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Abstract

The aim of the paper and of a wider project is to translate main no-
tions of anabelian geometry into the language of model theory. Here
we finish with giving the definition of the étale fundamental group
πet1 (X, x) of a non-singular quasiprojective scheme over a field of char-
acteristic 0.

1 Introduction

Grothendieck’s anabelian geometry has been introduced in the lan-
guage of schemes. The task of translating its notions into the setting
of model theory is not fully trivial for the reason that schemes are
essentially objects of a syntax and no semantics is being provided by
definitions except some appeal to the intuition of Zariski-style alge-
braic geometry. In furnishing a semantics in Tarski’s sense one has
to take into account a new phenomenon, the syntax here has its own
inherent algebraic structure, may have its own automorphisms and
homomorphisms, and semantics needs to reflect all those.

A similar, parallel phenomenon takes place in non-commutative
geometry, where syntax is given by “co-ordinate” algebras which not
only have a structure in algebraic sense but also may be topological
algebras, C∗-algebras and so on. An approach to semantics of non-
commutative geometry was suggested by the second author in [12]
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Ch.5, and [13]. Our approach to schemes is partially inspired by this.
Basic notions are clarified in section 3.

In the current paper we introduce a language LX for universal and
étale covers of a scheme X and describe the first order theory TX of
“universal étale cover” X̃et of X.We prove that universal analytic cover
X̃an of the complex variety X(C) presented in the same language is
another model of the theory. Note that previously various attempts
to find an adequate language LX were made in [11], [5], [3] and some
other publications, covering some classes of varieties X.

A key feature of Grothendieck’s anabelian geometry is the functor
from the Galois category of étale covers into the category of groups.
In model theory setting this corresponds to the functor M↦ Aut(M)
from the category of structures with interpretations in the role of
morphisms to the category of topological groups. This functor is well-
known in model theory but we give it a more systematic treatment
in section 2, especially for the category of finitary structures when it
becomes an equivalence of categories. In particular, closed subgroups
of Aut(M) correspond to sets of imaginary elements of M.

We are especially .interested in classifying imaginaries which cor-
respond to a section of the restriction homomorphism Aut(M) →
Aut(N) when N is a structure interpretable in M.

In the final sections of the paper we give a model-theoretic defini-
tion of πet1 (X, x) as an automorphism group of X̃et acting on the fibre
over x. We also remark that this group is isomorphic to the Lascar
group of the theory. This allows us to reformulate the Grothendieck
section conjecture in terms of the properties of structure X̃et.

2 Interpretations and automorphism groups

2.1 Most of the material in this section is known in some forms. See
[2] and [9] for a model-theoretic approach which we further pursue
here. The community of anabelian geometers prefers to speak in terms
of Galois categories, see e.g. [1]. One of the aims of the current project
is to demonstrate advantages of the model-theoretic point of view.

Unlike the above publications we do not apriori restrict the power
of the language to first order. The default assumptions is that

A relation is definable iff it is invariant under automorphisms (1)
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For finite structures this property holds for first order languages.
For countable structures the language Lω1,ω1 serves the purpose. The
main interest to us are finitary structures defined below. For this class
of structures first-order languages are essentially sufficient.

Definable means definable without parameters (the same as 0-
definable).

In general, we consider multi-sorted L-structures M. A definable
set in M is a definable subset D of S1 × . . . × Sn, a cartesian product
of finitely many sorts.

A definable sort in an L-structure M is a set of the form D/E
where D =D(M) is a definable set in M and E a definable equivalence
relation on D. An n-ary relation on D/E is definable if its pull-back
under the canonical map D →D/E is definable.

An interpretation of an LN -structure N in an LM -structure M
is a bijection g ∶ N → D/E, a sort in M such that for each basic
relation R the image g(R) is a definable relation on the sort D/E.

Given a structure M we also consider the structure MEq inter-
pretable in M and which has every sort of M as a definable substruc-
ture.

Note that a finite union of sorts and a direct product of finitely
many sorts is a sort in MEq.

2.2 Category M. Its objects are (multisorted) L-structures M (all
L).

The pre-morphisms g ∶ N → M are interpretations (without
parameters). More precisely,

g ∶ N→MEq

is an injective map such that g(N) is a universe of a sort in MEq, and
for any basic relation or operation R on N the image g(R) is definable
in the sort.

We denote g(N) the g(N) together with all the relations and op-
erations g(R) for R on N.

Two pre-morphisms g1 ∶ N → M and g2 → N → M are equivalent
if there is a bijection h ∶ g1(N) → g2(N) which is definable in MEq.

The equivalence class of a pre-morphism g ∶ N → M is a mor-
phism g ∶ N→M.

The following definitions will be used for pre-morphisms g as well
as for morphisms g.
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We say g is an embedding, g ∶ N ↪ M if g(N) has no proper
expansion definable in MEq.

We say g is a surjection, g ∶ N↠M if M ⊆ dcl(g(N)) where dcl
is in the sense of MEq.

We say that g ∶ N →M is an isomorphism, g ∶ N ≅ M, if g is an
embedding and a surjection.

In what follows we sometimes write N ≅M M to emphasise that
the isomorphism (or morphism) is in the sense of the category M to
distinguish from ones in the usual algebraic sense.

Lemma. Let g ∶ N → M be an M-isomorphism and let M′ =
g(N). Then the inverse map g−1 ∶ M′ →N induces a M-isomorphism
h ∶ M→N.

Proof. By assumptions we have M ⊆ dcl(M ′) in MEq. This im-
plies that there are in M ∶ a family {Si ∶ i ∈ I} of definable subsets
Si ⊂M ′ni and a family of definable functions hi ∶ Si →M such that

⋃
i∈I
hi(Si) =M and hi(Si) ∩ hj(Sj) = ∅ if i ≠ j.

Claim. We may assume that the family {Si ∶ i ∈ I} of domains of
fi is disjoint, that is Si ∩ Sj = ∅ if fi ≠ fj .

Proof. Note that by definition dcl(M ′) = dcl(M ′ ∪ dcl(∅)), where
dcl is understood in the sense of MEq. The latter has, for each i ∈ I,
the sort ’fi’ which is defined as the graphfi/Ei where Ei is the trivial
equivalence relation with one equivalence class. Clearly, ’fi’∈ dcl(∅).
Now replace Si by Si×’fi’ and we have the required.

Set D(M′) ∶= ⋃i∈I Si and h ∶D(M′) →M to be ⋃i∈I hi. h is a map
definable in M and is an interpretation, a pre-morphism M→M′. On
the other hand, any relation on M′ is a relation on a sort in M since
M′ is a sort in MEq, hence there are no new relations on h(M) induced
from M′, that is the interpretation h is an embedding. Recalling that
M′ = g(N) completes the proof. �

We identify morphism h as in the Lemma with g−1.

2.3 For a subset A ⊆ M, denote M/A (or sometimes M(A)) the
expansion of M by names of elements of A.

Clearly, the identity map defines a (canonical) morphism M →
M(A). This morphism is an embedding (and so isomorphism) if and
only if A ⊆ dcl(∅).
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2.4 Given A ⊆ dcl(∅) we may treat A as a structure in which any
element is named (e.g. by a formula defining the element in M) and
so any relation is definable. Clearly then

Aut(A) = 1 and A↪M.

2.5 The category Mfin is a subcategory of M whose objects are fini-
tary structures M, that is structures which can be represented in the
form

M = ⋃
α<κ

Mα

where the Mα are finite first-order 0-definable substructures of M.

Note that an equivalent definition would be

M = acl(∅)

where acl is in the sense of first-order logic.

Example. Let k be a field and F = k̃, its algebraic closure. We
consider F = F/k as a structure in the language of rings with names
for elements of k. Then each a ∈ F is contained in a 0-definable set Ma

equal to its Galois orbit Ma ∶= Gk ⋅ a, Gk = Gal(F ∶ k). So F/k ∈Mfin.

2.6 Theorem. The map M → Aut(M) induces a contravariant
functor from M into the category Gtop of topological groups. This
functor sends Mfin into the category of profinite groups Gpro,.

(i) To every g ∶ N→M corresponds the restriction homomorphism
ĝ ∶ Aut(MEq) → Aut(N).

(ii) An embedding g ∶ N ↪ M to the surjection ĝ ∶ Aut(M) ↠
Aut(N), provided M ∈Mfin.

(iii) The expansion by naming all points in A ⊆ MEq, g ∶ M→M/A
corresponds to an embedding ĝ ∶ Aut(M/A) ↪ Aut(M).

(iv) The profinite restriction of the functor,

Aut ∶ Mfin → Gpro,

is an equivalence of categories.

Proof. (i) is immediate by definition.
(ii) Since g is an embedding, the relations definable on g(N) are the

same in M and N. Hence a g(N)- automorphism α is an elementary
bijection g(N) → g(N) in M. Now consider an elementary saturated
enough extension M ≺ ∗M. It is homogeneous and so α extends to an
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automorphism α∗ of ∗M. But any automorphism preserves aclM(∅)
which is equal to M under our assumption. Thus α∗ induces an au-
tomorphism of M which extends α.

(iii) Immediate.
(iv) First we prove the statement for Aut ∶ Mfinite → Gfinite, the

functor between finite structures and finite groups, subcategories of
Mfin and Gpro, respectively.

Given a finite group G one constructs a finite M such that G ≅
Aut(M) by setting M = G and introducing all relations R on M which
are invariant under the action of G on G by multiplication. This gives
us for M = (M ;R)

Claim.
G = Aut(M)

Proof. G acts on M by automorphisms by definition. We need to
prove the inverse, i.e. that there are no other automorphisms. Con-
sider the tuple ḡ of all the elements of G (of length n = ∣G∣) and let
Sg be the conjunction of all the relation in R that hold on ḡ (that
is tp(ḡ)). We can also consider S0

g ∶= G ⋅ ḡ, the orbit of ḡ under the

action of G. Clearly, S0
g ⊆ Sg and by minimality they are equal.

