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This paper grew out of an observation that some new stable structures
discovered in the 1990’ as counterexamples to well-known conjectures in pure
model theory might be related to non-commutative geometry.

The general meaning of the conjectures was that “very good”, or more
technically, very stable structures must be in a certain way reducible to al-
gebraic geometry over algebraically closed fields or to linear structures (Tri-
chotomy conjecture and Algebraicity conjecture for groups, see [Z0]). This
proved to be true to some extent (see [HZ]) but still two types of coun-
terexamples signal the necessity to reconsider the connection between model
theoretic classification principles and classical mathematics.

The first class of counterexamples shows that nonlinear one-dimensional
Zariski geometries are not necessarily algebraic curves. Given a smooth al-
gebraic curve C with big enough group of regular automorphisms one can
produce a “smooth” Zariski curve C̃ along with a finite cover p : C̃ → C.
C̃ can not be identified with any algebraic curve because the construction
produces an unusual subgroup of the group of regular automorphisms of C̃
([HZ, section 10). The main theorem of [HZ] states that it is the biggest de-
viation from an algebraic curve that can happen to a Zariski curve. Typical
example of an unusual subgroup of a such C̃ is the nilpotent group of two
generators U and V with the central commutator ε = [U,V] of finite order
N. So, the defining relations are

UV = εVU, εN = 1.

This, of course, hints towards the known structure of non-commutative ge-
ometry, the non-commutative (quantum) torus at the Nth root of unity. We
call this example TN .

The other example is of a different nature. B.Poizat constructed in [P]
a multiplicative subgroup G of an algebraically closed field (we may assume
this to be the field C of complex numbers) such that (C,+, ·,G) has ω-
stable theory of rank half of that of C (so called “bad field”, related to
the Algebraicity conjecture). The present author has shown in [Z2] that,
assuming Schanuel’s conjecture, one can construct G by means of real analytic
geometry. More specifically one can consider G of the form G = exp(αZ) ·
exp(βR), α and β linearly independent over R, β /∈ R ∪ iR, and see that
(C,+, ·,G) is superstable of dimension half of that of C. We then note that
the structure on the quotient C∗/G is geometrically the same as what one
gets in the quotient

T 2
h = (S × S)/Lh
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of the square of the unit circle S ⊆ C∗ by a Kronecker foliation Lh (set-
wise this is the same as the group R/〈1, h〉). This is a basic example and
motivation of A.Connes [C] for introducing non-commutative geometry.

Of course, one of the biggest challenges in relating non-commutative ge-
ometry to model theory comes from the difference in the way objects are
represented in each of the approaches. Geometers tend to replace a structure
M by the dual object, the algebra C[M ] of functions on M, or even more
abstract non-commutative algebra of “observables” which take the role of the
algebra of functions. Generally, non-commutative geometry does not assume
that one has a reverse procedure of getting a structure back from the algebra
of observables. Yet it is desirable to have a manifold-kind structure underly-
ing a given algebra of observables. Yu.Manin makes this point in [Man] I.1.4
as a foundational problem.

In the present paper we undertake a thorough study of both classes of
examples. We try to give answers to the following questions:

1. What are the “algebras of functions” for TN and T 2
h? Can these struc-

tures be identified as objects of non-commutative geometry?
2. What is the structure that non-commutative geometry “sees” on TN

and T 2
h?

3. Is there a uniform representation of both types of structures?

By virtue of construction the algebra of Zariski continuous (regular) func-
tions TN → C is the same as that of C∗, that is C[t, t−1], so does not reflect
enough of the structure TN . We show that specifically to the structures under
question one can introduce the algebra of semi-definable functions. These are
not uniquely defined but the commutative algebra H they generate is deter-
mined uniquely up to isomorphism. Moreover, uniquely determined is the
action on H of certain linear operators related to the “hidden” structure of
TN . Algebra of these linear operators is the same as that of non-commutative
torus at root of unity known to geometers.

One of the semi-definable functions plays a special role in the construction
of U and V, this is the angular function

angN : C∗ → C[N ], N -roots of 1,

satisfying certain conditions. Answering the second question above we show
that TN can be identified with a space of linear functionals H → C of a
positive orientation. We introduce the orientation in terms of the angular
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function. Alternatively but equivalently TN can be identified with the space
of N -dimensional irreducible modules of positive orientation over the coor-
dinate algebra.

Then we look for a similar construction that can play a role of the limit
structure TN as N tends to ∞. The usual model-theoretic limit (the ultra-
product) does not quite work here, for the same reasons as the universal
cover exp : C → C∗ can not be obtained as the ultraproduct of finite covers
x 7→ xN , C∗ → C∗. We find a natural construction in terms of the structure
of real and complex numbers, dependent on a real parameter h, the analytic
Zariski structure Th, which we show to behave as the limit structure in many
respects. In particular the irreducible modules are of countable dimension
with U-eigenvalues of the form qnµ, m ∈ Z, q = exp 2πih, µ ∈ C∗, one µ for
each module. The corresponding space H of semi-definable functions on Th

together with the action of U and V on it turns out to be a close analogue of
the space with an action corresponding to Connes’ quantum torus T 2

h . The
correspondent angular function gets the form of a function

(C,+) → exp(2πihZ),

behaving similarly to the function z 7→ exp(i Re z).
At this point we don’t have a full analogy yet, since setwise the space of

our irreducible positively oriented modules is C/〈1, h〉 rather than R/〈1, h〉.
Connes specifies, using his C∗-algebras language, that U and V must be
unitary operators. This immediately translates into the fact that the eigen-
values qnµ above must lie on the unit circle and so he gets S/〈q〉 while we
have C∗/〈q〉. Instead of using the (unstable) C∗-algebras language we note
that the group of regular automorphisms of Th (commuting with U and V) is
exactly the above group G = exp(2πihZ + βR). This implies that the action
of U and V is well-defined on the quotient C∗/G which is definable in our
Th and is representing Connes’ T 2

h .
We hence found a way to represent uniformly our TN ’s together with

Connes’ Th. Moreover, we can see that there exists a universal object U
in this uniform representation. Namely, for each N ∈ N ∪ {h} there is a
surjective map

eN : U → TN

which also gives an interpretation of TN in terms of U .
It is important to mention that the above description of the structures

can not be complete without giving a detailed description of the languages
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involved. In fact there are at least two levels of languages. The basic language
is the language of the example in [HZ], and we prove that Th is superstable
in this language (probably is analytic Zariski of dimension 1 see [PZ] and
[Z1]).

