closed-in-open subsets forms a
hierarchy which starts with analytic sets and continues by induction to more
complex ones, called in [5] generalised analytic sets (defined classically on the
complex numbers and in the context of rigid analytic geometry).

In [1] we assumed that the Zariski structure is compact (or compactifi-
able), here we drop this assumption, which may be too restrictive in appli-
cations.

The class of analytic Zariski structures is much broader and geometrically
more rich than the class of Noetherian Zariski structures. The main examples
come from two sources:

(i) structures which are constructed in terms of complex analytic functions
and relations;

(ii) “new stable structures” introduced by Hrushovski’s construction; in
many cases these objects exhibit properties similar to those of class (i).

Although there are concrete examples for both (i) and (ii), in many
cases we can only conjecturally identify a particular structure as an analytic
Zariski one. In particular despite some attempts the conjecture that Cexp

is analytic Zariski is still open (even assuming this is the same as pseudo-
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exponentiation).

Note that the results of [1] are valid in the present context, in particular,
if M is compact and C0 is the subfamily of closed sets S⊆Mn, all n, which
are analytic in Mn, then (M, C0) is a Noetherian Zariski structure. Hence,
by [3], (M, C0) has elimination of quantifiers and is of finite Morley rank.

The aim of this paper is to carry out a model-theoretic analysis of the
whole M = (M, C). We do it in the spirit of the theory of abstract elementary
classes. We start by introducing a suitable countable fragment of the family
of basic Zariski relations and a correspondent substructure of constants over
which all the further analysis is carried out. Then we proceed to the analysis
of the notion of dimension, already present in Zariski setting. We define a
more delicate notions of the predimension and dimension of a tuple in M.
In fact by doing this we reinterpret dimensions which are present in every
analytic structure in terms familiar to many from Hrushovski’s construction,
thus establishing once again conceptual links between classes (i) and (ii).

Our main results are proved under assumption that M is one-dimensional
(as an analytic Zariski structure) and irreducible. No assumption on pres-
moothness is needed. We prove for such an M, in the terminology closely
related to [6] and [7]:

1. M is quasi-minimal with regards to a closure operator cl associated
with the predimension;

2. M is homogeneous over countable submodels (see [6]) in the ∃-definable
expansion of the language;

3. there are at most countably many L∞,ω-types over any countable
submodel realised in M (ω-stability).

It is tempting to conjecture that submodels of M form an excellent quasi-
minimal class. The condition for this is the amalgamation over independent
submodels. This property is very difficult to prove in concrete cases (needs a
lot of concrete algebra) but on the other hand we do not know counterexam-
ples to this conjecture even in the present very general setting. We prove that
if the class is indeed excellent then we can uniquely lift M to any uncountable
cardinality.

I would like to remark that M.Gavrilovich in his DPhil thesis [8] proved
2 and 3 above for a very interesting class of actual complex analytic struc-
tures which includes universal covers of Abelian varieties. His method also
produces a natural countable language for each case and exhibits deep rela-
tions of the model-theoretic conditions assumed below with some facts and
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conjectures of complex geometry.
Finally I want to mention that some natural questions in this context are

widely open. In particular, we have no classification for presmooth analytic
Zariski groups (with the graph of multiplication analytic).

I want to express my thanks to Assaf Hasson who saw a very early version
of this work and made many useful comments.

1 Analytic Zariski structures

Let M = (M, C) a structure with primitives C. We assume that Mn, for all
n ≥ 1, is endowed with a topology and relations of C define the closed sub-
sets of the Mn’s. More precisely we assume for the primitives of the language:

(L)

1. arbitrary intersections of closed sets are closed;

2. finite unions of closed sets are closed;

3. the domain of the structure is closed;

4. the graph of equality is closed;

5. any singleton of the domain is closed;

6. Cartesian products of closed sets are closed;

7. the image of a closed S ⊆Mn under a permutation of coordinates is
closed;

8. for a ∈ Mk and S a closed subset of Mk+` defined by a predicate
S(x_y), x ∈ Mk, y ∈ M `, the fibre over a, S(a,M) := {y ∈ M ` :
a_y ∈ S}, is closed.

L6 needs some clarification. If S1 ⊆ Mn and S2 ⊆ Mm are closed the
assumption states that S1×S2 canonically identified with a subset of Mn+m

is closed in the latter.

Remark 1.1 Note that it follows that projections pri1,...,im : Mn → Mm

are continuous in the sense that the inverse image of a closed set under a
projection is closed. Indeed, pr−1S = S ×Mn−m.
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We write X ⊆op V to say that X is open in V and X ⊆cl V to say it is
closed.

We say that X ⊆Mn is C-constructible (usually omitting C) if X is a
finite union of some sets S, such that S ⊆cl U ⊆op Mn.

A subset P ⊆Mn will be called projective if P is a union of finitely
many sets of the form prS, for some S ⊆cl U ⊆op Mn+k, pr : Mn+k →Mn.

Note that any set S such that S ⊆cl U ⊆op Mn+k, is constructible, a
projection of a constructible set is projective and that any constructible set
is projective.

Dimension. To any nonempty projective S a non-negative integer called
the dimension of S, dimS, is attached.

We assume:

(SI) (strong irreducibility) for an irreducible set S ⊆cl U ⊆op Mn (that
is S is not a union of two proper closed subsets) and its closed subset S ′ ⊆cl S,

dimS ′ = dimS ⇒ S ′ = S;

(DP) (dimension of points) for a nonempty projective S, dimS = 0 if
and only if S is at most countable.