Now take an automorphism σ and consider σḡ. This is in Sg and
thus, for some h ∈ G, σḡ = hḡ, that is σgi = hgi for each gi ∈ G. Claim
proved.

It remains to see that if G ≅ Aut(N), then N is definable in M
and vice versa. In order to do this we may assume G = Aut(N).

Consider N, the universe of the structure, and let n be the N
presented as an ordered tuple. Let M ′ ∶= G ⋅ n, the orbit of the tuple
under the action of the automorphism group. Clearly, M ′ consists of
∣G∣ distinct elements, since automorphisms differ if and only if they
act differently on the domain N. Also M ′ is definable in N since
the tuples n′ making up M ′ are characterised by the condition that
tp(n′) = tp(n). The relations R induced on M ′ from N are invariant
under Aut(N), and because a finite structure is homogeneous, the
converse holds. In other words an obvious bijection M → M ′ is a
bi-interpretation, so M ≅ M′ in the sense of M. At last notice that
we can interpret N in M′ since the relation “n′ and n′′ have the same
first coordinate is invariant under G” is definable. This gives us N as
a definable sort. It follows that any relation on N definable in N is
definable in M′. So N ≅ M′ ≅ M in the sense of M. Finite case of Aut
proven.
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Now we extend Aut to the category of finitary structures M ∈Mfin

by continuity

M = lim
→

Mα →G = lim
←

Gα, where Gα = AutMα

Since the functor is invertible and preserves morphisms on finite
objects of the categories, it is an equivalence also on the limits.

�

2.7 Example. Let K and L be two number fields, Q̃ = F. Let
FK and FL be two structures with respective subfields of constants
(named points). Clearly these belong to Mfin. A celebrated theorem
by Neukirch states that

FK ≅M FL⇔K ≅ L.

2.8 Let i ∶ N →M/A be an interpretation of N in M over A. Then
every relation R which is 0-definable in N is a point in MEq/A. The
definable closure of all these points denote [iN] or often just [N]
where an i is assumed.

More precisely, let

Aut(M/[iN]) ∶= {σ ∈ Aut(MEq) ∶ σ∣iN ∈ Aut(iN)}, (2)

Set

[iN] ∶= FixMEq(Aut(M/[iN]) = {a ∈ MEq ∶ ∀σ ∈ Aut(M/[iN]) σ(a) = a}.

Clearly,
[iN] ⊆ dcl(A). (3)

Also,
and if iN is 0-definable then

[iN] = dcl(∅) and Aut(M/[iN]) = Aut(M).

2.9 Proposition. Let N,M ∈Mfin. Let ĥ ∶ Aut(M) ↠ Aut(N) and
let ĝ ∶ Aut(N) ↪ Aut(M) be a section of ĥ, that is ĥ ○ ĝ = idAut(N).

Then there is an interpretation-isomorphism

i ∶ N ≅ M/A,
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for some A ⊂M satisfying dclMEq(A) = dclMEq([iN]), so we may set
A = [iN], such that

M ⊆ dclMEq(iN ∪ [iN]) and [iN] ∩ iN = dclN(∅). (4)

Proof. By 2.6 and the assumptions, there is an interpretation

h ∶ N↪M

correponding to ĥ, such that any σ ∈ Aut(M) induces ĥ(σ) ∈ Aut(hN)
and in this way we get all automorphisms of hN, that is ĥ(Aut(M)) =
Aut(hN). Without loss of generality we may assume that N is a sub-
structure of MEq, that is h is a pointwise identity embedding and
ĥ(σ) is the restriction of σ to N. Thus

ĥ(Aut(M)) = Aut(N). (5)

Consider the subgroup ĝ(Aut(N)) ⊆ Aut(M), an isomorphic copy
of Aut(N). Since ĝ is a section of ĥ we get

ĥ(ĝ(Aut(N))) = Aut(N).
By assumptions ĝ lifts any automorphism ρ ∈ Aut(N) to a unique

automorphism ĝ(ρ) ∈ Aut(M) giving the embedding ĝ ∶ Aut(N) ↪
Aut(M).

Set
A ∶= FixMEq(ĝ(Aut(N))).

Note that according to (2)

ĝ(Aut(N)) = Aut(M/[N])
and this by definition in 2.8 A = [N]. Moreover, N is definable in
MEq over A since N as a structure is Aut(MEq/A)-invariant. In
other words there is a pre-morphism i ∶ N→M.

Now note that i is an M-embedding since every ρ ∈ Aut(N) lifts
to an automorphism ĝ(ρ) of MEq/A.

Next we note that i is an M-surjection, that is dclMEq/A(N) ⊇M,
or equivalently

dclMEq(N ∪A) ⊇M.

To see the latter we remark that if σ ∈ Aut(M) fixes A∪N point-wise
then σ ∈ ĝ(Aut(N)) (because A is fixed) and σ is identity on N. That
is σ = 1.

Finally note that A∩N = dclN(∅) because the intersection consists
exactly of Aut(N)- fix-points of N. �
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2.10 Lemma. Suppose M is algebraic over ∅, M = acl(∅). Let
G↪ Aut(M) be a closed subgroup (in the profinite topology). Then G
is a pointwise stabiliser of a subset A ⊂M. That is

G = Aut(M/A)

G is normal iff A can be chosen 0-definable.

Proof. Let A = {a ∈ M ∶ ∀g ∈ Gg.a = a}. Then G ⊆ Aut(M/A).
The inverse follows from G being closed. This is easy to see for M
finite, and this is enough since M is algebraic.

With the above choice of A, G is normal iff N is invariant under
Aut(M), that is Lω1,ω-definable. �

2.11 Proposition. To every 0-definable N in M (write N ↪ M)
one associates the exact sequence

1→ Aut(M/N) → Aut(M) → Aut(N) → 1,

and every exact sequence of closed subgroups has this form for some
N↪M.

3 Reduced schemes and varieties over

k

Our aim in this section is to clarify the relations between scheme-
theoretic language and the language of varieties which is more readily
adaptable to model theory treatment.

By scheme we always mean a reduced scheme.
Recall that an affine k-scheme of finite type is given by a com-

mutative unitary ring A with k ↪ A, finitely generated over k and
without nilpotent elements. From logical perspective this should be
treated as a syntax to which we still have to provide semantics. One
can do it by first, associating with every A a certain language LA,
and then providing a first-order LA-theory TA, models of which will
be seen as semantic realisations of A, not necessarily the scheme as
SpecA in scheme-theoretic sense. The morphisms A→ B (in particu-
lar, automorphisms) given by homomorphisms of rings in the category
of schemes must be reflected by certain “morphisms” between models
of TA and TB.
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3.1 Varieties over k. Let F be an algebraically closed field contain-
ing k and F/k be the field F with names for all elements of k.

A (formal) affine variety X over k realised in F (sometimes
written as X/k(F) or Xk ) is the two sorted structure (X(F),F/k) ,
in a language LA, where X(F) ⊆ Fn is the zero set of a system of
polynomials over k (the variety sort), F is the sort for the field, and
LA is the language with

• unary predicates for sorts X and F,

• the addition and multiplication operation on sort F,

• constant symbols for each element of k in F,

• names of all the Zariski regular unary maps a ∶ X(F) → F defined
over k.1

Note that since X(F) ⊆ Fn the genuine n coordinate functions,
projections into F, generate the k algebra of regular functions X(F) →
F conventionally written k[X].

Fixing x ∈ X(F) one gets a homomorphism (representation) of the
k-algebra A into the k-algebra F/k

ρx ∶ a↦ a(x), A→ F, (6)

so the points of X(F) are in a natural bijective correspondence with
irreducible representations of A and in a natural bijective correspon-
dence with maximal ideals of A.

Choosing a finite set a1, . . . , am ∈ A generating A as an algebra
over k one gets an emdedding

x↦ ⟨a1(x), . . . , am(x)⟩; X(F) ↪ Fm

3.2 To every connected (not necessarily geometrically connected)
affine k-scheme A we now associate a first-order LA-theory TA.

Let kA ⊂ A be a maximal subfield of A algebraic over k. Since A is
finitely generated, kA = k[a] for some a ∈ A.

Note that there is just one maximal subfield of A algebraic over k.
This follows from the fact that A has no zero-divisors.

The theory TA of two sorted structures (X,F) will say:

1. (F,+, ⋅) is an algebraically closed field;

1If X = X1∪ . . .∪Xl decomposition into irreducible components, a ∶ X(F) → F is regular
if and only if its restrictions on each component is regular.

10



2. For each ξ ∈ k ⊆ F, there is a ∈ A such that ∀x ∈ X a(x) = ξ;
For each a ∈ kA there is α ∈ F such that ∀x ∈ X a(x) = α;

3. For each non-constant polynomial p(T1, . . . , Tm) over k, for any
a1, . . . , am ∈ A,

p(a1, . . . , am) = 0 iff ∀x ∈ X p(a1(x), . . . , am(x)) = 0;

4. For each a1, . . . , an ∈ A⊗kA=k[α]F, such that the ideal ⟨a1, . . . , an⟩
does not contain 1, it holds

∃x ∈ X a1(x) = . . . = an(x) = 0.

5. Given a generating set a1, . . . , an of A,

∀x1, x2 ∈ X (
n

⋀
i=1

ai(x1) = ai(x2) → x1 = x2).

Axioms 2. - 4. are infinite sets of first-order axioms each.

3.3 Proposition. TA is a complete theory categorical in uncount-
able cardinals. Any model of TA is isomorphic to one of the form
(X(F),F/k) for some affine variety X(F) ⊆ Fn such that the co-ordinate
algebra k[X] is isomorphic to A.

Proof. Given TA, axioms 2 and 3 determine A as an algebra over
k.