We also discuss the language which allows the angular function ang. The
conditions defining ang do not constitute a complete theory, so it is natu-
ral to choose a complete extension which axiomatises the existentially closed
structures. In fact such a choice amounts to choosing ang in a uniformly
random way. We conjecture that under this choice the theory is supersimple.
This has been proven by D.Evans in a basic case. It seems both feasible and
mathematically meaningful to undertake a detailed analysis of the structure
of definable sets in the theory, and develop a probabilisitc measure theory on
the sets.

Acknowledgement Most of the paper was written while I was a member
of Model Theory and Applications to Algebra and Analysis programme at
the Isaac Newton Institute for Mathematical Sciences, Cambridge, UK. I am
grateful to the organisers of the program, the staff of the Institute and to the
participants.
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1 Non-algebraic Zariski geometries

1.1 Recall the following theorem C of [HZ].

Theorem There exist irreducible pre-smooth Zariski structures (in par-
ticular of dimension 1) which are not interpretable in an algebraically closed
field.

The construction

Let M be an irreducible pre-smooth Zariski structure, G ≤ ZAutM act-
ing freely on M and for some G̃ with finite H :

1 → H → G̃→p0 G→ 1.

Consider a set S ⊆ M of representatives of G-orbits: for each a ∈ M,
G · a ∩ S is a singleton.

Consider the formal set

M(G̃) = M̃ = G̃× S

and the projection map

p : (g, s) 7→ p0(g) · s.

Consider also, for each f ∈ G̃ the function

f : (g, s) 7→ (fg, s).

Claim 1.The structure

(M̃, {f}f∈G̃, p
−1(Zariski relations on M))

is an irreducible pre-smooth Zariski structure, its isomorphism type is deter-
mined by M and G̃ only and dim M̃ = dimM.

Proof. One can use obvious automorphisms of the structure to prove
quantifier elimination. The statement of the claim then follows by checking
the definitions. The detailed proof is given in [HZ] Proposition 10.1.
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Claim 2. Suppose H does not split, for every proper G0 < G̃

G0 ·H 6= G̃.

Then, every equidimensional Zariski expansion M̃ ′ of M̃ is irreducible.

Indeed. Let C = M̃ ′ is an |H|-cover of the variety M, so dimC = dimM
and C has at most |H| distinct irreducible components, say Ci, 1 ≤ i ≤ n.
For generic y ∈ M the fiber p−1(y) intersects every Ci (otherwise p−1(M) is
not equal to C).

Hence H acts transitively on the set of irreducible components. So, G̃
acts transitively on the set of irreducible components, so the setwise stabiliser
G0 of C1 in G̃ is of index n in G̃ and also H ∩ G̃0 is of index n in H. Hence,

G̃ = G0 ·H, with H * G0

contradicting our assumptions. Claim proved.

Claim 3. G̃ ≤ ZAut M̃, that is G̃ is a subgroup of the group ZAutM of
Zariski-continuous bijecions of M.

Immediate by the construction.

Lemma. Suppose M is a rational or elliptic curve (over an algebraically
closed field F of characteristic zero), H does not split, G̃ is nilpotent and for
some big enough integer µ there is a non-abelian subgroup G0

|G̃ : G0| ≥ µ.

Then M̃ is not interpretable in an algebraically closed field.

Proof First we show.
Claim 4. Without loss of generality we may assume that G̃ is infinite.
Recall that G is a subgroup of the group ZAutM of rational (Zariski)

automorphisms of M. Every algebraic curve is birationally equivalent to a
smooth one, so G embeds into the group of birational transformations of
a smooth rational curve or an elliptic curve. Now remember that any bi-
rational transformation of a smooth algebraic curve is biregular. If M is
rational then the group ZAutM is PGL(2,F). Choose a semisimple (diago-
nal) s ∈ PGL(2,F) be an automorphism of infinite order such that 〈s〉∩G = 1
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and G commutes with s. Then we can replace G by G′ = 〈G, s〉 and G̃ by
G̃′ = 〈G̃, s〉 with the trivial action of s on H. One can easily see from the
construction that the M̃ ′ corresponding to G̃′ is the same as M̃, except for
the new definable bijection corresponding to s.

We can use the same argument when M is an elliptic curve, in which case
the group of automorphisms of the curve is given as a semidirect product
of a finitely generated abelian group (complex multiplication) acting on the
group on the elliptic curve E(F).

Now, assuming that M̃ is definable in an algebraically closed field F′ we
will have that F is definable in F′. It is known to imply that F′ is definably
isomorphic to F, so we may assume that F′ = F.

Also, since dim M̃ = dimM = 1, it follows that M̃ up to finitely many
points is in a bijective definable correspondence with a smooth algebraic
curve, say C = C(F).

G̃ then by the argument above is embedded into the group of rational
automorphisms of C.

The automorphism group is finite if genus of the curve is 2 or higher, so
by Claim 4 we can have only rational or elliptic curve for C.