(CU) (countable unions) If S =
⋃
i∈N Si, all projective, then dimS =

maxi∈N dimSi;

(WP) (weak properness) given an irreducible S ⊆cl U ⊆op Mn and
F ⊆cl V ⊆op Mn+k with the projection pr : Mn+k →Mn such that prF ⊆S
and dim prF = dimS, there exists D ⊆op S such that D⊆prF.

Remark 1.2 (CU) in the presence of (DCC) implies the essential uncount-
ability property (EU) usually assumed for Noetherian Zariski structures.

We postulate further, for an irreducible S ⊆cl U ⊆op Mn+k :

(AF) dim prS = dimS −minu∈prS dim(pr −1(u) ∩ S);
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(FC) The set {a ∈ prS : dim(pr −1(a) ∩ S) ≥ m} is of the form T ∩ prS
for some constructible T, and there exists an open set V such that
V ∩ prS 6= ∅ and

min
a∈prS

dim(pr −1(a) ∩ S) = dim(pr −1(v) ∩ S), for any v ∈ V ∩ pr (S).

The following helps to understand the dimension of projective sets.

Lemma 1.3 Let P = prS⊆Mn, for S irreducible constructible, and U ⊆op
Mn with P ∩ U 6= ∅. Then

dimP ∩ U = dimP.

Proof. We can write P∩U = prS ′ = P ′, where S ′ = S∩pr −1U constructible
irreducible, dimS ′ = dimS by (SI). By (FC), there is V ⊆op Mn such that
for all c ∈ V ∩ P,

dim pr −1(c) ∩ S = min
a∈P

dim pr −1(a) ∩ S = dimS − dimP.

Note that pr −1U ∩ pr −1V ∩ S 6= ∅, since S is irreducible. Taking s ∈
pr −1U ∩ pr −1V ∩ S and c = pr s we get, using (AF) for S ′,

dim pr −1(c)∩S ′ = dim pr −1(c)∩S = min
a∈P ′

dim pr −1(a)∩S = dimS−dimP ′.

So, dimP ′ = dimP. �

Analytic subsets.

Definition 1.4 A subset S, S ⊆cl U ⊆op Mn, is called analytic in U if
for every a ∈ S there is an open Va ⊆op U such that S ∩ Va is the union of
finitely many closed in Va irreducible subsets.

We postulate the following properties

(INT) (Intersections) If S1, S2 ⊆an U are irreducible then S1∩S2 is analytic
in U ;
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(CMP) (Components) If S ⊆ anU and a ∈ S then there is Sa⊆ anU, a finite
union of irreducible analytic subsets of U, and some S ′a⊆anU such that
a ∈ Sa \ S ′a and S = Sa ∪ S ′a;

Each of the irreducible subsets of Sa above is called an irreducible
component of S containing a.

(CC) (Countability of the number of components) Any S ⊆an U is a
union of at most countably many irreducible components.

Remark 1.5 For S analytic and a ∈ prS, the fibre S(a,M) is analytic.

Lemma 1.6 If S ⊆an U is irreducible, V open, then S ∩ V is an irreducible
analytic subset of V and, if non-empty, dimS ∩ V = dimS.

Proof. Immediate.�

Lemma 1.7 (i) ∅, any singleton and U are analytic in U ;

(ii) If S1, S2 ⊆an U then S1 ∪ S2 is analytic in U ;

(iii) If S1 ⊆an U1 and S2 ⊆an U2, then S1 × S2 is analytic in U1 × U2;

(iv) If S ⊆an U and V ⊆U is open then S ∩ V ⊆an V ;

(v) If S1, S2 ⊆an U then S1 ∩ S2 is analytic in U.

Proof. Immediate. �

Definition 1.8 Given a subset S ⊆cl U ⊆op Mn we define the notion of the
analytic rank of S in U, arkU(S), which is a natural number satisfying

1. arkU(S) = 0 iff S = ∅;

2. arkU(S) ≤ k + 1 iff there is a set S ′ ⊆cl S such that arkU(S ′) ≤ k and
with the set S0 = S \ S ′ being analytic in U \ S ′.

Obviously, any nonempty analytic subset of U has analytic rank 1.
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Example 1.9 In [5] we have discussed the following notion of generalised
analytic subsets of [P1(C)]n and, more generally, of [P1(K)]n for K alge-
braically closed complete valued field.

Let F ⊆C2 be a graph of an entire analytic function and F̄ its closure in
[P1(C)]2. It follows from Picard’s Theorem that F̄ = F ∪ {∞} × P1(C), in
particular F̄ has analytic rank 2.

Generalised analytic sets are defined as the subsets of [P1(C)]n for all n,
obtained from classical (algebraic) Zariski closed subsets of [P1(C)]n and F̄
by applying the positive operations: Cartesian products, finite intersections,
unions and projections.

It was proved in [5] (by a simple induction on the number of operation)
that any generalised analytic set is of finite analytic rank.

The next assumptions guarantees that the class of analytic subsets ex-
plicitly determines the class of closed subsets in M.

(AS) [Analytic stratification] For any S ⊆cl U ⊆op Mn, arkUS is de-
fined and finite.

We also are going to consider the property

(PS) [Presmoothness] If S1, S2 ⊆an U ⊆op Mn both S1, S2 irreducible,
then for any irreducible component S0 of S1 ∩ S2

dimS0 ≥ dimS1 + dimS2 − dimU.

Definition 1.10 A topological structure satisfying axioms (L)-(AS) above
will be called an analytic Zariski structure. An analytic Zariski structure
will be called presmooth if it has the presmoothness property (PS).