Choose an algebraically closed field F and choose an embedding
ı ∶ k↪ F. Interpret of ı(ξ) as the constant map with value ξ according
to the first part of axiom 2.

Let kA ∶= k[a]. Choose an embedding ıa ∶ k[a] ↪ F extending ı. Let
α = ıa(a). Interpret a as the constant map with value α.

Set
X(F) ∶= HomF(A⊗kA F,F), (7)

where kA is identified with ıa(kA) ⊂ F.
Elements a ∈ A interpret a functions a ∶ X(F) → F by defining, for

x ∈ X(F),
a(x) ∶= x(a).

This gives us a model of TA.
Now we note that every model of TA is of this form. Indeed, by

axiom 1 we start with an algebraically closed F for the respective sort.
Axioms 2 and 3 tell us that algebraic relations in the k-algebra A agree
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with algebraic relations between the functions X → F interpreting
elements of A. Axiom 4 guarantees that every homomorphism A → F
gives rise to a point in X. And axiom 5 implies that the correspondence
between points of X and homomorphisms is bijective.

It remains to prove categoricity of TA in uncountable cardinals.
We prove a stronger statement, that any two models with the same F
are isomorphic. Indeed, once kA = k[a] is identified with k[α] ⊂ F, and
a with α, the F-algebra A ⊗kA F is a coordinate algebra of a unique
connected variety X(F) over F. We write it as Xα(F). Any other model
with the same F is obtained by choosing an embedding k[a] → F, that
is by identifying a with an α′ ∈ F, Galois conjugated to α. By con-
struction (7), a field isomorphism F/k[α] → F/k[α′], α ↦ α′, induces an
isomorphism Xα(F) → Xα′(F) which gives us an isomorphism between
the two models. �

Note that given TA we are given the language LA and the axioms
2. and 3. provide the description of the ring structure on A as well as
embedding k→ A. Hence TA uniquely recovers A.

This describes a bijective correspondence between the class of
affine geometrically connected reduced k-schemes and theories of the
form TA, equivalently, between schemes and elementary classes of LA-
structures of the form (X(F),F/k), or more precisely (Xα(F),F/k).
3.4 Remark. By associating α ∈ F with a ∈ A we identify Xα(F) as

a connected affine variety defined over kα ∶= k[α], a kα-variety.
The respective embedding k[α] ↪ A allows us to see Xα(F) as a

k[α]-scheme, a connected component of scheme A.

3.5 Morphisms f ∶ A → B between affine k-schemes are homomor-
phisms of k-algebras.

f canonically induces an interpretation of models (Xα(F),F/k) of

TA in appropriate models (Yβ(F),F/k) of TB.

Let kA = k[a] be as above and kB = k[b] be the algebraic closure
of k in B.

We will have f∣k[a] an embedding into k[b] and hence f(a) is a
constant function on Yβ(F), f(a)(y) = α′, where α′ ∈ k[β], k[α′] ≅
k[α].

Note that the choice of the constant functions identifies k[α] with
kA and k[β] with kB.

We will say that the choice of model (Yβ(F),F/k) of TB is appro-

priate to the choice of model (Xα(F),F/k) of TA with respect to f if
α′ = α.
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When α′ = α we can define the unique homomorphism of F algebras

fα,β ∶ A⊗k[α] F→ B ⊗k[β] F

which is given as f on A and as identity on F.
By commutative algebra, there is a canonical regular map between

varieties
f∗β,α ∶ Yβ(F) → Xα(F) (8)

functorially correponding to fα,β.
The family of all the maps f∗β,α between variety sorts of appropriate

pairs of models TB and TA we define as the morphism

f∗ ∶ TA → TB (9)

which corresponds to f ∶ A → B (note that → in (8) is inverse to that
of (10)).

Finally we note that f∗β,α ∶ Yβ(F) → Xα(F), for any choice of ap-
propriate α,β, determines f ∶ A → B. Indeed, given a ∈ A together
with its interpretation a ∶ Xα(F) → F in the models we can define
b = f(a) uniquely by setting,

b(y) = f(a)(y) = a(f∗β,α(y)).

3.6 In case f is an embedding, f∗β,α is a surjective map and can be

classified as an interpretation of model (Xα(F),F) of TA in model
(Yβ(F),F) of TB. Indeed Xα(F) can be identified with a quotient of
Yβ(F) by a Zariski closed equivalence relation definable in LB. Co-
ordinate functions a ∈ A on Xα(F) will be interpreted by f(a) = b ∈ B
and hence LA-relations are interpretable in the language LB.

We will say in this case that theory TA is interpreted in theory TB.

In case f is an embedding and f(kA) = kB for appropriate pairs
of models we have α = β and thus both Xα(F) and Yα(F) are k[α]-
varieties. Now the interpretation of Xα(F) in Yα(F) does not induce
new relations on Xα(F) since any automorphism of F/k[α] can be ex-
tended uniquely to (abstract) automorphisms of Xα(F) and Yα(F)
respecting f∗α,α.

Thus we have proved

3.7 Proposition. The category of affine k-schemes with morphisms
f ∶ A → B is equivalent to the category of theories of varieties with
morphisms f∗ ∶ TA → TB described above. The morphisms f∗ acts
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between models as a regular map f∗β,α ∶ Yβ(F) → Xα(F) where Yβ is a
k[β]-variety, Xα is a k[α]-variety and there is an embedding k[α] ⊆
k[β] induced by the embedding f ∶ kA → kB.

If f is an embedding, f∗ determines an interpretation f∗ ∶ TA →
TB of appropriate models of the theory TA in models of the theory
TB.

If, in addition, f(kA) = kB the interpretation f∗ is an embedding-
interpretation.

The more general notion of a quasi-projective k-schemes A of finite
type is based on the gluing construction between several affine
schemes A1, . . . ,An. The gluing construction between schemes can
be routinely translated into a definable gluing construction between
models of TA1 , . . . , TAn thus furnishing a theory TA with two-sorted
models of the form X(F),F/k, where X(F) is a quasi-projective va-
riety. Morphisms between models of respective theories are defined
accordingly.

We skip the detail and claim the following generalisation of 3.7

3.8 Theorem.The category of quasi-projective k-schemes with mor-
phisms f ∶ A → B is equivalent to the category of theories of varieties
with morphisms f∗ ∶ TA → TB described above. The morphisms f∗

acts between models as as a regular map f∗β,α ∶ Yβ(F) → Xα(F) where
Yβ is a k[β]-variety, Xα is a k[α]-variety and there is an embedding
k[α] ⊆ k[β] induced by the embedding f ∶ kA → kB.

If f is an embedding, f∗ determines an interpretation f∗ ∶ TA →
TB of appropriate models of the theory TA in models of the theory
TB.

If, in addition, f(kA) = kB the interpretation f∗ is an embedding-
interpretation.

3.9 Let Xα(F) be given by its embedding Xµ,α(F) ⊂ PN(F). This
defines the coordinate algebra over F of affine charts of the variety and
so defines the respective F-scheme, up to isomorphism of schemes. In
particular, the embedding defines the respective k(α)-scheme up to
isomorphism of schemes.

Equivalently, defines TA up to an isomorphism of the language LA.

3.10 Remark. (i) Note that for X over k

X/k(F) ≅M F/k.
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This is immediate from definitions.
(ii) Besides the obvious interpretation of F in X(F) by the sort F

we have interpretations associated with each non-constant coordinate
function a ∶ X → F. The field structure F is interpreted then on the
set X(F)/Ea (plus-minus a finite subset) where Ea is an equivalence
relation given by xEa x

′⇔ a(x) = a(x′).
This interpretation is isomorphic to (bi-interpretable with) the ob-

vious interpretation on the sort F since the map a induces a definable
isomorphism between X(F)/Ea and F and in characteristic 0 the only
definable automorphism of F is the identity.

3.11 Remark. Let Xα(F) and Xα′(F) be the variety sorts in two
models of TA. Let as in 3.5 kA = k[a] where a interpreted as the
constant function with value α in Xα(F) and the constant function
with value α′ in Xα′(F).

Let f ∶ A → A be an automorphism such that f(a) = a′ ∈ kA,
where a′ is the name corresponding to the constant function with
value α′ in Xα(F). Then the automorphism f of schemes induces the
isomorphism of f∗α,α′ ∶ Xα(F) → Xα′(F) of models, and conversely,

every isomorphism of models by changing the embedding kA → F is
induced by an automorphism f of the scheme.

4 Finite étale covers

4.1 Let X(F) be a geometrically connected variety over a number
field k which we also will treat as the sort in the model (X(F),F/k)
for a theory TA corresponding to a geometrically connected reduced
k-scheme A.

We develop below a uniform model for the category of all finite
Galois étale covers of X.

4.2 The sort F will be considered along with the projective space
PN(F), where N is chosen so that X and étale covers Y of X embed
in PN (for X a curve, N = 3 suffices).

Each finite étale covering of a scheme X over k according to 3.8
corresponds to a finite family of varieties

Xµ(F) ∶= {Xµ,α(F) ∶ fµ(α) = 0}
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and regular covering maps (morphisms)

µ ∶= {µα ∶ Xµ,α(F) → X(F) ∶ fµ(α) = 0}

where Xµ,α(F) are varieties defined over k[α], fµ ∈ k[T ] is the minimal
polynomial of α. Also µ is the name marking the étale cover and the
collection of all such names will be denoted MX (or just M if an X
is clear from the context) In order to include the identity étale cover
1 ∶ X→ X we assume 1 ∈ M and X1 = X.

We assume that MX represents all finite étale covers of X, up to
isomorphisms.

It is not true in general that, given k(α) and Xµ,α the map µα
is the only étale cover. Our notation just fixes one among possibly
many.

Note that Xµ,α(F) in this setting is a k(α)-definable subset of
PN(F) and µα a k(α) definable map, so both are given by certain
formulas in the language of fields.