Consider first the case when C is rational. The automorphism group
then is PGL(2,F). Since G̃ is nilpotent its Zariski closure in PGL(2,F) is an
infinite nilpotent group U. Let U 0 be the connected component of U, which is
a normal subgroup of finite index. By Malcev’s Theorem (see [Merzliakov],
45.1) there is a number µ (dependent only on the size of the matrix group in
question but not on U) such that some normal subgroup U 0 of U of index at
most µ is a subgroup of the unipotent group

(

1 z
0 1

)

this is Abelian, contradicting the assumption that G̃ has no abelian subgroups
of index less than µ.

In case C is an elliptic curve the group of automorphisms is a semidirect
product of a finitely generated abelian group (complex multiplication) acting
freely on the abelian group of the elliptic curve. This group has no nilpotent
non-abelian subgroups. This finishes the proof of the Lemma and of the the-
orem. ¤
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In general it is harder to analyse the situation when dimM > 1 since the
group of birational automorphisms is not so immediately reducible to the
group of biregular automorphisms of a smooth variety in higher dimensions.
But nevertheless the same method can prove the useful fact that the con-
struction produces examples essentially of non algebro-geometric nature.

Proposition (i) Suppose M is an abelian variety, H does not split and
G̃ is nilpotent not abelian. Then M̃ can not be an algebraic variety with
p : M̃ →M a regular map.

(ii) Suppose M is the (semi-abelian) variety (F×)n. Suppose also that G̃ is
nilpotent and for some big enough integer µ = µ(n) has no abelian subgroup
G0 of index bigger than µ. Then M̃ can not be an algebraic variety with
p : M̃ →M a regular map.

Proof (i) If M is an abelian variety and M̃ were algebraic, the map
p : M̃ → M has to be unramified since all its fibers are of the same order
(equal to |H|). Hence M̃ being a finite unramified cover must have the same
unversal cover asM has. So, M̃ must be an abelian variety as well. The group
of automorphisms of an abelian variety A without complex multiplication is
the abelian group A(F). The contradiction.

(ii) Same argument as in (i) proves that M̃ has to be isomorphic to (F×)n.
The Malcev theorem cited above finishes the proof.¤

Proposition. Suppose M is an F-variety and, in the construction of M̃,
the group G is finite. Then M̃ is definable in any expansion of the field F by
a total linear order.

In particular, if M is a complex variety, M̃ is definable in the reals.

Proof Extend the ordering of F to a linear order of M and define

S := {s ∈M : s = min G · s}.
The rest of the construction of M̃ is definable.¤

Remark In other known examples of non-algebraic M̃ (with G infinite)
M̃ is still definable in any expansion of the field F by a total linear order.
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Problem (i) Classify Zariski structures definable in the reals.
(ii) Classify Zariski structures definable in the reals as a smooth real

manifold.
(iii) Find new Zariski structures definable in Ran as a smooth real mani-

fold.
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2 A non-algebraic Zariski curve and its co-

ordinate algebra

2.1 Let F be an algebraically closed field of characteristic 0 and N a positive
integer. Consider the groups given by generators and defining relations,

G = 〈u,v : uv = vu〉,

G̃ = 〈U,V : [U, [U,V]] = [V, [U,V]] = 1 = [U,V]N〉.
Let a, b ∈ F∗ multiplicatively independent.
G acts on F× :

u · x = ax, v · x = bx.

Taking M to be F× this determines, by 1.1, a presmooth non-algebraic
Zariski curve M̃ which from now on we denote TN .

Since [U,V] is a central element, in every representation of G̃ one can
replace [U,V] by an ε ∈ F, a primitive root of unity of order N. So, the
defining relation for G̃ becomes just

VU = εUV,

or
VUV−1U−1 = ε.

The correspondent definition for the covering map p : M̃ →M then gives
us

p(Ut) = ap(t), p(Vt) = bp(t). (1)

2.2 Semi-definable functions.

Lemma Given α, β such that αN = a, βN = b, one can define bijections

xk : TN → F∗ k = 0, . . . , N − 1

so that for any t ∈ TN the following functional equations are satisfied,

xk(t)
N = p(t) (2)

xk(Ut) = αεkxk(t), (3)
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xk(Vt) = βxk+1(t), where xN = x0, (4)

xk+1(t)

xk(t)
=

xk(t)

xk−1(t)
. (5)

Proof First, notice that (3),(4) imply

xk([U,V]−1t) = εxk(t), (6)

where [U,V]−1 = U−1V−1UV.
To construct the xk choose randomly an injection N

√
: F× → F× with

the property
( N
√
w)N = w.

For any s ∈ S and t ∈ G̃ · s of the form t = UmVn[U,V]l · s, set

xk(U
mVn[U,V]l · s) := αmβnεmk−l N

√
s.

This satisfies (2)-(5).
To see that each xk is injective consider t, t′ ∈ TN such that xk(t) = xk(t

′).
We then have, by (2), that p(t) = p(t′). Hence t′ = ht for some h ∈ H, that
is for h = [U,V]j , some j ∈ {0, . . . , N − 1}. By (6) this is possible only if
j = 0, that is t = t′.

In order to prove that xk is surjective we need to solve the equation

xk(t) = µ

for any given µ ∈ F×. Since p is surjective we can find t′ ∈ T such that
p(t′) = µN , and so by (2) we have xk(t

′) = εlµ, for some l ∈ Z. Take now
t = [U,V]lt′ and by (6) this solves the equation. ¤

2.3 Define the angular function on F∗ as a function ang : F× → F[N ],
roots of unity of order N.

Set for λ ∈ F∗,

ang(λ) =
x1(t)

x0(t)
, if λ = x0(t).