2 Model theory of analytic Zariski structures

Definition 2.1 Let M0 be a nonempty subset of M and C0 a subfamily of
C. We will say that (M0, C0) is a core substructure if

1. if {〈x1, . . . , xn〉} ∈ C0 (a singleton) then x1, . . . , xn ∈M0;
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2. finite intersections of C0-closed sets are in C0;

3. C0 satisfies (L1)-(L7), and (L8) with a ∈Mk
0 ;

4. C0 satisfies (WP), (AF), (FC) and (AS);

5. for any C0-constructible S ⊆an U ⊆op Mn, every irreducible component
Si of S is C0-constructible;

6. for any nonempty C0-constructible U⊆M, U ∩M0 6= ∅.

Lemma 2.2 Given any countable N ⊆M and countable C ⊆ C there exist
countable M0⊇N and C0⊇C such that (M0, C0) is a core substructure.

Proof. Standard. �

We fix below a core substructure (M0, C0) with M0 and C0 countable.

Definition 2.3 For finite X⊆M we define the C0-predimension

δ(X) = min{dimS : ~X ∈ S, S ⊆an U ⊆op Mn, S is C0-constructible}

and dimension

∂(X) = min{δ(XY ) : finite Y ⊂M}.

For X⊆M finite, we say that X is self-sufficient and write X ≤ M, if
∂(X) = δ(X).

For infinite A⊆M we say A ≤ M if for any finite X⊆A there is a finite
X⊆X ′⊆A such that X ′ ≤M.

We work now under
Assumption: dimM = 1 and M is irreducible.

Note that we then have

0 ≤ δ(Xy) ≤ δ(X) + 1, for any y ∈M,

since ~Xy ∈ S ×M.
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Lemma 2.4 Given F ⊆an U ⊆op Mk, dimF > 0, there is i ≤ k such that
for pri : (x1, . . . , xk) 7→ xi,

dim priF > 0.

Proof. Use (AF) and induction on k.�

Proposition 2.5 Let P = prS, for some C0-constructible S ⊆an U ⊆op
Mn+k, pr : Mn+k →Mn. Then

dimP = max{∂(x) : x ∈ P (M)}. (1)

Moreover, this formula is true when S ⊆cl U ⊆op Mn+k.

Proof. We use induction on dimS.
We first note that by induction on arkUS, if (1) holds for all analytic S of

dimension less or equal to k then it holds for all closed S of dimension less
or equal to k.

The statement is obvious for dimS = 0 and so we assume that dimS > 0
and for all analytic S ′ of lower dimension the statement is true.

By (CU) and (CMP) we may assume that S is irreducible. Then by (AF)

dimP = dimS − dimS(c,M) (2)

for any c ∈ P (M) ∩ V (M) (such that S(c,M) is of minimal dimension) for
some open C0-constructible V.

Claim 1. It suffices to prove the statement of the proposition for the
projective set P ∩ V ′, for some C0-open V ′ ⊆op Mn.

Indeed,

P ∩ V ′ = pr(S ∩ pr −1V ′), S ∩ pr −1V ′ ⊆cl pr −1V ′ ∩ U ⊆op Mn+k.

And P \V ′ = pr(S∩T ), T = pr −1(Mn \V ′) ∈ C0. So, P \V ′ is the projection
of a proper analytic subset, of lower dimension. By induction, for x ∈ P \V ′,
∂(x) ≤ dimP \ V ′ ≤ dimP and hence, using 1.3,

dimP ∩ V ′ = max{∂(x) : x ∈ P ∩ V ′} ⇒ dimP = max{∂(x) : x ∈ P}.

Claim 2. The statement of the proposition holds if dimS(c,M) = 0 in
(2).
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Proof. Given x ∈ P choose a tuple y ∈ Mk such that S(x_y) holds.
Then δ(x_y) ≤ dimS. So we have ∂(x) ≤ δ(x_y) ≤ dimS = dimP.

It remains to notice that there exists x ∈ P such that ∂(x) ≥ dimP.
Consider the C0-type

x ∈ P &{x /∈ R : dimR ∩ P < dimP and R is projective}.

This is realised in M, since otherwise P =
⋃
R(P ∩R) which would contradict

(CU) because (M0, C0) is countable.
For such an x let y be a tuple in M such that δ(x_y) = ∂(x). By definition

there exist S ′ ⊆an U ′ ⊆op Mm such that dimS ′ = δ(x_y). Let P ′ = prS ′, the
projection into Mn. By our choice of x, dimP ′ ≥ dimP. But dimS ′ ≥ dimP ′.
Hence, ∂(x) ≥ dimP. Claim proved.

Claim 3. There is a C0-constructible R ⊆an S such that all the fibres
R(c,M) of the projection map R → prR are 0-dimensional and dim prR =
dimP.

Proof. We have by construction S(c,M)⊆Mk. Assuming dimS(c,M) >
0 on every open subset we show that there is a b ∈ M0 such that (up to the
order of coordinates) dimS(c,M) ∩ {b} ×Mk−1 < dimS(c,M), for all c ∈
P ∩V ′ 6= ∅, for some open V ′⊆V and dim prS(c,M)∩{b}×Mk−1 = dimP.
By induction on dimS this will prove the claim.

To find such a b choose a ∈ P ∩ V and note that by 2.4, up to the order
of coordinates, dim pr1S(a,M) > 0, where pr1 : Mk → M is the projection
on the first coordinate.

Consider the projection prMn,1 : Mn+k → Mn+1 and the set prMn,1S. By
(AF) we have

dim prMn,1S = dimP + dim pr1S(a,M) = dimP + 1.

Using (AF) again for the projection pr1 : Mn+1 → M with the fibres
Mn × {b}, we get, for all b in some open subset of M,

1 ≥ dim pr1prMn,1S = dim prMn,1S − dim[prMn,1S] ∩ [Mn × {b}] =

= dimP + 1− dim[prMn,1S] ∩ [Mn × {b}].