Claim. We can choose family µ to be invariant under automor-
phisms of F over k. Equivalently, we may assume

µ = {µα ∶ α ∈ Zeros(fµ)}

is invariant under Galk.
Proof. Given α and µα ∶ Xµ,α(F) → X(F) define, for α′ ∈ Zeros(fµ),

Xµ,α′(F) and µα′ ∶ Xµ,α(F) → X(F) by applying an automorphism
σ ∈ AutF/k to parameters in the definitions of Xµ,α(F) and µα′ . Equiv-
alently, replacing α by α′ in the definitions.

4.3 Intermediate morphisms between étale covers of X.
Given étale covers µα ∶ Xµ,α → X and νβ ∶ Xν,β(F) → X(F) we

consider now étale morphisms

f∗ ∶ Xµ,α → Xν,β (10)

such that
νβ ○ f∗ = µα.

We call such f∗ an intermediate morphism. By 3.5 and 3.8 f∗ is
uniquely determined by a morphism f between respective schemes
and the correspondence is functorial.

For each such µα and νβ such that a morphism (10) exists we
distinguish one particular morphism which we call

(ν−1
β µα) ∶ Xµ,α → Xν,β ,
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The notation indicates the fact that

νβ ○ (ν−1
β µα) = µα

not to be confused with ν−1
β ○ µα which in general is not well-defined

as function but is a correspondence.
In general one can not make a Galk-invariant choice of all the

distingushed (ν−1
β µα).

4.4 More notations and definitions. In what follows Kµ,α will
stand for the field of definable functions of Xµ,α(F), which is the same
as the function field of the variety Xµ,α(F) over k[α]. Note that since
the covers are Galois, k[α] = k[α′] for α′ Galois-conjugated to α.More-
over, k[α] ≅ kµ, the field of definable constant functions on Xµ,α(F).
(Note the notation kµ which agrees with the notation kA of 3.5).

It follows also that
Kµ,α ≅ Kµ,α′

as fields. One must be aware that the isomorphism between the two
fields is not canonical, however, any two isomorphisms differ by an
automorphism of the field fixing the subfield K.

We sometimes use the notation

Kµ ∶= Kµ,α

identifying the field as an abstract extension of K.

4.5 Pure syntactic morphisms. A morphism

(ν−1
β µα) ∶ Xµ,α(F) → Xν,β(F)

is pure syntactic if (ν−1
β µα) as a map is a bijection of varieties and the

field Kµ of definable functions of Xµ,α(F) is of the form Kν ⊗kν kµ, i.e.
obtained by adjoining a constant co-ordinate function with value α.

It follows from definitions that pure syntactic (ν−1
β µα) is finite

étale.

Next we are going to prove that pure syntactic covers of a given
Xν,β can be amalgamated and the amalgamation is pure syntactic.
For this purposes we may assume consider just covers of X(F).

It is clear that up to isomorphism pure étale morphism µα is de-
termined by α ∈ kalg so we may write it as α ∶ Xα(F) → X(F).
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Lemma. Let α ∶ Xα(F) → X(F) and β ∶ Xβ(F) → X(F) be pure
syntactic. There exists a pure syntactic γ ∶ Xγ(F) → X(F) amalgamat-
ing both.

Proof. Treating the schemes locally we may assume that X, Xα
and Xβ are affine and their co-ordinate rings are R, A and B, respec-
tively. Moreover, by definition, kR = k and A = R⊗kk[a], B = R⊗kk[b]
for some a ∈ A and b ∈ B such that k[a] ≅ k[α] and k[b] ≅ k[β].

Moreover, a(x) = α on Xα(F) and b(x) = β on Xβ(F).
Let k[γ] = k[α,β]. Let the ring C ≅φ R⊗kk[γ], where γ corresponds

to an abstract element c ∈ C by the isomorphism φ. Let a′ and b′ be
the uniquely defined elements of C which correspond under φ to α
and β respectively.

We now have obvious embeddings

g ∶ A→ C, a↦ a′ and h ∶ B → C, b↦ b′.

These give us étale morphisms of respective schemes and we can
now construct a model of TC given by a variety Xγ(F) which is set-
wise just X(F) and which has constant co-ordinate functions a′(x) = α
and b′(x) = β for x ∈ X(F). By our choices Xα(F) and Xγ(F) is an
appropriate pair of models of TA and TC and so is the pair Xβ(F)
and Xγ(F). Thus we have defined morphisms

g∗γ,α ∶ Xγ(F) → Xα(F) and h∗γ,β ∶ Xγ(F) → Xβ(F),

as required. �

4.6 Pure geometric morphisms. A morphism

(ν−1
β µα) ∶ Xµ,α(F) → Xν,β(F),

is pure geometric (semantic) if the field kµ of definable constant func-
tions of Xµ,α(F) is equal to kν . That is both varieties are defined over
k[β] and k[β] = k[α].

Warning. It is not true in general that (ν−1
β µα) is defined over

k[β].
Remark. If (ν−1

β µα) is pure geometric then both absolutely irre-
ducible varieties Xµ,α(F) and Xν,β(F) are defined over k[β] and hence
their function fields, as varieties over F, are Kµ⊗k[β] F and Kν ⊗k[β] F
respectively.

Since k[β] is algebraically closed in each of the fields,

Gal(Kµ ⊗k[β] F ∶ Kν ⊗k[β] F) ≅ Gal(Kµ ∶ Kν). (11)
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4.7 Lemma. Every finite étale µα ∶ Xµ,α(F) → X(F) can be pre-
sented as a composition of pure syntactic νβ ∶ Xν,β(F) → X(F) and a
pure geometric (ν−1

β µα) ∶ Xµ,α(F) → Xν,β(F).
Proof. First assume X to be affine and let A to be its coordi-

nate ring over k. Define the coordinate ring of Xν,β to be kµ ⊗k A.
Now the embedding A ↪ kµ ⊗k A induces a pure syntactic mor-
phism νβ ∶ Xν,β(F) → X(F) which further lifts to pure geometric
(ν−1
β µα) ∶ Xµ,α(F) → Xν,β(F).

The same procedure applies to open charts of X in the general case.
�

4.8 In the following chapters we will be interested in the special cases
of complex algebraic varieties. This corresponds to the case F = C. In
particular, if (ν−1

β µα) is pure geometric then by Remark in 4.6 (ν−1
β µα)

is a morphism in the category of complex algebraic varieties, and hence
in the category of complex manifolds.

We are going to use a standard fact in the theory of étale covers
(easily following from definitions): a morpism between complex alge-
braic varieties is étale if and only if it is unramified in the category of
complex manifolds.

4.9 Recall the definition of the deck-transformation group for an
unramified cover:

GDeck(Xµ,α(C)/Xν,β(C)) is the group of biholomorphic transfor-
mations of Xµ,α(C) as a complex manifold fixing fibres of Xµ,α(C) →
Xν,β(C).

By standard algebra/analytic comparison facts we get the same
group by replacing “biholomorphic transformations of Xµ,α(C) as a
complex manifold” by “biregular transformations of Xµ,α(C) as a com-
plex algebraic variety.

This can be equivalently given in terms of function fields of the
varieties defined over respective subfieds,

GDeck(Xµ,α(C)/Xν,β(C)) ≅ Gal(Kµ ⊗k[α] C ∶ Kν ⊗k[β] C).

In the right-hand side we can replace C by any algebraically closed
field F containing k[α] and k[β].

Given pure geometric morphism

(ν−1
β µα) ∶ Xµ,α(F) → Xν,β(F),
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we call the geometric deck-transformation group the group of
biregular transformations of Xµ,α(F) fixing fibres of Xµ,α(F) → Xν,β(F)
as algebraic varieties over F.

We often refer to a deck-transformation group without mention-
ing F and we always assume that the cover is pure geometric. In
particular, one easily deduces from the above,

GDeck(Xµ,α/Xν,β) ≅ Gal(Kµ ∶ Kν). (12)

4.10 Lemma. Suppose (ν−1
β µα)′ ∶ Xµ,α(F) → Xν,β(F) is a pure geo-

metric morphism with the property νβ ○ (ν−1
β µα)′ = µα. Then there is

g ∈ GDeck(Xν,β/X) such that

(ν−1
β µα)′ = g ○ (ν−1

β µα).

Proof. Consider

S ∶= {⟨x,x′⟩ ∈ Xν,β(F)×Xν,β(F) ∶ ∃y ∈ Xµ,α (ν−1
β µα)(y) = x& (ν−1

β µα)′(y) = x′}.

We may assume F = C and work in the category of complex manifolds.
Since étale coverings are closed unramified maps, S is a Zariski

closed subset of the set

E ∶= {⟨x,x′⟩ ∈ Xν,β(F) ×Xν,β(F) ∶ νβ(x) = νβ(x′)}.

and is locally holomorphically isomorphic to Xν,β(F).
We claim that the irreducible components of E are in one-to-one

correspondence with elements g ∈ GDeck(Xν,β/X) and are indeed of
the form

Eg = {⟨x,x′⟩ ∶ g ∗ x = x′}.
Indeed, pick a point ⟨x0, x

′
0⟩ ∈ E and an irreducible component C0

of E containing the point. Since GDeck(Xν,β/X) acts transitively on
fibres of νβ there is g such that g ∗ x0 = x′0, that is ⟨x0, x

′
0⟩ ∈ Eg. Thus

C0 and Eg have a common point which is only possible if C0 = Eg,
since E is non-singular.

The claim implies the required.

4.11 Projective limit of étale covers along distinguished mor-
phisms. The scheme-theoretic category of finite Galois étale covers
allows a profinite universal object, the fundamental pro-object in ter-
minology of SGA1, see also [10], pp.26-27. Our construction below
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in this section corresponds to a different object which depends on
extra data, namely a system of distinguished morphisms. The struc-
ture which properly represents Grothendieck’s pro-object will be con-
structed later in section 7.