This is well-defined since x0 is a bijection.
Acting by U on t and using (3) we have

angαλ = εang λ (7)
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We also have
ang ελ = ang λ. (8)

since by (6)
x0([U,V]−1t) = εx0(t) = ελ,

and at the same time

ang(ελ) =
x1([U,V]−1t)

x0([U,V]−1t)
=
x1(t)

x0(t)
= ang λ.

Finally, suppose x1(t) = λ. Then x0(Vt) = βλ, by (4), and x1(Vt) =
βx2(t) = βλ · ang λ, by (5). Since ang βλ = x1(Vt) : x0(Vt), we have

ang βλ = ang λ. (9)

Now we consider the structure

(F,+, ·, ang).

It is clear that F is partitioned into N ’sectors’ using the angular function:

Pδ = {µ ∈ F∗ : ang µ = δ}.

Proposition TN is definable in (F,+, ·, ang) using parameters α and β.
Moreover, x0, . . . , xN−1 are definable in the structure as well.

Proof Define T = F× as a set, and for any t ∈ F× set

p(t) = tN , Ut = α t, Vt = β ang(t) t.

We then have

t→U α t→V αβ ang(α t)t = αβ ang(t) ε t→U−1

β ang(t) ε t→V −1

εt.

That is
V−1U−1VUt = ε t

so, the group G̃ acts on the T freely.
It is also clear that

p(Ut) = ap(t), p(Vt) = bp(t), p−1(p(t)) = {[U,V]−lt : l = 0, . . . , N − 1}
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as required by the description of TN .
Finally, set xk(t) := (ang t)k · t. ¤

From now on we use notation

ŤN := (F,+, ·, ang).

The interpretation of TN in the proof of the above proposition we will
consider canonical, with respect to α and β.

Remark 1 The isomorphism type of TN defined by means of ŤN depends
on the isomorphism type (so of the cardinality) of the field F with parameters
α, β, ε only, and not on the choice of the angular function (equivalently Pδ)
since by the construction in 1.1 any two structures M̃ with the same G̃ are
isomorphic over M.

Corollary Assuming that F = C and a, b ∈ ε · R>0, ε = exp 2πi/N, we
have that TN is definable in the reals using parameters α, β ∈ R and ε such
that αN = a, βN = b.

Proof It is enough to define an angular function with respect to the
chosen parameters. Consider

P = {z ∈ C× :
2π

N
> arg z ≥ 0}.

Define
Pεk := εkP, k = 0, . . . , N − 1

and
ang λ := εk iff λN ∈ εkP.

This satisfies (7)-(9) by our assumptions.¤

2.4 Question Consider a structure ŤN which is existentially closed in the
class of structures satisfying (7) - (9). What is the model-theoretic status of
the theory of this structure? Is it supersimple?
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Remark Before this paper has been finished D.Evans answered this
question in positive.

The fact that ŤN is supersimple has certain methodological significance.
There is a common, albeit informal, understanding that simple structures
(theories) come basically from stable structures by introducing a ’random
noise’. So, one may think of ŤN as an algebraic curve with a random angular
function.

Problem Study the structure of definable subsets on ŤN . Is there a good
probabilistic measure theory on ŤN?
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2.5 Systems of semi-definable functions.

Denote ε̇ = [U,V] and let Γ = ΓN := 〈ε̇〉 be the subgroup of G̃. We
denote φ : G̃ → G = 〈u,v〉, the canonical embedding of the subgroup into
F×.

Lemma Given α, β such that αN = a, βN = b, one can define functions

x : G× TN → F×

so that for any g ∈ G, x(g, ·) : TN → F× is a bijection and for any t ∈ TN

the following functional equations are satisfied,

x(g, t)N = p(t) (10)

x(g,Ut) = αφ(g)x(g, t), (11)

x(g,Vt) = βx(gv, t), (12)

x(gf, t)x(gf−1, t) = x(g, t)2 for any f ∈ G̃. (13)

Proof First, notice that (11),(12) imply

x(γε̇−1t) = εx(γ, t). (14)

To construct x choose randomly an injection N
√

: F× → F× with the
property

( N
√
w)N = w.

For any s ∈ S and t ∈ G̃ · s of the form t = UmVn[U,V]l · s, set

x(γ, t) := αmβnφ(γm)ε−l N
√
s.

This satisfies (10)-(13).
To see that, for each γ, x(γ, ·) is injective consider t, t′ ∈ TN such that

x(γ, t) = x(γ, t′). We then have, by (10), that p(t) = p(t′). Hence t′ = for
some δ ∈ Γ, that is for δ = ε̇j, some j ∈ {0, . . . , N − 1}. By (14) this is
possible only if j = 0, that is t = t′.

In order to prove that x(γ, ·) is surjective we need to solve the equation

x(γ, t) = µ
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for any given µ ∈ F×. Since p is surjective we can find t′ ∈ T such that
p(t′) = µN , and so by (10) we have x(γ, t′) = εlµ, for some l ∈ Z. Take now
t = ε̇lt′ and by (14) this solves the equation. ¤

Define

ξ(t) =
x(γε̇, t)

x(γ, t)
.

By (13) this indeed does not depend on γ.
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2.6 The space of semi-definable functions.
Let H be the F-algebra of semi-definable functions on TN generated by

x0, . . . , xN−1, x
−1
0 , . . . , x−1

N−1.

Remark H is determined as a commutative F-algebra uniquely up to
isomorphism by its generators x0, . . . , xN−1 satisfying the relations (2).

We may also regard it as an F-vector space with some linear operators
on them.

We define linear operators U∗ and V∗ on H :

U∗ : ψ(t) 7→ ψ(Ut),
V∗ : ψ(t) 7→ ψ(Vt).

(15)

Obviously these operators are invertible, so U∗−1, V∗−1 are the inverses.
Denote G̃∗ the group generated by the operators U∗, V∗,U∗−1, V∗−1.