Hence dim[prMn,1S] ∩ [Mn × {b}] ≥ dimP, for all such b, which means that
the projection of the set Sb = S ∩ (Mn×{b}×Mk−1) on Mn is of dimension
dimP, which finishes the proof if b ∈ M0. But dimSb = dimS − 1 for all
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b ∈M ∩V ′, some C0-open V ′, so for any b ∈M0∩V ′. The latter is not empty
since (M0, C0) is a core substructure. This proves the claim.

Claim 4. Given R satisfying Claim 3,

P \ prR⊆prS ′, for some S ′ ⊆cl S, dimS ′ < dimS.

Proof. Consider the cartesian power

Mn+2k = {x_y_z : x ∈Mn, y ∈Mk, z ∈Mk}

and its C0-constructible subset

R&S := {x_y_z : x_z ∈ R & x_y ∈ S}.

Clearly R&S ⊆an W ⊆op Mn+2k, for an appropriate C0-constructible W.
Now notice that the fibres of the projection prxy : x_y_z 7→ x_y over

prxyR&S are 0-dimensional and so, for some irreducible component (R&S)0

of the analytic set R&S, dim prxy(R&S)0 = dimS. Since prxyR&S⊆S and
S irreducible, we get by (WP) D⊆prxyR&S for some D ⊆op S. Clearly

prR = pr prxyR&S⊇prD

and S ′ = S \D satisfies the requirement of the claim.

Now we complete the proof of the proposition: By Claims 2 and 3

dimP = max
x∈prR

∂(x).

By induction on dimS, using Claim 4, for all x ∈ P \ prR,

∂(x) ≤ dim prS ′ ≤ dimP.

The statement of the proposition follows. �

In what follows a C0-substructure of M is a C0-structure on a subset N⊇
M0. Recall that C0 is purely relational.

Recall the following well-known
Fact Given a, a′ ∈Mn the L∞,ω(C0)-types of the two n-tuples in M are equal
if and only if they are back and forth equivalent that is there is a nonempty
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set I of isomorphisms of C0-substructures of M such that a ∈ Dom f0 and
a′ ∈ Range f0, for some f0 ∈ I, and

(forth) for every f ∈ I and b ∈ M there is a g ∈ I such that f ⊆ g and
b ∈ Dom g;

(back) For every f ∈ I and b′ ∈ M there is a g ∈ I such that f ⊆ g and
b′ ∈ Range g.

Definition 2.6 For a ∈Mn, the projective type of a over M is

{P (x) : a ∈ P, P is a projective set over C0}∪

∪{¬P (x) : a /∈ P, P is a projective set over C0}.

Lemma 2.7 Suppose X ≤ M, X ′ ≤ M and the (first-order) quantifier-free
C0-type of X is equal to that of X ′. Then the L∞,ω(C0)-types of X and X ′ are
equal.

Proof. We are going to construct a back-and-forth system for X and X ′.
Let SX ⊆an V ⊆op Mn, SX irreducible, all C0-constructible, and such that

X ∈ SX(M) and dimSX = δ(X).
Claim 1. The quantifier-free C0-type of X (and X ′) is determined by

formulas equivalent to SX ∩ V ′, for V ′ open such that X ∈ V ′(M).
Proof. Use the stratification of closed sets (AS) to choose C0-constructible

S ⊆cl U ⊆op Mn such that X ∈ S and arkUS is minimal. Obviously then
arkUS = 0, that is S ⊆an U ⊆op Mn. Now S can be decomposed into irre-
ducible components, so we may choose S to be irreducible. Among all such
S choose one which is of minimal possible dimension. Obviously dimS =
dimSX , that is we may assume that S = SX . Now clearly any constructible
set S ′ ⊆cl U

′ ⊆op Mn containing X must satisfy dimS ′ ∩ SX ≥ dimSX , and
this condition is also sufficient for X ∈ S ′.

Let y be an element of M. We want to find a finite Y containing y and
an Y ′ such that the quantifier-free type of XY is equal to that of X ′Y ′ and
both are self-sufficient in M. This, of course, extends the partial isomorphism
X → X ′ to XY → X ′Y ′ and will prove the lemma.

We choose Y to be a minimal set containing y and such that δ(XY ) is
also minimal, that is

1 + δ(X) ≥ δ(Xy) ≥ δ(XY ) = ∂(XY )
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and XY ≤M.
We have two cases: δ(XY ) = ∂(X) + 1 and δ(XY ) = ∂(X). In the

first case Y = {y}. By Claim 1 the quantifier-free C0-type rXy of Xy is
determined by the formulas of the form (SX ×M) \ T, T ⊆ clM

n+1, T ∈ C0,
dimT < dim(SX ×M).

Consider

rXy(X
′,M) = {z ∈M : X ′z ∈ (SX ×M) \ T, dimT < dimSX , all T}.

We claim that rXy(X
′,M) 6= ∅. Indeed, otherwise M is the union of

countably many sets of the form T (X ′,M). But the fibres T (X ′,M) of T
are of dimension 0 (since otherwise dimT = dimSX + 1, contradicting the
definition of the T ). This is impossible, by (CU).

Now we choose y′ ∈ rXy(X ′,M) and this is as required.
In the second case, by definition, there is an irreducible R ⊆an U ⊆op

Mn+k, n = |X|, k = |Y |, such that XY ∈ R(M) and dimR = δ(XY ) =
∂(X). We may assume U⊆V ×Mk.