We work with the family

X ∶= {Xµ,α(F) ∶ µ ∈ MX , α ∈ Zeros fµ}

of varieties, covers of X, and the family of all the intermediate mor-
phisms between them.

We aim to construct a projective system of distinguished inter-
mediate morphisms (ν−1

β µα) ∶ Xµ,α(kalg) → Xν,β(kalg), equivalently,

distinguished morphisms (ν−1
β µα) ∶ Xµ,α(F) → Xν,β(F), satisfying the

conditions:
(i) For each µα a distinguished (µ−1

α µα) ∶ Xµ,α → Xµ,α is an identity
on Xµ,α.

(ii) if (ν−1
β µα) ∶ Xµ,α(F) → Xν,β(F) and (λ−1

γ νβ) ∶ Xλ,γ(F) →
Xµ,α(F) are distinguished then their composite

(λ−1
γ µα) ∶= (ν−1

β µα) ○ (λ−1
γ νβ)

is distinguished.
In the Appendix (section 8) we prove:
Claim.A projective system of distiguished morphisms exists.
Hence there is a well-defined projective limit

X̃et(F) ∶= lim
←

Xµ,α(F)

along the system of morphisms (ν−1
β µα)

This gives us a cover of X(F),

p ∶ X̃et(F) → X(F)

and of each intermediate Xµ,α(F),

pµ,α ∶ X̃et(F) → Xµ,α(F)

which satisfy the relations

(ν−1
β µα) ○ pµ,α = pν,β (13)

for the distingushed (ν−1
β µα).
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4.12 Remarks.
1. The construction of Xet depends on the choice of the projective

system of distinguished morphisms.
2. By definition

X̃et(F) ⊂ (PN(F))MX

where the right-hand side is the set of all functions u ∶ MX → PN(F).
The automorphism group AutF/k acts on PN(F). In general, X̃et(F)

is not AutF/k-invariant.
In particular, it is not true in general that the families

pµ ∶= {pµ,α ∶ α ∈ Zeros fµ}

are AutF/k -invariant even if F = kalg. However, the families of sets

p̃µ ∶= {g ○ pµ,α ∶ g ∈ GDeck(Xµ,α/X), α ∈ Zeros fµ}

are AutF/k-invariant since the initial system {µα ∶ α ∈ Zeros fµ} is
AutF/k-invariant.

4.13 Remark. The maps pµ,α are determined by the µα up two
regular transformation of Xµ,α preserving fibres of µα, that is up to
the action of g ∈ GDeck(Xµ,α/X). Indeed,

µα = p ○ (g ○ pµ,α)−1.

To see this we note that pµ,α is the inverse limit of the system of
distinguished (µ−1

α νβ), for ν ∈ MX, “above” µ, so is uniquely deter-
mined by the choices of (µ−1

α νβ) ∶ Xν,β → Xµ,α. A different choice p′µ,α
results from a different choice (µ−1

α νβ)′ ∶ Xν,β → Xµ,α at some stage
ν ∈ MX. By 4.10

(µ−1
α νβ)′ = g ○ (µ−1

α νβ), for some g ∈ GDeck(Xµ,α/X)

which proves the claim.

4.14 Lemma. Suppose Xµ,α(kalg) = Xν,β(kalg) as sets and the set-
to-set maps

µα ∶ Xµ,α(kalg) → X(kalg) and νβ ∶ Xν,β(kalg) → X(kalg)

are equal. Then
pµ,α = pν,β .

Proof. The assumptions of the lemma imply that Xµ,α(kalg) =
Xν,β(kalg) as varieties over kalg and µα = νβ as morphisms over kalg.
Hence pµ,α = pν,β by construction. �
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4.15 Along with the projective limit X̃et(F) of covers one obtains also
the projective limit of deck transformation groups which we denote

Γ̂ ∶= lim
←

GDeck(Xµ,α/X).

This group acts freely on X̃et(F) in agreement with the actions of
GDeck(Xµ,α/X) on Xµ,α(F).

In terms of the action of Γ̂ on X̃et(F) one defines period subgroups

∆̂µ,α ∶= Per(pµ,α) ∶= {γ ∈ Γ̃ ∶ ∀x pµ,α(γ ∗ x) = pµ,α(x)}.

It follows from 4.7 and (12) that ∆̂α is a normal subgroup of Γ̂ and
that

• GDeck(Xµ,α/X) ≅ Γ̂/∆̂µ,α.

In particular, ∆̂µ,α is of finite index in Γ̂. Moreover, one sees that

⋂
µ,α

∆̂µ,α = {1},

that is Γ̂ is residually finite.

4.16 The language L♯X.
We consider X̃et(F) in a formalism of a structure with two basic

sorts X̃et(F) and F/k. The sorts interact via the families pµ,α of maps
which we formalise as follows.

We use pµ, µ ∈ MX, as names which are interpreted as maps

pµ ∶ X̃et(F) × Zeros fµ → PN(F)

such that
pµ(u,α) ∶= pµ,α(u),

where on the right we use the notation of previous subsections for
individual α-definable maps. (So we continue to think of pµ as families
of maps.)

We will denote

X̃et
♯ (F) ∶= (X̃et(F), F/k,{pµ}µ∈MX)

the structure obtained by the inverse limit construction from the F-
model X(F) of the curve X, where F is an algebraically closed field
containing k.
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The language of the structure: sort U for X̃, sort F with the lan-
guage of rings, and names (for the families) pµ of maps, we denote as
L♯X.

The superscript ♯ indicates that the language we use here for de-
scribing the universal étale cover is excessive, and thus not all the
possible symmetries of the cover can be realised as automorphisms.
The adequate language LX and the adequate étale cover structure X̃et

will be introduced in section 7.

We now note that the language L♯X of the structure is sufficient to
express all the notions of 4.2 - 4.11. Namely,

Xµ,α(F) = pµ,α(X̃(F))

as a subset of PN(F). Then the k(α)-definable structure on Xµ,α(F)
is defined by the embedding in PN over F/k.

4.17 Remark. Each v ∈ X̃(F) can be identified with the type τv in
one variable u

τv = {u ∈ U & pµ,α(u) = pµ,α(v) ∶ µ ∈ M, fµ(a) = 0}.

This is a type over the countable subset of F

Supp(v) = {pµ,α(v) ∶ µ ∈ M, fµ(a) = 0}.

5 Analytic Covers

In this section we are using the language L♯X to describe the analytic
cover X̃an(C) of the complex variety X(C), seen also as a complex
manifold.

5.1 We start agin with a reduced smooth geometrically connected
quasi-projective k-scheme X and X(C) ⊂ PN(C) as in 3.1 and section
4.

5.2 Let
p ∶ X̃an(C) → X(C)

be the universal cover (complex manifold) of the complex variety X(C)
with the covering holomorphic map. The (topological) fundamental
group Γ of X(C) acts properly discontinuously on X̃an(C), so

Γ/X̃an(C) ≅ X(C) (14)
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as complex analytic manifolds.

It is clear that the cartesian product Γn acts properly discontinu-
ously on the n-th cartesian power of X̃an(C).

5.3 Let µα ∶ Xµ,α(C) → X(C) be a finite regular covering map as in
section 4 which corresponds to an étale covering. Then µα is unrami-
fied in the sense of complex Hausdorff topology. Since X̃an(C) is the
universal cover of X(C) there is a normal subgroup ∆µ,α of Γ of finite
index and a holomorphic map

pµ,α ∶ X̃an(C) → Xµ,α(C) ≅ ∆µ,α/ X̃an(C)

where the last isomorphism is understood as a biholomorphic isomor-
phism between complex manifolds. It is clear from the general facts
that the group Γ/∆µ,α acts on Xµ,α(C) and

Γ/∆µ,α ≅ GDeck(Xµ,α(C)/X(C)).

Using that action of this group one can always adjust the choice of
pµ,α so that for a given finite unramified cover µα ∶ Xµ,α(C) → X(C),

• µα ○ pµ,α = p

Note also that by definition

• pµ,α(x) = pµ,α(x′) ⇔∆µ,α ⋅ x = ∆µ,α ⋅ x′

5.4 Finite unramified covers and étale covers of X(C). The
biholomorphic isomorphism type of ∆µ,α/ X̃an(C) according to alge-
braic/analytic comparison theorems corresponds to the isomorphism
type of the complex algebraic variety Xµ,α(C). So, if Xν,β(C) is a pure
syntactic cover of Xµ,α(C), then the respective complex manifolds are
the same and ∆µ,α = ∆ν,β .

Conversely, when a normal subgroup ∆ of Γ of finite index is given
one can always identify the complex manifold ∆/ X̃an(C) as an un-
ramified cover of the complex manifold X(C) and by the Riemann
Existence Theorem ∆/ X̃an(C) can be identified as an algebraic vari-
ety over C, étale covering X(C). Since X is defined over k, the algebraic
variety ∆/ X̃an(C) can be defined over an algebraic extension k(α) of
k, thus taking the form Xµ,α(C).
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5.5 The standard analytic structure. The two-sorted structure

X̃an
♯ (C) = (X̃an(C), C/k,{pµ}µ∈MX)

where, as above, X̃an(C) is the complex universal cover of X(C) seen as
a set, C/k is the complex numbers in the language of rings and names
for points of k. For each µ ∈ MX and each zero α of corresponding
polynomial fµ there is a pµ,α ∈ pµ,

pµ,α ∶ X̃an(C) → Xµ,α(C) ⊂ PN(C).

6 The first order theory of covers

6.1 The theory T ♯X
The axioms describe a two-sorted structure (U;F,{pµ}µ∈MX):

A1 F is an algebraically closed field of characteristic 0 with subfield
k of constants.