H with the action of G̃∗ on it is determined uniquely up to isomorphism
by the defining relation (2)-(6) and so is independent on the arbitrariness in
the choices of x0, . . . , xN−1.

Finally we notice

Lemma The correspondence U 7→ U∗, V 7→ V∗ generates the anti-
isomorphism G̃→ G̃∗ satisfying the property

(g1g2)
∗ = g∗2g

∗
1, for any g1, g2 ∈ G̃.

Proof It can easily be seen if we define the pairing

H× T → F, (ψ, t) 7→ ψ(t).

This allows to consider the adjoint action of any g ∈ G̃ on H setting g∗ψ as
the unique element of H such that

(g∗ψ, t) = (ψ, gt), for all t ∈ T.

We can immediately identify that this definition extends (15). The desired
formula follows.¤
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2.7 Let Max(H) be the space of maximal ideals of the commutative algebra
H.

Lemma 1 Max(H) consists of ideals Iµ̄, µ̄ = 〈µ0, . . . , µN−1〉, µN
0 = · · · =

µN
N−1,

Iµ̄ = 〈(x0 − µ0), . . . , (xN−1 − µN−1)〉.
Proof This is a standard fact of commutative algebra.¤

Assuming F is endowed with an angular function ang : F× → F[N ] we
call µ̄ as above oriented positively if µk = ang(µ0)

k · µ0. Correspondingly,
we call an ideal Iµ̄, oriented positively if µ̄ is.

Max+(H) will denote the subspace of Max(H) consisting of positively
oriented ideals I.

Lemma 2 µ̄ is positively oriented if and only if

〈µ0, . . . , µN−1〉 = 〈x0(t), . . . , xN−1(t)〉,

for some t ∈ T.
Proof Indeed, since x0 is a bijection, there is t ∈ T such that x0(t) = µ0.

Now apply the definition of natural angular function of 2.3.¤

2.8 Lemma
(i) There is a bijective correspondence Ξ : Max+(H) → TN between the

space of positively oriented maximal ideals and TN .
(ii) The action (15) of G̃∗ on H induces an action on Max(H) and leaves

Max+(H) setwise invariant.
(iii) The action of g∗ ∈ G̃∗ on Max(H)(and so on TN) can be identified

as
g∗ : I〈x0(t),...,xN−1(t)〉 7→ I〈x0(g−1t),...,xN−1(g−1t)〉.

Proof (i). We set

Ξ(t) := Iµ̄, for µ̄ = 〈x0(t), . . . , xN−1(t)〉.

Then Ξ(t) is positively oriented by Remark 2 in 2.7.
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Notice that by definition µ̄ is determined uniquely by µ0. But x0 : TN →
F× is bijective, so Ξ is bijective.

(ii)-(iii). For a given g ∈ G̃, the map ψ → g∗ψ is an automorphism of the
commutative F-algebra H, since g∗ψ(t) = ψ(gt). So, it sends maximal ideals
to maximal ideals, namely

g : 〈(x0 − µ0), . . . , (xN−1 − µN−1)〉 7→ 〈(xg
0 − µ0), . . . , (x

g
N−1 − µN−1)〉.

Notice that, for the unique tµ ∈ TN such that x0(tµ) = µ0, . . . , xN−1(tµ) =
µN−1

〈x0(U
−1tµ), . . . , xN−1(U

−1tµ)〉 = 〈α−1µ0, . . . , α
−1ε1−NµN−1〉,

by (3). Analogously, by (4)

〈x0(V
−1tµ), . . . , xN−1(V

−1tµ)〉 = 〈β−1µN−1, β
−1µ0, . . . , β

−1µN−2〉.

So, by Lemma 2.7.2 both tuples on the right-hand side are positively oriented.
Now notice that by (3) and (4)

U : 〈(x0−µ0), . . . , (xN−1−µN−1)〉 7→ 〈(αx0−µ0), . . . , (αε
N−1xN−1−µN−1)〉 =

〈(x0 − α−1µ0), . . . , (xN−1 − α−1ε1−NµN−1)〉 =

= 〈(x0 − x0(U
−1t)), . . . , (xN−1 − xN−1(U

−1t))〉
and

V : 〈(x0 − µ0), . . . , (xN−1 − µN−1)〉 7→ 〈(βx1 − µ0), . . . , (βx0 − µN−1)〉 =

〈(x0 − β−1µN−1), . . . , (xN−1 − β−1µN−2)〉 =

= 〈(x0 − x0(V
−1t)), . . . , (xN−1 − xN−1(V

−1t))〉.
This proves that the image of positive Iµ̄ under U and V is positive.

Hence the image under the action of any g ∈ G̃ is positive, and we have (ii).
The above also shows that the action induced by Ξ is anti-isomorphic to the
original action and so proves (iii).¤
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2.9 We may also treat T as the space of F-linear functionals H → F defined
by the pairing of 2.6,

H∗
T = {Ft : ψ 7→ (ψ, t), t ∈ T}.

Obviously, the kernel of a nonzero functional is a maximal ideal. More-
over,

kerFt = {φ ∈ H : (φ, t) = 0} = I〈x0(t),...,xN−1(t)〉.

We also denote kerFt := I t.
We call a linear functional F on H positive if kerF is a positive maximal

ideal.

Proposition
(i) The correspondence

t 7→ Ft

between T and the space H∗
+ of positive linear functionals on H is bijective.

(ii) The correspondence transfers isomorphically the natural action of G̃
on T to a natural action of G̃ on H∗

+.
(iii) Consider also the commutative algebra H0 generated by p(t) and, for

each linear functional Ft its restriction F 0
t on H0. Then, for any t1, t2 ∈ T,

F 0
t1

= F 0
t2

iff p(t1) = p(t2) iff Ft1 = εjFt2 , for some j ∈ {0, . . . , N − 1},

and the correspondence
F 0

t 7→ p(t)

is a bijection between the space H∗
0 of all linear functionals of the form F 0

t

and F×.