Let P = prR, the projection into Mn. Then dimP ≤ dimR. But also
dimP ≥ ∂(X), by 2.5. Hence, dimR = dimP. On the other hand, P ⊆SX
and dimSX = δ(X) = dimP. By axiom (WP) we have SX ∩V ′⊆P for some
C0-constructible open V ′.

Hence X ′ ∈ SX ∩ V ′ ⊆ P (M), for P the projection of an irreducible
analytic set R in the C0-type of XY. By Claim 1 the quantifier-free C0-type
of XY is of the form

rXY = {R \ T : T ⊆cl R, dimT < dimR}.

Consider

rXY (X ′,M) = {Z ∈Mk : X ′Z ∈ R \ T, T ⊆cl R, dimT < dimR}.

We claim again that rXY (X ′,M) 6= ∅. Otherwise the set R(X ′,M) =
{X ′Z : R(X ′Z)} is the union of countably many subsets of the form
T (X ′,M). But dimT (X ′,M) < dimR(X ′,M) as above, by (AF).

Again, an Y ′ ∈ rXY (X ′,M) is as required.�

Corollary 2.8 There is at most countably many L∞,ω(C0)-types of tuples
X ≤M.
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Indeed, any such type is determined uniquely by the choice of a C0-constructible
SX ⊆an U ⊆op Mn such that dimSX = ∂(X).

Lemma 2.9 Suppose, for finite X,X ′⊆M, the projective C0-types of X and
X ′ coincide. Then the L∞,ω(C0)-types of the tuples are equal.

Proof. Choose finite Y such that ∂(X) = δ(XY ). Then XY ≤ M. Let
XY ∈ S ⊆an U ⊆op Mn be C0-constructible and such that dimS is minimal
possible, that is dimS = δ(XY ). We may assume that S is irreducible.
Notice that for every proper closed C0-constructible T ⊆cl U, XY /∈ T by
dimension considerations.

By assumptions of the lemma X ′Y ′ ∈ S, for some Y ′ in M. We also have
X ′Y ′ /∈ T, for any T as above, since otherwise a projective formula would
imply that XY ′′ ∈ T for some Y ′′, contradicting that ∂(X) > dimT.

We also have δ(X ′Y ′) = dimS. But for no finite Z ′ it is possible that
δ(X ′Z ′) < dimS, for then again a projective formula will imply that δ(XZ) <
dimS, for some Z.

It follows that X ′Y ′ ≤ M and the quantifier-free types of XY and X ′Y ′

coincide, hence the L∞,ω(C0)-types are equal, by 2.7.�

Definition 2.10 Set, for finite X⊆M,

clC0(X) = {y ∈M : ∂(Xy) = ∂(X)}.

We fix C0 and omit the subscript below.

Lemma 2.11 b ∈ cl(A), for ~A ∈ Mn, if and only if b ∈ P ( ~A,M) for some

projective P ⊆Mn+1 such that P ( ~A,M) is at most countable. In particular,
cl(A) is countable for any finite A.

Proof. Let d = ∂(A) = δ(AV ), and δ(AV ) is minimal for all possible finite
V ⊆M. So by definition d = dimS0, some analytic irreducible S0 such that
~AV ∈ S0 and S0 of minimal dimension. This corresponds to a C0-definable

relation S0(x, v), where x, v strings of variables of length n,m

First assume that b belongs to a countable P ( ~A,M). By definition

P (x, y) ≡ ∃wS(x, y, w),
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for some analytic S⊆Mn+1+k, x, y, w strings of variables of length n, 1 and
k and the fibre S( ~A, b,Mk) is nonempty. We also assume that P and S
are of minimal dimension, answering this description. By (FC), (AS) and

minimality we may choose S so that dimS( ~A, b,Mk) is minimal among all

the fibres S( ~A′, b′,Mk).
Consider the analytic set S] ⊆Mn+m+1+k given by S0(x, v) &S(x, y, w).

By (AF), considering the projection of the set on (x, v)-coordinates,

dimS] ≤ dimS0 + dimS( ~A,M,Mk),

since S( ~A,M,Mk) is a fibre of the projection. Now we note that by count-

ability dimS( ~A,M,Mk) = dimS( ~A, b,Mk), so

dimS] ≤ dimS0 + dimS( ~A, b,Mk).

Now the projection prwS
] along w (corresponding to ∃wS]) has fibres of the

form S( ~X, y,Mk), so by (AF)

dim prwS
] ≤ dimS0 = d.

Projecting further along v we get dim prvprwS
] ≤ d, but ~Ab ∈ prvprwS

] so
by Proposition 2.5 ∂( ~Ab) ≤ d. The inverse inequality holds by definition, so
the equality holds. This proves that b ∈ cl(A).

Now, for the converse, we assume that b ∈ cl(A). So, ∂( ~Ab) = ∂( ~A) = d.

By definition there is a projective set P containing ~Ab, defined by the formula
∃wS(x, y, w) for some analytic S, dimS = d. Now ~A belongs to the projective
set pryP (defined by the formula ∃y∃wS(x, y, w)) so by Proposition 2.5 d ≤
dim pryP, but dim pryP ≤ dimP ≤ dimS = d. Hence all the dimensions are
equal and so, the dimension of the generic fibre is 0, but as above We may
assume without loss of generality that all fibres are of minimal dimension, so

dimS( ~A,M,Mk) = 0.

Hence, b belongs to a 0-dimensional set ∃wS( ~A, y, w), which is projective
and countable. �

Lemma 2.12 (i)
cl(∅) = cl(M0) = M0.
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(ii) Given finite X⊆M, y, z ∈M,

z ∈ cl(X, y) \ cl(X)⇒ y ∈ cl(X, z).

(iii)
cl(cl(X)) = cl(X).