Remark. X(F) and each of the varieties Xµ,α(F) together with
étale morphisms µα and (ν−1

β µα) are given by kalg-definable sub-

sets of PN(F) and kalg-definable maps between them, as de-
scribed in 4.2 - 4.11.

A2 (µ) Given µ ∈ MX, pµ is a map with domain U × Zeros fµ and
values in PN(F), and

pµ(U × {α}) = Xµ,α(F).

A3 (µ, ν) There is an evaluation of parameters α,β, . . . in kalg ⊆ F
such that for all µ, ν ∈ M, for respective zero α of fµ and β of fν

(ν−1
β µα) ○ pµ,α = pν,β .

Remark. A3 is given by an infinite system of ∃∀-sentences each
of which states that a finite system of identities (13) which hold
in X̃et

♯ (F) is consistent.

6.2 Comparison Theorem. X̃an
♯ (C) and X̃et

♯ (F) are models of T ♯X,
with U = X̃an(C) and F = C in the first case and U = X̃et(F) in the
second case.

Proof. Immediate from 4.2 - 4.11. �
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6.3 Let G♯ be the subgroup of Galk which preserves the family of all
the distinguished morphisms (ν−1

β µα), that is,

σ ∈ G♯ if and only if (ν−1
β µα)σ = (ν−1

σ(β)µσ(α)), distinguished.

Define k♯ to be the subfield of kalg which is point-wise fixed by G♯.
We note that in X̃et(F) by construction σ(pµ,α) = pµ,σ(α) for σ ∈

G♯, since the pµ,α are limits of chains of distinguished morphisms.
Consider the sort F with the families of the distinguished mor-

phisms as a structure, call it F♯k.

6.4 Lemma. In F♯k
k♯ = F ∩ dcl(∅).

In any model of T ♯X

k♯ ⊆ F ∩ dcl(∅).

Proof. F♯k is interpretable in the field structure F with parameters.
By elimination of imaginaries in the theory of algebraically closed
fields, F♯k is bi-interpretable with Fk♯ .

The second statement is just a consequence of the first one. �

The next theorem was proved by A.Harris [6] in a less flexible lan-
guage.

6.5 Theorem.
1. The first-order theory T ♯X is complete. In particular,

X̃an
♯ (C) ≡ X̃et

♯ (F)

2. In a model (U,F/k) of the theory, a L♯X-first-order definable

subset of Un is of a form p−1(S) for S ⊆ Xn(F), L♯X-definable.
A first order L♯X-definable subset of Xn(F) is definable in the field

language using parameters in k♯. T ♯X has elimination of quantifiers in
the language L♯X expanded by names for k♯.

3. T ♯X is superstable.
Proof. We may assume by 6.4 that L♯X has names for elements of

k♯, so below F is always F/k♯ .
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Let (U,F) be a κ-saturated model T ♯X, κ uncountable cardinal. For
each u ∈ U define the type τu in variable v over F

τu(v) ∶= {pµ,α(v) = pµ,α(u)}

We will construct an elementary submodel

(U∗,F∗) ≼ (U,F)

such that

(i) ∣U∗∣ = ∣F∗∣ = κ.
(ii) any type of the form τu, for u ∈ X̃(F∗), is realised in U∗ by exactly

κ distinct elements.

(iii) any element of U∗ realises a type τu, for u ∈ X̃(F∗).
We call (U∗,F∗) as above a κ-good elementary submodel of
(U,F).

(Remark. Any κ-saturated model of cardinality κ ≥ c is κ-good.
Saturated model of cardinality κ ≥ c exist provided CH holds or TX is
stable.)

Let F0 ⊆ F be an algebraically closed subfield of cardinality κ. By
axiom A2 and A3 each type τu is realised in a saturated enough model
of T ♯X, so we can embed

X̃(F0) ⊆ U.

For each u ∈ X̃(F0) the set τu(U) of realisations of the type τu in U
is at least of cardinality κ. Let S0

u ⊆ τu(U) be a subset of cardinality
exactly κ.

Let
U0 = ⋃{S0

u ∶ u ∈ X̃(F0)}.

(U0,F0) is a submodel of (U,F) (check the axioms of TX) satifying
(i) and (ii), but we can not claim it is an elementary submodel. By
Løwenheim-Skolem we can construct

(U0,F0) ⊆ (U(0),F(0)) ≼ (U,F)

such that ∣U(0)∣ = ∣F(0)∣ = κ.
Now we repeat our construction starting with F1 = F(0) in place of

F0 and set
U1 = ⋃{S1

u ∶ u ∈ X̃(F1)},
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where S1
u ⊇ S0

u for u ∈ X̃(F0). Again, (U1,F1) is a submodel of (U,F)
satifying (i) and (ii) and we can continue

(U0,F0) ⊆ (U(0),F(0)) ⊆ (U1,F1) ⊆ (U(1),F(1)) . . . ⊆ (Ui,Fi) ⊆ (U(i),F(i)) . . .

where all models satisfy (i) and (ii) and

(U(0),F(0)) ≼ (U(1),F(1)) . . . ≼ (U,F)

Set
(U∗,F∗) = ⋃

i<ω
(U(i),F(i)).

This satisfies all the requirements.

Claim. For any κ-good models (U1,F1) and (U2,F2) of cardinality
κ there exists an isomorphism

i ∶ (U1,F1) → (U2,F2)

Proof. The fields in both structures have to be of the same cardi-
nality κ and hence they are isomorphic over k♯, the subfield of definable
elements. We assume without loss of generality that F1 = F2 =∶ F, and
i is an identity map on F.

Now X and all the Xµ,α along with morphisms µα have the same
meaning X(F), Xµ,α(F) and so on, in the two structures.

We need to construct i ∶ U1 → U2.
By assumptions each type τu is realised in both models (U1,F) and

(U2,F) by κ-many points of the sort U, call the set of realisations τU1
u

and τU2
u , respectively. Moreover,

U1 = ⋃
u
τU1
u and U2 = ⋃

u
τU2
u .

Set i ∶ U1 → U2 to be equal to ⋃u τu, where iu ∶ τU1
u → τU2

u are bijections.
This preserves all the maps pµα and hence is an isomorphism. Claim
proved.

It follows that any two κ-saturated models of T ♯X have isomorphic
elementary submodels, that is the models are elementarily equivalent.
The first statement of the Theorem follows.

2. Follows from the claim.

3. Is a direct consequence of 2. �
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6.6 Proposition.

Aut X̃et
♯ (F) ≅ AutF/k♯

canonically. In particular,

Aut X̃et
♯ (kalg) ≅ Galk♯

Proof. It follows from 6.5.3 and the fact that the theory of al-
gebraically closed fields eliminates imaginaries that the substructure
F/k♯ on sort F is homogeneous. An automorphism σ ∈ AutF/k♯ induces
a unique bijection on the space of complete types of the form τu which
induces a bijection on X̃(F), an automorphism of the structure, by
6.5.2. �

7 The language of universal covers and

the étale fundamental group

7.1 Define, for each µ ∈ MX and α ∈ Zeros fµ the set of maps

p̃µ,α ∶= {p ∶ U→ Xµ,α∣ p = g ○ pµ,α, g ∈ GDeck(Xµ,α/X)}.

This is a GDeck(Xµ,α/X)-set, that is there is a canonical free and
transitive action of the group on the set.

Define, for each µ ∈ MX,

p̃µ = ⋃{p̃µ,α ∶ fµ(α) = 0},

the finite set which is split into subsets indexed by α ∈ Zeros fµ.

7.2 We define the language LX to contain:

• sorts U, F and finite sorts p̃µ. for µ ∈ MX.

The subsets p̃µ,α of sorts p̃µ are definable using binary predicates
which we write as a relation p ∈ p̃µ,α between p ∈ p̃µ and α ∈ F.

• F has a ring language on it along with the names for elements
of the subfield k. In particular, X is a imaginary sort in F∣k (a

definable subset of PN(F)). µα ∶ Xµ,α → X are definable using
parameters α.

The group GDeck(Xµ,α/X) is another structure interpretable in
F∣k using parameter α, uniformly on α ∈ Zeros fµ.
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• For each µ ∈ MX, α ∈ Zeros(fµ) there is a binary function symbol
∗ defining the action

GDeck(Xµ,α/X) × p̃µ,α → p̃µ,α, (g, p) ↦ g ∗ p.

• For each µ ∈ MX, there is a relation symbol Φµ between U, F
and p̃µ which, for α ∈ Zeros(fµ), defines a map

Φµ,α ∶ p̃µ,α ×U→ Xµ,α.

Given p ∈ p̃µ,α, which has an interpretation of a map U → Xµ,α
we set

Φµ,α(p, u) = p(u).

It is clear from the definition of LX that any model (U,F/k) of

T ♯X can be transformed into a structure in the language LX by adding
certain 0-definable maps and sorts of (U,F/k,{p̃µ}µ∈M) and forgetting

the names for maps pµ,α of L♯X.
We denote X̃et(F) the structure in the language LX which corre-

sponds in this way to X̃et
♯ (F) considered in 4.11.

7.3 Define the theory TX in the language LX by the following
axioms:

A1 F is an algebraically closed field of characteristic 0 with subfield
k of constants.

A2′(µ) For the given µ ∈ MX, for any zero α of fµ and p ∈ p̃µ,α, the map

u↦ Φµ,α(p, u), U→ Xµ,α

is surjective.

For any g ∈ GDeck(Xµ,α/X)

Φµ,α(g ∗ p, u) = g(Φµ,α(p, u)).

For any p1, p2 ∈ p̃µ,α there is g ∈ GDeck(Xµ,α/X) such that g∗p1 =
p2. In particular, p̃ is a set with single element p.