Proof Let I ∈ Max(H). To any such I canonically corresponds the func-
tional

F I : ψ 7→ λ ∈ F, such that (ψ − λ) ∈ I.

We write
F (ψ) := {F, ψ}.

Now, in case I = I t = I〈x0(t),...,xN−1(t)〉 we see that

{F I , ψ} = ψ(t) = (ψ, t). (16)
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The latter establishes the required bijection between H∗
T and TN . On the

other hand, since functionals of H∗
T are in bijective correspondens with pos-

itive ideals, by Lemma 2.7.2, H∗
T = H∗

+, the set of all positive functionals.
This proves (i).

(ii). Given F ∈ H∗ and f ∈ G̃∗ define f ∗F as the unique functional such
that

{f ∗F, ψ} = (F, fψ).

Then by dualities we have the isomorphism of group with actions on T and
H+ correspondingly

g ∈ G̃ 7→ g∗∗ ∈ G̃∗∗,

(ψ, gt) = (g∗ψ, t) = {F t, g∗ψ} = {g∗∗F t, ψ}.
(iii). It is immediate from definitions that if F t evaluates x0 as µ ∈ F×,

then the function p (as an element of H) is evaluated as µN . The statement
follows. ¤

2.10 Comments

1.The space H is an analogue of the space S(R2,C) of all Schwartz func-
tions R2 → C decaying at infinity along with all its derivatives faster than

1
|x|n

, any n (see A.Connes),.

2. In mathematical physics linear functionals on certain Hilbert spaces
are called states.

Assume for a moment that H is an inner product space. Then any F ∈ H∗

can be identified with the orthogonal complement I⊥ of the maximal ideal
corresponding to F. This is a one-dimensional subspace of H. This provides
another version of the notion of states.

3. Even though the present definition of H considers it a finitely gen-
erated commutative ring, it can not treat it as the coordinate ring of an
algebraic variety since we consider positively oriented ideals only.
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We used in 2.9 the natural pairing H×T → F and the existence of enough
functionals on the linear space H.

4. Despite the fact that T is in a bijective correspondence with a subset
H∗

+ of the space of functionals we can not induce the additive structure on
T since H∗

+ is not closed under addition.
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3 The limit case

We introduce and study here a structure Ť∞ which can be seen as the limit
version of ŤN . It would be important in our view to formulate (and prove)
the exact meaning of the transition N → ∞ but we only draw here parts of
the possible picture towards this aim.

3.1 Let α, β ∈ C×, αR + βR = C. Set, for w ∈ C, the α-β - decomposition
to be the uniquely determined decomposition

w = waα + wbβ, wa, wb ∈ R.

Let ia, ib ∈ R be the coordinates of the decomposition

i = iaα + ibβ, here and below i2 = −1.

We also choose a real number h and assume that 1, 2πia and 2πiah are
linearly independent over Q.

We define an additive α-β-version of the angular function, which we call
band

bdh : C → 2πihZ, fixed h ∈ R \ Q

as follows.
First we define the function r 7→ [r]h from R to Z, the pseudo-integer

part of r with the properties, for all r ∈ R,

[0]h = 0, [r + 1]h = [r]h + 1, (17)

[r + 2πia]h = [r]h, (18)

[r + 2πiah]h = [r]h (19)

Example Consider a direct sum decomposition

R = R′+̇2πiaQ+̇2πiahQ, some subgroup Q < R′ < R,

and set, for all r′ ∈ R′, c ∈ Q,

[r′ + c1 · 2πia + c2 · 2πiah]h := [r′ + (c1 − [c1]) · 2πia + (c2 − [c2]) · 2πiah],

[ · ] the usual integer part of a real number. This satisfies (17)-(19).
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Set
bdhw := 2πih [wa]h.

We have then, by definition,

bdh(rβ + w) = bdhw, for every r ∈ R; (20)

bdh(w + 2πi) = bdh(w); (21)

bdh(w + 2πih) = bdhw. (22)

By (17),

bdh(α+ w) = 2πih + bdhw. (23)

Set,
Ũ : w 7→ α + w,

Ṽ : w 7→ β + w + bdhw.

We have

w 7→U α+w 7→V α+ β +w+ bdh(α+w) = α+ β +w+ bdhw+ 2πih 7→U−1

7→U−1

β + w + 2πih + bdhw 7→V −1

2πih + w.

That is
Ṽ−1Ũ−1ṼŨw = w + 2πih, (24)

3.2 Define the additive subgroup of C

Ah = βR + 2πihZ + 2πiZ.

Proposition (i) Ah is the subgroup of all periods of bdh, that is a ∈ C
such that bdh(a+ w) = bdhw.

(ii) Ah is exactly the subgroup of shifts w 7→ a + w of C which are
automorphisms of (C, Ũ, Ṽ).

(iii) Ah is definable in (C,+, bdh).

Proof (i). Immediate from (20)- (22). For (ii) notice that Ũ(a + w) =
a+ Ũw, for all a ∈ C and

Ṽ(a+ w) = a+ Ṽw iff a ∈ Ah.

25



(iv) Immediate by definitions.¤

3.3 We consider here the two-sorted structures

(

(C,+, bdh), exp,C×
)

and
(

(C,+,Ah), exp,C×
)

where the second sort C× on the nonzero complex numbers comes with the
usual language of all Zariski closed relations.

Obviously the functions Ũ and Ṽ are definable in (C,+, bdh). Conversely,
bdh is definable in (C,+, Ṽ) using parameter β.