Proof. (i) Clearly M0⊆cl(∅), by definition.
We need to show the converse, that is if ∂(y) = 0, for y ∈ M, then

y ∈ M0. By definition ∂(y) = ∂(∅) = min{δ(Y ) : y ∈ Y ⊂ M} = 0. So,

y ∈ Y, ~Y ∈ S ⊆an U ⊆op Mn, dimS = 0. The irreducible components of S

are points (singletons), so {~Y } is one and must be in C0, since (M0, C0) is a
core substructure. By 2.1.1, y ∈M0.

(ii) Assuming the left-hand side ∂(Xyz) = ∂(Xy) > ∂(X), ∂(Xz) >
∂(X). By the definition of ∂ then,

∂(Xy) = ∂(X) + 1 = ∂(Xz),

so ∂(Xzy) = ∂(Xz), y ∈ cl(Xz).
(iii) Immediate by 2.11. �

Below, if not stated otherwise, we use the language C∃0 the primitives of
which correspond to relations ∃-definable in M. Also, we call a submodel
of M any C∃0 -substructure closed under cl.

Theorem 2.13 (i) Every L∞,ω(C0)-type realised in M is equivalent to a pro-
jective type, that is a type consisting of existential (first-order) formulas and
the negations of existential formulas.

(ii) There are only countably many L∞,ω(C0)-types realised in M.
(iii) (M, C∃0 ) is quasi minimal ω-homogeneous over countable submodels.

Proof. (i) Immediate from 2.9.
(ii) By 2.8 there are only countably many types of finite tuples Z ≤ M.

Let N ⊆ M0 be a countable subset of M such that any finite Z ≤ M is
L∞,ω(C0)-equivalent to some tuple in N. Every finite tuple X ⊂ M can be
extended to XY ≤M, so there is a L∞,ω(C0)-monomorphism XY → N. This
monomorphism identifies the L∞,ω(C0)-type of X with one of a tuple in N,
hence there are no more than countably many such types.
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(iii) Lemma 2.12 proves that cl defines a pregeometry on M. Letting
G := clC0(A) we we need to check, according to [6], that (a)for any X and
X ′, both cl-independent over G, of the same size n, a bijection φ : X → X ′

is a G-monomorphism, and (b) given any G-monomorphism φ : X → X ′ and
y ∈M we can extend φ so that y ∈ Domφ.

Consider first (a). Note that GX ≤ M and GX ′ ≤ M and so the types
of X and X ′ over G are C0-quantifier-free. But there is no proper C0-closed
subset S ⊆cl M

n such that ~X ∈ S or ~X ′ ∈ S. Hence the types are equal.
For (b) just use the fact that the G-monomorphism by our definition pre-

serves ∃-formulas, so by 2.9 complete L∞,ω(C0)-types of X and X ′ coincide,
so φ can be extended. �

Now we want to define an abstract elementary class A associated with M.
Set

A0(M) = { countable C∃0 -structures N : N ∼= N′⊆M, cl(N ′) = N ′}

and define embedding N1 4 N2 in the class as an C0-embedding f : N1 → N2

such that there are isomorphisms gi : Ni → N′i, N′1⊆N′2⊆M, all embeddings
commuting and cl(N ′i) = N ′i .

Recall the construction from [9] (of a special set and quasi-minimal ex-
cellence) corresponding to Shelah’s notion of an independent system and
excellence.

Let B ⊂ M be a countable cl-independent set and B1, . . . , Bk ⊂ B,⋃
Bi = B. Consider the structures Ni = cl(Bi), these obviously belong to
A0(M). A system of structures Ni of the form cl(Bi) as above will be called
an independent system in A0(M).

We say that A0(M) is excellent if for any independent system {Ni : i ≤
k} and a finite X ⊂ C = cl(

⋃
iNi) the L∞,ω(C0)-type of X over {Ni : i ≤ k}

is equivalent to a subtype over a finite C ′ ⊂ {Ni : i ≤ k}.
Now define A(M) to be the class of C0-structures H with clC0 defined with

respect to H and satisfying:
(i) A0(H)⊆A0(M) as classes with embeddings
and
(ii) for every finite X⊆H there is N ∈ A0(H), such that X⊆N.

Note that in any H ∈ A(M), given a finite X ⊆ H, the set cl(X) is
countable. That is A(M) satisfies the countable closure property. Indeed, by
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definition there exists a countable N ∈ A0(H) with X⊆N. Since clH(N) = N,
also clH(X)⊆N.

Given H1⊆H2, H1,H2 ∈ A(M), we define H1 4 H2 to hold in the class,
if for every finite X ⊆H1, cl(X) is the same in H1 and H2. More generally,
for H1,H2 ∈ A(M) we define H1 4f H2 to be an embedding f such that
there are isomorphisms H1

∼= H′1, H2
∼= H′2 such that H′1⊆H′2, all embeddings

commute, and H1 4 H2.

Lemma 2.14 A(M) is closed under the unions of ascending 4-chains.

Proof. Immediate from the fact that for infinite Y ⊆M,

cl(Y ) =
⋃
{cl(X) : X⊆finiteY }.

�

Theorem 2.15 Given an analytic Zariski structure M and a countable core
substructure (M0, C0), assume that A0(M) is excellent. Then the class A(M)
contains structures of any infinite cardinality and is categorical in uncount-
able cardinals.

Proof. This is essentially the same proof that of Theorem 2 of [9], which is
based on Theorem 1 of the same paper.

The starting point of the proof in [9] establishes the existence in the class
of an H0 of the form H0 = cl(A0), for A0 an infinite countable cl-independent
set. Under the present assumptions this is immediate since such H0 exists
already in A0(M).