A3’ For given µ ∈ MX and a zero α of fµ there is q ∈ p̃µ,α such that

p ○ q−1 = µα.
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7.4 Lemma. Given a model (U,F/k,{pµ}µ∈M) of T ♯X there is a
model (U,F/k,{p̃µ}µ∈M) of TX interpretable in (U,F/k,{pµ}µ∈M).

Proof. The interpretation is just by definition 7.1: the set p̃µ,α is
in bijective correspondence with the set GDeck(Xµ,α/X) × {pµ,α} and
p̃µ with the family GDeck(Xµ,α/X) × {pµ,α} ∶ fµ(α) = 0. �

7.5 Theorem. TX is a complete theory allowing elimination of quan-
tifiers.

Proof. Any model of TX can be made into a model of T ♯X by setting

pµ,α(u) ∶= Φµ,α(q, u) (15)

for some choice of q ∈ p̃µ,α, which is possible by axiom A3’.
It follows that any two saturated model of TX of the same cardi-

nality are isomorphic and hence the completeness.
Elimination of quantifiers follows by the same back-and-forth con-

struction in the proof of 6.5 in the language LX. �

From now on we work in the language LX.
For each µ ∈ MX, α ∈ Zeros fµ we fix bµ,α ∈ kα(Xµ,α) which gener-

ates the function field over K(α), that is Kµ,α = K(α, bµ,α). We set b̃µ,α
to be the orbit of bµ,α under the Galois group Gal(K(α, b) ∶ K(α)). We
may identify bµ,α and its conjugates as rational functions b ∶ Xµ,α(F) →
F defined over k(α), with domain of definition dense in the variety.

Note that applying σ ∈ Gal(k(α) ∶ k) to bµ,α and to Xµ,α we obtain
a rational function bµ,α′ ∶ Xµ,α′(F) → F where α′ = σ(α) ∈ k(α), and so
bµ,α′ ∈ k(α′)(Xµ,α′).

7.6 Lemma. There is a family iµ,α ∶ µ ∈ MX, α ∈ Zeros fµ of bijec-
tions

iµ,α ∶ p̃µα → b̃µα ⊂ Kµ,α

which is an isomorphism between the finite structures induced by the
ambient structures in the category M (a bi-interpretation) over k(α).

Moreover, there is a Lω1,ω-interpretation of a field Pµ,α in structure
p̃µα so that p̃µα ⊂ Pµ,α and iµ,α can be extended to an isomorphism of
fields

iµ,α ∶ Pµ,α → Kµ,α.

Proof. Note that (12) of 4.9 asserts the existence of an isomor-
phism

jµ,α ∶ GDeck(Xµ,α/X) → Gal(K(α, bµ,α) ∶ K(α)).
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Clearly, given g ∈ GDeck(Xµ,α/X) we get a Galois automorphism
of the field of rational functions Kµ,α over kα,

ĝ ∶ b↦ b ○ g.

Thus we may assume jµ,α(g) = ĝ.
Set, for b ∈ b̃µ,α,

ib ∶ g ○ pµ,α ↦ b ○ g, g ∈ GDeck(Xµ,α/X).

This is injective and gives us

b̃µ,α = ib(p̃µ,α).

Set iµ,α ∶= ibµ,α .
The k(α)-definable relations between elements b1, . . . , bk of b̃µ,α

induced from the ambient field (equivalently, the relation invariant
under Gal(K(α, bµ,α) ∶ K(α)) are boolean combinations of relations of
the form f(α, b1, . . . , bk) = 0, where f is a polynomial over k.

Set a relation between p1, . . . , pk ∈ p̃µ,α and α

Rf(α, p1, . . . , pk) ∶≡ f(α, ibµ,α(p1), . . . , ibµ,α(pk)) = 0.

Note that

f(α, ibµ,α(p1), . . . , ibµ,α(pk)) = 0⇔∃b ∈ b̃µ,α f(α, ib(p1), . . . , ib(pk)) = 0

since ibµ,α(p) ↦ ib(p) is a Gal(K(α, bµ,α) ∶ K(α))-transformation.
Thus, Rf is 0-definable (definable over k).
Now we interpret the field structure Pµ,α in the substructure with

the universe p̃µ,α using language Lω1,ω as follows:
The universe of Pµ,α will be interpreted as Sµ,α/Eµ,α where Sµ,α

is the Lω1,ω-definable set consisting of formal terms F (α, p1, . . . , pN),
for F ∈ k[X0,X1, . . . ,XN ], p1, . . . , pN the list of all elements of p̃µ,α,
and Eµ,α is the equivalence relation between the terms F1, F2,

RF1−F2(α, p1, . . . , pN).

That is F1(α, p1, . . . , pN) − F2(α, p1, . . . , pN) = 0 when interpreted by
iµ,α.

The operations + and × on the set of terms Sµ,α gives it the struc-
ture of a ring. And taking the quotient by Eµ,α we get, by construc-
tion, field Pµ,α isomorphic to Kµ,α. Clearly, p̃µ,α ⊂ Pµ,α since the
equivalence Eµ,α is trivial on p̃µ,α.
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Finally, we claim that p̃µ,α with the structure induced from X̃et(F)
is interpreted in the field structure Pµ,α. We first note that by the con-
struction of X̃et(F) in 7.1 - 7.2 the transformation of p̃µ,α, p↦ g○p, by
the action of a g ∈ GDeck(Xµ,α/X), can be extended to an automor-
phism of X̃et(F) fixing k(α). This implies that definable relations on
p̃µ,α are invariant under the action. Equivalently, the image of such
relation under iµ,α is invariant under the action by the Galois group of
the function field. Thus definable relations are boolean combinations
of the Rf , which proves the claim.

�

7.7 Lemma. Let

µα ∶ Xµ,α → X, νβ ∶ Xν,β → X, µ, ν ∈ M0
X,

with a matching covering

(µ−1
α νβ) ∶ Xν,β → Xµ,α.

Let
(µ−1

α νβ)∗ ∶ Kµ,α → Kν,β

the embedding of fields induced by covering morphism (µ−1
α νβ).

Let
iµ,α ∶ Pµ,α → Kµ,α

as constructed in 7.6.
Then one can adjust the construction of

iν,β ∶ Pνβ → Kν,β

so that the diagram commutes

iµ,α
Pµ,α

(µ−1
α νβ)∗ (µ−1

α νβ)∗

Kµ,α

Kν,β

iν,β
Pν,β
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Proof. Let bµ,α and bν,β be the generating elements of function
fields as above. The embedding Kµ,α ⊆ Kν,β gives rise to a k-rational
function h = F1

F2
, F1, F2 ∈ k[X0,X1], such that h(β, bν,β) = bµ,α and so

b ↦ h(β, b) is the restriction of the map (µ−1
α νβ)∗, b̃ν,β → b̃µ,α, which

extends to embedding of respective fields.
Then in the field Pν,β of formal terms embeds into Pµ,α using the

same rational function h = F1

F2
. �

7.8 Since the family of fields

MK ∶= {Kµ,α ∶ µ ∈ MX, α ∈ Zeros fµ}

forms an inverse system with reprect to embeddings (µ−1
α νβ)∗, the

following inverse lmit is well-defined

K̃ = lim
←M

Kµ,α

By this definition K̃ is the union of all the function fields of Galois
étale covers of X. When speaking of it as a structure we consider it a
field over K, that is with elements of K in K̃ being names. Note that
it automatically names also elements of k.

We give names and consider the multisorted structures definable
or interpretable in X̃et(F) ∶

p̃X ∶= {p̃µ ∶ µ ∈ M}, PX ∶= {Pµ ∶ µ ∈ M}, Pµ ∶= {Pµ,α ∶ α ∈ Zeros fµ}

with relations induced from the ambient structure.

Set X̃et
fin(kalg) to be the substructure of X̃et(kalg) obtained by

removing the covering sort X̃et(kalg) but keeping all the induced rela-
tions.

7.9 Theorem.
1.The field K̃ as a structure is isomorphic to PX via an isomor-

phism
PX ≅iX K̃.

2. PX is bi-interpretable with p̃X, i.e.

PX ≅M p̃X.

3.
Aut(PX) ≅ Aut(X̃et(kalg))
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and the isomorphism is induced by the bi-interpretation

PX ≅M X̃et
fin(kalg).

Proofs. 1. Follows directly from 7.7.

2. Follows directly from 7.6.

3. First, we prove that

dcl(PX) ⊃ Xµ,α(kalg) for all µ,α.

where dcl is in the first-order language.
Indeed, note that

kalg = ⋃{k(α) ∶ fµ(α) = 0, µ ∈ M}

and each such α is definable as a code for the sort p̃µ,α in PX. Thus
dcl(PX) ⊃ kalg and so dcl(PX) ⊃ Xµ,α(kalg) for all µ,α.

Now we conclude that

dcl(PX) ⊇ X̃et
fin(kalg)

since the right-hand side consists of sorts Xµ,α(kalg) and p̃µ,α only.
In particular, any σ ∈ Aut(PX) induces a unique automorphism of
X̃et
fin(kalg).

Finally, we claim that, in its own turn, any σ ∈ Aut(X̃et
fin(kalg))

induces a unique automorphism of X̃et(kalg)), that is has a unique
extension to X̃et(kalg)),

Indeed, consider u ∈ X̃(kalg). Choose elements pµ,α ∈ p̃µ,α and set
xµ,α ∶= pµ,α(u), element of Xµ,α(kalg). By construction u is the unique
element satisfying the system of equations

xµ,α = pµ,α(u) ∶ µ ∈ M, fµ(α) = 0,

i.e. u is type definable over X̃et
fin(kalg)). Hence, the action of σ on

X̃et
fin(kalg)) has a unique extension to X̃et(kalg)).

Note that PX ↪ X̃et(kalg) by definition. Together with the claim
this completes the proof. �

7.10 Corollary.

Aut X̃et(kalg) ≅ Aut X̃et
fin(kalg) ≅ Aut p̃X ≅ Gal(K̃/K).