Proposition 1 The theory of ((C,+,Ah), exp,C×) is superstable, pro-
vided the Schanuel conjecture is true.

Proof It is easy to see that the statement follows if the expansion of C×

with the unary predicate for the subgroup Gh = exp(Ah) = exp(2πihZ+βR)
is superstable. A stronger theorem, stating ω-stability of the theory, for
G = exp(βR + δQ), β ∈ C \ (R ∪ iR), δ ∈ R \ 2πiQ, was proved in [Z2].
The same proof describes the elementary theory of the structure and yields
superstability for the present theory. See also [Z3]. ¤

Notation Gh will stand for the subgroup exp(Ah) of C×.

On the other hand ((C,+, bdh), exp,C×) defines the following unstable
structure on the sort C×.

Denote, for t = expw,

anght := exp bdhw.

By (21) this is well-defined, and by (20),(22) we have analogues of (7)-(9),
where q = exp 2πih,

anghqt = anght,
anghe

βt = anght,
anghe

αt = q · anght.

Hence, defining

U : t 7→ eα · t, V : t 7→ eβ · t · anght,
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we get
VUt = qUVt, for all t ∈ C×.

It is easy to see that also

U expw = exp Ũw, V expw = exp Ṽw.

We define
Ťh := (C,+, ·, angh).

This is an obvious analogue of ŤN defined in 2.3.
Note that the group Γh = exp 2πihZ = angh(C

×) is definable in Ťh.

The full analogy with ŤN of 2.3 requires also a definition of ph. We define

ph : C× → C×/Γh,

the canonical homomorphism. This agrees with 2.3, moreover in the finite
case C×/〈ε〉 can be definably identified with C× in the full Zariski language,
in particular the whole construction is a Zariski structure (obviously, of finite
Morley rank).

We also define the maps u and v on C×/Γh by

u ph(t) := ph(Ut), v ph(t) := ph(Vt),

that is
u : t · Γh 7→ eα · t · Γh, v : t · Γh 7→ eβ · t · Γh.

This is obviously well-defined.

Proposition 2 The group of shifts t 7→ gt on C× commuting with angh

(and so with U and V) is Gh. This group is definable in Ťh. The theory of
the structure (C,+, ·,Gh,Γh) is superstable.

Proof Essentially the same argument as for Proposition 1. The super-
stability of the weaker structure (C,+, ·,Γh) is well-known and follows from
the Lang property of Γh. ¤

Problems 1. Fix the theory T G
h of structures of the form (F,+, ·, ang, ea),

(ea a constant ) saying that
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(F,+, ·,Aut(ang), ang(F×), ea) ≡ (C,+, ·,Gh,Γh, e
α)

(where Aut(ang) is the group of shifts of F× commuting with ang, and
ang(F×) is the image under ang)

and
∀t ∈ F× ang g · t = q · ang t iff g−1ea ∈ Aut(ang).

Consider the class Ṫ G
h of existentially closed models of T G

h . What is the
stability status of completions of Ṫ G

h . Are they supersimple?

2. Is Ťh above based on the band function bdh given in the Example in
3.1 existentially closed in T G

h ? Is it supersimple?

3.4 We notice here that in ((C,+, bdh, 2πia·, h· ), exp,C×) ( 2πia· and h·
are unary operations here) one can definably construct an inverse to the usual
exponentiation exp : C → C×.

Define the function
ln0 : C× → C

by setting, for t = expw,

ln0 t = w − h−1bdh(w/2πia).

It is immediate that
exp(ln0 t) = t.

Claim ln0 t is well-defined and is injective.

Indeed, if also expw′ = t, w′ = w + 2πik, some k ∈ Z, then

bdh(w
′/2πia) = bdh(

w + 2πik

2πia
) = bd(

w

2πia
) + 2πihk, by (23).

Hence,
w′ − h−1bdh(w

′/2πia) = w − h−1bdh(w/2πia),

as required.

In more detail,

ln0 t = w − 2πi[
wa

2πia
]h. (25)
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So,

ln0 t = ln0 t
′ iff w − 2πi[

wa

2πia
]h = w′ − 2πi[

w′
a

2πia
]h,

whence w − w′ ∈ 2πiZ and t = t′,

hence ln0 is injective.

Remark The logarithm constructed here resembles the random logarithm
constructed (non-effectively) by T.Hyttinen [Hy].

3.5 Now we redefine ŤN in a way compatible both with 2.3 and 3.3.

Define, for each positive N ∈ N the map

eNh : C → C×; eNh(w) = exp(N−1h−1w).

It is convenient to distinguish the copies of C× which are images of eNh

for different N as TN .
Set, for t = eNh(w) ∈ TN ,

UN t := eNh(Ũw), VN t := eNh(Ṽw).

It follows,

UN t := eNh(α) · t, VN t := eNh(β) · t · exp
2πi

N
[wa]h.

Denote

angN(t) := exp
2πi

N
[wa]h.

This is well-defined. Indeed, any other representation of t would be of
the form t = eNh(w+ 2πihNk), k ∈ Z. But (w+ 2πihNk)a = wa + 2πiahNk,
and [wa + hNk]h = [wa]h by (19).

Similarly one checks that angN satisfies (7)-(9) with ε = exp 2πi
N

and
corresponding parameters for α, β. So we get, by 2.3

VNUN t = εUNVN t. (26)

Define
ŤN = (C,+, ·, angN)
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This is the same definition as 2.3 except here we specified our choice of the
angular function.

Proposition The group of periods of angN , that is g ∈ C× such that
angN(g · t) = angN t is equal to

GN−1h−1,αh−1 · C[N ] = exp(2πiN−1h−1 + αh−1Z + βR) · C[N ].