The rest of the proof just repeats that of Theorem 2 of [9]. One constructs
an ascending chain of structures Hα ∈ A(M) of the form cl(Aα), for some
cl-independent sets Aα, up to a given cardinal κ, so that Aα+1 \ Aα = {aα}.
Hα+1 is defined uniquely up to isomorphism by a bijection ψα : Aα → Aα+1

and the fact proved in Theorem 1 of [9]: under assumptions of quasi-minimal
excellence ψα can be extended to an isomorphism of cl(Aα)→ cl(Aα+1). �

Problem Given an analytic Zariski structure M is there always a big enough
countable core substructure (M0, C0) such that the class A0(M) is excellent?
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The example in the next section, of the cover of the algebraic torus K×,
for K an algebraically closed field, is excellent for a natural choice of C0 and
some M0. The proof even in this basic example is difficult. In other, more
general cases, the answer is not known or known partially and is closely linked
to difficult problems in arithmetic algebraic geometry, see [11].

We introduce one more condition which holds for many known analytic
Zariski structures. We say that the language of M is essentially count-
able, (CL) for short, if there is a countable Cbase ⊂ C such that every S ∈ C
is of the form S = P (a,M), for some P ∈ Cbase and a ∈Mk.

Proposition 2.16 Under assumptions of Theorem 2.15, if also the lan-
guage of M is essentially countable and assuming without loss of generality
Cbase⊆C0, any uncountable H ∈ A(M) is an analytic Zariski structure in the
language C0 with parameters in H. Also H is presmooth if M is.

Proof. We define C(H) to consist of the subsets of Hn of the form P (a,H)
for P ∈ C0 of arity k + n, a ∈ Hk. The assumption (L) is obviously satisfied.

Now note that the constructible and projective sets in C(H) are also of
the form P (a,H) for some C0-constructible or C0-projective P.

Define dimP (a,H) = d if dimP (b,M) = d for some b ∈ Mk such that
The C∃0 -quantifier-free types of a and b are equal. This is well-defined by
(FC) and the fact that the any C∃0 -quantifier-free type realised in H is also
realised in M. Moreover, we have the following.
Claim. The set of C∃0 -quantifier-free types realised in H is equal to that
realised in M.

Indeed, this is immediate from the definition of the class A(M), stability
of A(M) and the fact that the class is categorical in uncountable cardinalities.

The definition of dimension immediately implies (DP), (CU),(AF) and
(FC) for H.

(SI): if P1(a1, H) ⊆cl P0(a0, H), dimP1(a1, H) = dimP0(a0, H) and the
two sets are not equal, then the same holds for P1(b1,M) and P0(b0,M)
for equivalent b0, b1 in M. Then, P0(b0,M) is reducible, that is for some
proper P2(b2,M) ⊆cl P0(b0,M), P0(b0,M) = P1(b1,M) ∪ P2(b2,M). Now,
by homogeneity we can choose a2 in H such that P0(a0, H) = P1(a1, H) ∪
P2(a2, H), a reducible representation.

This also shows that the notion of irreducibility is preserved by equivalent
substitution of parameters. Then the same is true for the notion of analytic
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subset. Hence (INT), (CMP),(CC) and (PS) follow. For the same reason
(AS) holds. Next we notice that the axioms (WP) follows by the homogene-
ity argument. �

3 Some examples

We consider the universal cover of C× as a topological structure and show
that this is analytic Zariski.

This is a structure with the universe V identified with the set of complex
numbers C and we are going to use the additive structure on it. We also
consider the usual exponentiation map

exp : V → C×

and want to take into our language and topology the usual Zariski topology
(of algebraic varieties) on (C×)n as well as exp as a continuous map.

A model-theoretic analysis of this structure was carried out in [9], [10],
[11] and in the DPhil thesis [12] of Lucy Smith. The latter work, based on
[9], provides the description of the topology C on V and proves that (V, C) is
analytic Zariski. (It then addresses the issue of possible compactifications of
the structure).

Note that the whole analysis below up to Corollary 3.9 uses only the first
order theory of the structure (V, C), so one can wonder what changes if we
replace C and exp with its abstract analogues. The answer to this question
is known in the form of the categoricity theorem proved in [9] and [6] (see
some corrections in [10]): if ex : U → K× is a group homomorphism, U
a divisible torsion-free group, K an algebraically closed field of character-
istic 0 and cardinality continuum and ker(ex) is cyclic, then the structure
is isomorphic to the structure (V, C) on the complex numbers. More gener-
ally, any two covers of 1-tori over algebraically closed fields of characteristic
0 of the same uncountable cardinality and with cyclic kernels are isomorphic.

We follow [12] pp.17-25 with modifications and omission of some technical
details.

The base of the PQF-topology (positive quantifier-free) on V and its
cartesian powers V n is, in short, the family of subsets of V n defined by PQF-
formulae.
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Definition 3.1 A PQF-closed set is defined as a finite union of sets of the
form

L ∩m · lnW (3)

where W ⊆ (C×)n an algebraic subvariety and L is a Q-linear subspace
of V n, that is defined by equations of the form m1x1 + . . . + mnxn = a,
mi ∈ Z, a ∈ V.

Slightly rephrasing the quantifier-elimination statement proved in [11]
Corollary 2 of section 3, we have

Lemma 3.2 (i) Projection of a PQF-closed set is PQF-constructible, that
is a boolean combination of PQF-closed sets.

(ii) The image of a constructible set under exponentiation is a Zariski-
constructible (algebraic) subset of (C×)n. The image of the set of the form
(3) is Zariski closed.