Note that X̃et
fin(kalg) is a finitary structure.
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7.11 Fact ([8], Corollary 6.17). For a normal scheme X with a func-
tion field K

πet1 (X, x) = Gal(K̃/K),

where πet1 (X, x) is the étale fundamental group as defined in [4].

7.12 Corollary.

πet1 (X, x) ≅ Aut(X̃et
fin(kalg)).

7.13 Remark. The embedding F/k ↪ X̃et(F) induces via the func-
tor Aut of section 2 and Proposition 2.11

Γ̂↪ Aut(X̃et(F)) ↠ AutF/k

in particular, when F = kalg,

Γ̂↪ πet1 (X, x) ↠ Galk.

The following gives a link with a general model theory setting.

7.14 Proposition. πet1 (X, x) is isomorphic to the Lascar group of
theory TX.

Proof. Lascar group for stable theories is known to be isomor-
phic to Aut(acleq(0)) of a model. Hence it is enough to prove that
acleq(0) is bi-interpretable with the substructure p̃X of any model.
Equivalently, acleq(0) = dcl(p̃X).

The inclusion acleq(0) ⊇ p̃X is obvious since p̃X is finitary (the
union of finite sorts). To prove the inverse we can use the language
which names all elements pµ,α in sorts p̃µ. This language is equivalent
to L♯X. and so we can use theorem 6.5 describing definable sets in
models of the theory. It is easy to see that the only finite imaginary
sorts are the ones on finite sorts p̃µ and, by elimination of imaginaries
in algebraically closed fields, subsets of kalg. In terms of language LX
both are part of acleq(0). �

7.15 Definition of πet1 (X, x).
Let x ∈ X(F) and consider the multi-sorted structure

Fx = {µ−1
α (x) ∶ µ ∈ M, fµ(α) = 0}

with relations induced on it from X̃et(F).
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Claim. There is an x-definable bijection ix ∶ p̃X → Fx which induces
an interpretation of p̃X in Fx. In particular,

ix(p̃µ,α) = µ−1
α (x).

Proof. Note that for each µα,

µ−1
α (x) = pµ,α(p−1(x)) = p(p−1(x)) for any p ∈ p̃µ,α.

Note that p−1(x) is Lω1,ω-definable in Fx as the projective limit of
{µ−1

α (x)}.
For each µα,

µ−1
α (x) = pµ,α(p−1(x)) = p(p−1(x)) for any p ∈ p̃µ,α.

Thus one can set, for each p ∈ p̃µ,α,

ix(p) ∶ p−1(x) → µ−1
α (x), u↦ p(u),

the restrictions of respective functions X̃(F) → Xµ,α(F).
The relations between the p̃µ,α descend to relations on Fx in the

obvious way. Claim proved.
Define Fforget

x to be the reduct of Fx to the language expressing the
relations on p̃X only. Then

p̃X ≅M Fforget
x

via the bijection ix.
It follows that Aut p̃X ≅ Aut Fforget

x via the bijection ix. Define

πet1 (X, x) = Aut Fforget
x .

Finally we use our construction to reformulate Grothendieck’s sec-
tion conjecture.

7.16 Theorem. Suppose k♯ = k. Then there is a section

s ∶ Galk → πet1 (X)

of the canonical homomorphism πet1 (X) → Galk.
Proof.
By assumption

AutX̃et
♯ (kalg) = Galk.
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We can interpret X̃et(kalg) in X̃et
♯ (kalg) without parameters as ex-

plained in 7.1 and 7.2. It follows that any automorphism of X̃et
♯ (kalg)

extends uniquely to an automorphism of X̃et(kalg). That is there is
an embedding

s ∶ Aut X̃et
♯ (kalg) → Aut X̃et(kalg).

Under our assumption this is an embedding

s ∶ Galk → Aut X̃et(kalg)

which is obviously a section of the restriction homomorphism

Aut X̃et(kalg) → Galk.

�

Now we formulate a version of section conjecture which is formally
stronger than the conventional section conjecture.

7.17 ♯-version of section conjecture. Suppose there is a section

s ∶ Galk → Aut X̃et
♯ (kalg).

Then X has a k-rational point and k♯ = k.
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8 Appendix

8.1 Let X = {Xi ∶ i ∈ I} be a family of L-structures and FX a family
of epimorphisms between members of X which satisfies the following:

a For each Xi ∈ X the identity automorphism f ∶ Xi → Xi is in FX .
b If f, g ∈ FX , f ∶ Xi → Xj , g ∶ Xj → Xk then f ○ g ∈ FX .
c For any Xi1 ,Xi2 ∈ X there is Xj ∈ X and g1, g2 ∈ FX such that
g1 ∶ Xj → Xi1 , g2 ∶ Xj → Xi2 .

d For any Xi1 ,Xi2 ,Xj ∈ X and g1, g2 ∈ FX such that g1 ∶ Xj → Xi1 ,
g2 ∶ Xj → Xi2 , if there is f ∈ FX , f ∶ Xi1 → Xi2 then there is a
unique h ∈ FX , such that h ∶ Xi1 → Xi2 and h ○ g1 = g2.

Call such (X ,FX) a weak projective system for X .
A weak projective system is called a projective system if for

any Xi,Xj ∈ X there is at most one f ∈ FX , f ∶ Xi → Xj .
Let, for i, j ∈ I,

Fji = {f ∈ FX ∶ f ∶ Xj → Xi}.

A weak projective system is called of finite type if Fji is finite or
empty for any i, j ∈ I.

8.2 Note that (d) implies that the composition g2 ○g−1
1 of correspon-

dences defines a map equal to h ∶ Xi1 → Xi2 . We write h = g2 ○ g−1
1 .

8.3 Proposition. Let X be a smooth quasi-projective variety over a
field k,

X ∶= {Xµ,α(F) ∶ µ ∈ MX , α ∈ Zeros fµ},

the family of varieties that are finite étale covers of X as described in
4.2. Let FX be the family of all intermediate étale covers as defined
by (10). Then (X ,FX) is a weak projective system of finite type.

Proof. (a)-(c) are standard properties of the category of finite
étale covers.

Proof of (d). We are given epimorphisms gµ ∶ Xλ,γ → Xµ,α and
gν ∶ Xλ,γ → Xν,β as well as f ∶ Xµ,α → Xν,β . Let x ∈ Xλ,γ and yµ ∈ Xµ,α
yν ∈ Xν,β such that yµ = gµ(x), yν = gν(x).

Claim. There exists h ∶ Xµ,α → Xν,β such that h(yµ) = yν .
Indeed, by (b) f ○ gµ ∶ Xλ,γ → Xν,β is in FX , that is one of the

intermediate morphisms Xλ,γ → Xν,β , as is gν . Hence νβ ○f ○gµ = νβ ○gν
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and so νβ(f(yµ)) = νβ(yν), that is f(yµ) and yν belong to the same
fibre of νβ. It follows f(yµ) = s ⋅ yν , for some s ∈ GDeck(Xµ,α/X).

Let h ∶= s○f. Then h ∈ FX since the shift by s is an automorphisms
of the cover. We have h(yµ) = yν .

We thus have h○gµ and gν two intermediate morphisms Xλ,γ → Xν,β
taking the same value at point x. Then h○gµ = gν by 4.10. This proves
(d).

Finally, finite type follows again by 4.10. �

8.4 Lemma. Given a weak projective system (X ,FX) and a fi-
nite subfamily X 0 ⊂ X there is a finite subfamily F0

X ⊂ FX such that
(X 0,F0

X) is a system satisfying (a),(b),(d) and for any Xi1 ,Xi2 ∈ X 0

if there is g ∈ FX such that g ∶ Xi1 → Xi2 , then there is g ∈ F0
X such

that g ∶ Xi1 → Xi2 .
Proof. Using property (c) find an Xj ∈ X such that for any Xi ∈ X 0

there exist fi ∈ FX , fi ∶ Xj → Xi. For each pair Xi,Xj ∈ X 0 such that
there exist g ∈ FX , g ∶ Xi1 → Xi2 by property (d) we find a unique
hi1i2 ∈ FX , hi1i2 ∶ Xi1 → Xi2 and hi1i2 ○fi1 = fi2 , that is hi1i2 = fi2 ○f−1

i1
,

when such exists. Set

F0
X = {fi2 ○ f−1

i1 ∶ Xi1 ,Xi2 ∈ X 0}.

It is obvious that the system (X 0,F0
X) satisfies (a) and (d). Prop-

erty (b) follows by commutativity of arrows. �

8.5 Proposition. Given a weak projective system (X ,FX) of fi-
nite type there exists a projective system (X ,F ♭X) such that for any
Xi1 ,Xi2 ∈ X if there is g ∈ FX , g ∶ Xi1 → Xi2 , then there is g ∈ F ♭X such
that g ∶ Xi1 → Xi2 .

Proof. We need to construct a subset F ♭X of FX satisfying, for
each i, j ∈ I, such that Fji ≠ ∅,

⋁
f∈Fji

f ∈ F ♭X (16)

⋀
f1,f2∈Fji,f1≠f2

f1 ∉ F ♭X ∨ f2 ∉ F ♭X (17)

Conditions (16) and (17) can be treated as formulas of propositional
logic with propositional variables Pf with interpretation f ∈ F ♭X , for
each f ∈ FX .

Lemma 8.4 certifies that the set of all such formulas, for all Fji,
is finitely consistent. By the compactness theorem there is a model
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(an interpretation) for the whole set of propositional variables which
satisfies conditions (16) and (17) for all i, j ∈ I. This model tells us
which f of FX belong to F ♭X . �

8.6 Corollary. There exists a projective system of intermediate
morphisms for the family

X ∶= {Xµ,α(F) ∶ µ ∈ MX , α ∈ Zeros fµ}

of finite covers for any smooth quasi-projective variety X.
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