In particular, this group is definable in the above ŤN and the theory of

(C,+, ·,GN−1h−1,αh−1)

is superstable.
Proof By calculation: for t = expN−1h−1w and g = expN−1h−1u, by

definition,

angN(gt) = exp
2πi

N
[wa + ua]h,

so g is a period if and only if

∀r ∈ R [r + ua]h ≡ [r]h modNZ,

iff ua ∈ 2πiaZ + 2πiahZ +NZ iff

g ∈ exp(2πiah
−1N−1+2πiaαN

−1Z+αh−1Z+βR) = exp(2πiN−1h−1Z+2πiN−1Z+αh−1Z+βR).

The superstability follows by the same argument as in 3.3. ¤

Problem Is the theory of ŤN as given by the present construction, su-
persimple?

3.6 Denote
U = (C,+, bdh, h· ).

By the construction in 3.3 and 3.5 ŤN is definable in (U , exp,C×) , for all
N ∈ N ∪ {h}.

The resulting picture is as follows, with the arrows showing definable
surjections.
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ŤN
. . .

· · · pN p2p3

?
ph

C×/Γh

where e1(w) := expw.
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4 Quantum torus

Our aim here is to connect the construction of Ťh to the well-known definition
of the noncommutative (quantum) torus usually denoted T2

h.

4.1 Following the pattern of 2.2 and 2.3 we introduce the algebra H gener-
ated by functions

xk : C× → C×, k ∈ Z,

where x0 = x is the identity function and

xk = ξk · x, ξ(t) = anght.

We have by 3.3,
xk(Ut) = eαqk · xk(t),

xk(Vt) = eβxk+1(w),

ξ(Ut) = q · ξ(t), ξ(Vt) = ξ(t).

As in ?? we normalise the operators U∗ and V∗ on functions by defining
operators on H,

U̇ : ψ 7→ U∗ψ, U∗ψ(w) = ψ(Uw);

V̇ : ψ 7→ ξ · ψ.

Using the identities above we get immediately the usual

U̇V̇ = qV̇U̇.

4.2 We can introduce an isomorphic space with operators in an alternative
but closely connected way.

Let z and ζ be the functions C → C× given by

z(w) = expw, ζ(w) = exp bdhw.

Denote Ḣ the commutative F-algebra generated by z and ζ, and denote
zk = ζkz.

We have, using identities for bdh,

z(Ũw) = eα · z(w), ζ(Ũw) = q · ζ(w),

z(Ṽw) = eβζ(w)z(w), ζ(Vw) = ζ(w).
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Again, we define operators on Ḣ :

U̇ : ψ 7→ Ũ∗ψ,

V̇ : ψ 7→ ζ · ψ.

The space Ḣ is an analogue of the space S(R2,C) of all Schwartz functions
R2 → C decaying at infinity along with all its derivatives faster than 1

|x|n
,

any n (see [C]), or S(Z2,C) the Hilbert space of Schwartz sequences, that
is complex valued sequences (cm,n) decaying faster than any polynomial of
m,n.

In [C] with each leaf of the Kronecker foliation

La = {〈r, s〉 ∈ R2 : s+ θr = a}

one associates the C[U̇, V̇, U̇−1, V̇−1]-module Ha obtained by restricting func-
tions of S(R2,C) to La and defining operators U̇ and V̇. Namely, the operator
U̇ is defined by exactly the same formula as here and V̇ sends ψ(r, s) (func-
tion of two real variables r and s) to exp(is) · ψ(r, s) (notice that extra to
these data there is a linear dependence between r and s). So, ξ is a good
analogue of the function exp(is) taking values in the unit circle.

Notice that U̇ and V̇ are unitary operators if we see Ha as a Hilbert
space. This makes the completion of C[U̇, V̇, U̇−1, V̇−1] a C∗-algebra.

By A.Connes the quantum torus T2
θ is the space of all the modules Ha

on the correspondent La.

Remark Consider again the algebra of functions Ḣ and denote, for
a ∈ C, Ḣa the algebra obtained by restricting functions from Ḣ to the coset
a+ Ah. It follows from Proposition 3.2(ii) that the action of U̇ and V̇ on Ḣ
induces a well-defined action on Ḣa, so this is a C[U̇, V̇, U̇−1, V̇−1]-module
for any a ∈ C.

4.3 To understand further relations of Connes’ construction to our Th we
prove the following.

Claim 1. There is a natural bijective correspondence

φ : C/Ah → T2
θ,

for θ = h, where T2
θ is seen as the space of leaves of the Kronecker foliation.
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Indeed, we have the decomposition of C into two real lines

C = iR + αR, for any z ∈ C z = xi + yα, x, y ∈ R.

Rescale the real coordinates

r := h−1x, s := 2π(2πia)
−1y

and consider the mapping onto the direct product of two unit circles

z 7→ 〈x, y〉 7→ 〈r, s〉 7→ 〈exp ir, exp is〉.

Under the map

2πihZ + 2πiaαZ → 〈2πhZ, 2πiaZ〉 → 〈2πZ, 2πZ〉 → 1,

and since 2πi − 2πiaα ∈ βR,

βR → 〈2π,−2πia〉R → 〈2πh−1,−2π〉R → L0.

This establishes the bijection between the cosets of Ah and the leaves La of
the foliation.

Claim 2. There is a bijective correspondence

p̃h : C/Ah → C×/Gh,

induced by ph. Moreover, the action of Ũ and Ṽ on C induces a well-defined
action on C/Ah and correspondingly the action on C×/Gh. The latter action
coincides with the one induced by u and v on the cosets of Gh.

This is the direct consequence of Proposition 3.2(iii) and the definition of
ph.

Corollary p̃h ◦ φ−1 identifies T2
h with C×/Gh, with all the structure on

the latter induced from Ťh.
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