The PQFω-topology is given by closed basic sets of the form

∪a∈I(S + a)

where S is of the form (3) and I a subset of (ker exp)n.
We define C to be the family of all PQFω-closed sets.

Corollary 3.3 C satisfies (L).

We assign dimension to a closed set of the form (3)

dimL ∩m · lnW := dim exp (L ∩m · lnW ) .

using the fact that the object on the right hand side is an algebraic variety.
We extend this to an arbitrary closed set assuming (CU), that is that the di-
mension of a countable union is the maximum dimension of its members.This
immediately gives (DP). Using 3.2 we also get (WP).

For a variety W ⊆(C×)n consider the system of its roots

W
1
m = {〈x1, . . . , xn〉 ∈ (C×)n : 〈xm1 , . . . , xmn 〉 ∈ W}.

Let dW (m) be the number of irreducible components of W
1
m . We say that the

sequence W
1
m , m ∈ N, stops branching if the sequence dW (m) is eventually

constant.
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Obviously, in case W is a singleton, W = {〈w1, . . . , wn〉} ⊆ (C×)n, the

sequence W
1
m does not stop branching as dW (m) = mn. This is the simplest

case when W is contained in a coset of a torus, namely given by the equations∧
i xi = 1. Similarly, if W is contained in a coset of an irreducible torus given

by k independent equations of the form

x`i11 · . . . · x`inn = 1

then dW (m) = mk so does not stop branching.

Fact ([9], Theorem 2, case n = 1 and its Corollary) The sequence W
1
m

stops branching if and only if W is not contained in a coset of a proper
subtorus of (C×)k.

Lemma 3.4 Any irreducible closed subset of V n is of the form (3), for W
not contained in a coset of a proper torus, m ∈ Z.

In case W is contained in a coset of a proper torus T, note that T = expL,
for some L a Q-linear subspace of V n. Also there is an obvious Q-linear
isomorphism σL : L→ V k, k = dimL, which induces a biregular isomorphism
σT : T → (C×)k. Now σT (W )⊆(C×)k is not contained in a coset of a proper

torus and so σT (W )
1
m stops branching.

Note that L is defined up to the shift by a ∈ (ker exp)n.

Proposition 3.5 Let W ⊆ (C×)n be an irreducible subvariety, T = expL

the minimal coset of a torus containing W and m is the level where σT (W
1
m )

stops branching. Let σT (W
1
m
i ) be an irreducible component of σT (W

1
m ). Then

L ∩mσ−1
T σT (W

1
m
i ) (4)

is an irreducible component of lnW. Moreover, any irreducible component of
lnW has this form for some choice of L, expL = T.

Remark 3.6 (i) The irreducible components of the form (4) for distinct
choices of L do not intersect.

(ii) There are finitely many irreducible components of the form (4) for a
fixed L and W.
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Remark 3.7 Proposition 3.5 eventually provides a description of the irre-
ducible decomposition for any set of the form (3), so for any closed set.
Indeed, the irreducible components of the set L ∩m · lnW are among irre-
ducible components of lnX, for the algebraic variety X = exp(L∩m · lnW ).

Corollary 3.8 Any closed subset of V n is analytic in V n.

It is easy now to check that (SI), (INT), (CMP), (CC), (AS) and (PS) are
satisfied.

Corollary 3.9 The structure (V, C) is analytic Zariski one-dimensional and
presmooth.

An inquisitive reader will notice that the analysis above treats only formal
notion of analyticity on the cover C of C× but does not address the classical
one. In particular, is the formal analytic decomposition as described by 3.5
the same as the actual complex analytic one? In a private communication
F.Campana answered this question in positive, using a cohomological argu-
ment. M.Gavrilovich proved this and much more general statement in his
thesis (see [8], III.1.2) by a similar argument.

Now we look into yet another version of a cover structure which is proven
to be analytic Zariski, a cover of the one-dimensional algebraic torus
over an algebraically closed field of a positive characteristic.

Let (V,+) be a divisible torsion free abelian group and K an algebraically
closed field of a positive characteristic p. We assume that V and K are both
of the same uncountable cardinality. Under these assumptions it is easy to
construct a surjective homomorphism

ex : V → K×.

The kernel of such a homomorphism must be a subgroup which is p-divisible
but not q-divisible for each q coprime with p. One can easily construct ex so
that

ker ex ∼= Z[
1

p
],

the additive group (which is also a ring) of rationals of the form m
pn , m, n ∈ Z,

n ≥ 0. In fact in this case it is convenient to view V and ker ex as Z[1
p
]-

modules.
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In this new situation Lemma 3.2 is still true, with obvious alterations,
and we can use the definition 3.1 to introduce a topology and the family C
as above. The above Fact (right before 3.1) for K× is proved in [10]. Hence
the corresponding versions of 3.5 - 3.9 follow.

Finally we mention a wide class of structures on C considered by M.Gavrilovich
in [8]. These are universal covers U of smooth complex algebraic varieties
A = A(C), not necessarily of dimension one. Gavrilovich defines, quite clev-
erly, a family C of closed (analytic) subsets on V n closely related to etale
coverings of A. In case A is C×, his C coincides with the one discussed above,
but already for elliptic curves it can be richer. Gavrilovich then proves that
this uncountable family can be defined in terms of a countable subfamily C0.

He calls a complex variety A Shafarevich, if V is holomorphically convex
and the fundamental groups of An are subgroup separable (properties stud-
ied elsewhere). It is known that Abelian varieties satisfy these properties.
Summarising the results of chapter III of [8] we get the following.

Theorem 3.10 (M.Gavrilovich) Assume A is Shafarevich. Then, for its
universal cover V, the structure (V, C) is analytic Zariski.
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